
Page 1

1 CS6810
School of Computing
University of Utah

Multiprocessors

 Today’s topics:

Discuss midterm & course interaction level

Discuss HW4

Parallelism

 via threads, cores, and/or processors

 Flynn’s taxonomy

 basic organizational issues

Application Parallelism

 some simple examples

2 CS6810
School of Computing
University of Utah

The Midterm

•  “A lot of theory” say some
  Al’s view – not really these basic concepts are what you’ll

 retain
»  equations you can always look up if you don’t remember

»  but conceptual issues will mark you as architecturally savy or
 not

•  if you have to look these up it will be embarrassing

•  Surprised at some questions
  after HW3 the branch prediction question should have been

 a cake walk

•  We need to change how we interact
  I need to talk less and you need to talk more

  it will take effort from both sides
»  ask questions if you don’t understand – make me explain

»  I ask questions to get a pulse – but often there are no takers
•  we need to fix this

•  A brief review of the solutions

Page 2

3 CS6810
School of Computing
University of Utah

HW4

•  Will employ a tool called “CACTI 6.5”
  released last week form HPL and installed yesterday on the

 CADE machines

•  4 questions – none are trivial
  you’ll need to formulate experiments to run using CACTI

  you’ll need to interpret the data and draw conclusions
 which answer the question

•  Not your typical homework – start NOW!
  more similar to a research endeavor

»  as grad students this should be your future

•  Focus
  introduce you to a valuable research tool

  give you some scope on a critical future area
»  e.g. register, cache, and memory organization

»  introduce real delay and power/energy
•  mostly underplayed in your text

4 CS6810
School of Computing
University of Utah

The Greed for Speed

•  It’s always been about parallelism
  earlier – hardware & hidden from programmer

  today – parallel cores, multiple sockets
»  and multiple threads per core

•  Change in usage
  mobile “average user”

»  use small dweeby light thing – cell phone, laptop, whatever

»  grad students in CS or CE aren’t part of this

  tons of data
»  sensors and Google camera cars are everywhere

  heavy weight computing is done elsewhere
»  data-center

»  the “Cloud” – SETI@home gets a new name – whatever

»  supercomputers
•  check out www.top500.org

–  IBM Roadrunner

–  Cray Jaguar

Page 3

5 CS6810
School of Computing
University of Utah

What Changes

•  Arlo
  “it’s an organization”

»  organizational problems
•  what to share vs. keep private

•  how to communicate

•  management overhead

•  3 basic components
  core – it’s getting simpler

»  primarily due to power issues & there are lots of them/socket

  memory
»  cache

•  shared on socket at L2 or L3 level

»  main
•  also shared in a couple of options

  interconnect
»  specialized in supercomputer/data-center/HPC land

»  commodity (a.k.a. fast ethernet) in cluster land

6 CS6810
School of Computing
University of Utah

Today’s Similarities

•  Microprocessor based
  today’s uP’s: multi-threaded and multi-core

•  Interconnect and memory system varies
  but it’s all about communication

»  memory accesses may be distant or local

»  communication may be
•  via shared memory (implicit)

•  or based on message passing (explicit)

•  or both

  power is a dominant concern
»  all those long wires frequently used

»  becoming a concern in the national energy footprint

•  Lots of options
  today we’ll look at the high level

  & decode some of the tower of Babel acronyms that are in
 common use

Page 4

7 CS6810
School of Computing
University of Utah

Application Parallelism

•  Multi-processing
  processes each run in their own protected virtual address

 space
»  lots of overhead to provide that protection

»  communicate via explicit mechanisms
•  pipes, sockets, etc.

•  Multi-threading
  share virtual address space

  Wax hazard avoidance
»  via synchronization mechanisms

•  barrier, semaphore, etc.

•  Confusion
  both may be inter-twined into the thread or processor term

»  1 core 2 threads
•  run two processes or two threads

  add multiple sockets and life gets even more fuzzy

8 CS6810
School of Computing
University of Utah

Flynn’s Taxonomy (1972)

•  Too simple but the only one that moderately works
  taxonomy of parallel machines is a bit of a red herring

»  doesn’t work as well as in the plant and animal worlds

»  change in computer structures isn’t that “genetic”

•  (Single, Multiple) X (Data stream, Instruction stream)
  SISD – the killer uP of old

»  gone in the mainstream segment

  SIMD
»  Illiac IV – the original supercomputer

•  broadcast too expensive and resource utilization problem

»  today alive and well (exploits data parallelism)
•  vector processing, media instructions (SSEn, Altivec)

•  wide SIMD is the theme for GPGPU’s

  MISD
»  nothing commercial – closest was HT Kung’s iWARP @ CMU

  MIMD
»  exploits TLP – hence the focus of much of the industry

Page 5

9 CS6810
School of Computing
University of Utah

SMP Memory Organization

•  Main memory shared by all cores
  private caches

•  UMA – uniform memory access
  all processors see the same memory org.

»  hence the SMP moniker

•  How well does it scale
  for small core counts – not too bad

»  banking and a good interconnect helps

»  large caches should reduce contention on the interconnect

  for large core count – unlikely win
»  power consumed in interconnect will be prohibitive

•  common interconnect becomes the bottleneck

•  only option is add complexity and power to mitigate
–  unacceptable option with high core counts

»  delay and area costs on chip will constrain performance
•  area is a semi-zero-sum game

10 CS6810
School of Computing
University of Utah

SMP/UMA Example

Early examples: Burroughs BSP, Sequent Symmetry S-81

Page 6

11 CS6810
School of Computing
University of Utah

DSM/NUMA Organization

•  Higher core counts
  distribute memory but shared access DSM

»  now have local vs. non-local references
•  NUMA

»  compatible with multiple sockets and multiple MC’s/socket

  new problem
»  memory chunks now local to some socket or MC

•  messages must be sent over interconnect for remote accesses

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Interconnection network

12 CS6810
School of Computing
University of Utah

Extending the Hierarchy

•  NUMA opus 2
  e.g. UIUc Cedar, CMU’s CM* & C.mmp

Page 7

13 CS6810
School of Computing
University of Utah

COMA – the Lunatic Fringe

•  Treat all memory as cache
  e.g. KSR-1 (which died at 1)

14 CS6810
School of Computing
University of Utah

Cache Organizations

•  Possible that caches can be shared as well
  issue of coherence

»  CC-NUMA vs. NCC-NUMA

  CC-NUMA SMP
»  snooping protocol and bus to maintain coherence

•  cache to cache transfers
–  details next lecture

  CC-NUMA DSM
»  notion of home node

»  global vs. local state of the line
•  MESI, MOESI, MSI variants

–  details next week

  NCC-NUMA
»  no cache impact just DSM/NUMA

•  More acronyms
  UCA – banked cache

  NUCA – distributed cache, possibly banked

Page 8

15 CS6810
School of Computing
University of Utah

NORMA

•  Message-Passing
  e.g. FAIM-1, Mayfly, Cosmic Cube, Ncube, iPSC, ….

  Beowulf clusters, easy to make

16 CS6810
School of Computing
University of Utah

Programming Models

•  Shared Memory
  CC-NUMA/NUCA

  familiar model w/ implicit communication
»  downside – easy to obtain horrible performance

»  upside is no OS involvement

»  communication is happening and it takes time

»  hardware handles protection

»  programmer handles synchronization when necessary

•  Message passing
  no cache coherence simpler hardware

  explicit communication
»  +: programmer designs it into a good algorithm

•  visible in restructuring code

»  -: increased programmer burden
•  OS tends to want to be in the way

  model of choice for todays supercomputers
»  MPI, Open-MP, MCAPI

Page 9

17 CS6810
School of Computing
University of Utah

Duality

•  Shared memory on top of message passing
  no problem

»  lots of software packages have done this

»  e.g. MUNIN and descendants at RICE

  IBM SP-2 had a library

•  Message passing on top of shared memory
  also no problem

  SGI Origin 2000 actually beat the SP-2 doing just this
»  why?

»  remember that OS overhead issue

18 CS6810
School of Computing
University of Utah

Parallel Performance Scalability

•  Amdahl’s law in action
  enhanced = parallel component

  example 1: code centric
»  80% of your code is parallel

•  best you can do is 5x speedup if parallel part goes to 0

  example 2: speedup centric
»  want 80x speedup on 100 processors

•  fractionenhanced = .9975

•  this will be hard

•  Linear speed up is hard
  unless “embarrassingly parallel” threads

  no dependence or cooperation

•  Superlinear speed up is easier
  lots more memory so no paging

  beware of these claims in the literature

Page 10

19 CS6810
School of Computing
University of Utah

Parallel Workloads

•  Highly varying
  resource utilization: cores, threads, memory, interconnect

  slight architecture change big performance change

•  3 workload examples
  commercial

»  OLTP – TPC-B

»  DSS – TPC-D

»  Web index search (AltaVista and a 200GB database)

  multiprogrammed & OS
»  2 independent compiles of Andrew file system

»  phases: compute bound (compile) & I/O bound (install and
 remove files)

  scientific
»  FFT, LU, Ocean, Barnes

20 CS6810
School of Computing
University of Utah

Effort Variation

•  Commercial workload on a 4 processor server

•  Multiprogrammed & OS on 8 processors

Page 11

21 CS6810
School of Computing
University of Utah

FFT

•  1 D complex numbers
  3 data structures: in, out, and read-only roots matrix

  steps
»  transpose input data matrix

»  1D FFT on each row

»  roots x data matrix

»  transpose data matrix

»  1D FFT on each row of data matrix

»  transpose data matrix

  communication
»  all to all communication in the three transpose phases

•  each processor transposes one local block and sends it to each
 other processor

•  Synopsis
  communication bound & tends to scale badly

22 CS6810
School of Computing
University of Utah

LU

•  Typical dens matrix factorization
  used in a variety of solvers & eigenvalue computations

•  Turn matrix into upper diagonal matrix
  blocking helps code to be cache friendly

•  Block size
  small enough to keep cache miss rate low

  large enough to maximize parallel phase

•  Synopsis
  this one scales well

Page 12

23 CS6810
School of Computing
University of Utah

Ocean

•  3D weather modeling
  75% of earth’s surface is ocean

»  major weather impact

»  eddy effect is significant

  4D problem
»  3D physical space + the time dimension

  model
»  discrete set of equally space points

»  simplify into a set of 2D planes
•  more difficult convergence but simpler communication

–  both take time

–  illustrative of the basic issues

24 CS6810
School of Computing
University of Utah

Ocean Model

Page 13

25 CS6810
School of Computing
University of Utah

Ocean Benchmark

•  Data
  2D arrays for each variable

  all arrays model each plane

•  Time
  solve set of motion equations

  sweep through all points per time step

  then move to next time step

•  Granularity
  big influence on compute time

»  2M miles x 2M miles = Atlantic Ocean

»  points @ 1 km spacing & 5 years of 1 minute time steps
•  2.6 M steps x 4M points – intractable now but maybe not in the

 future

26 CS6810
School of Computing
University of Utah

Ocean Decomposition

Page 14

27 CS6810
School of Computing
University of Utah

Ocean Decomposition

•  side effect of grid based solver
  perimeter vs. area

28 CS6810
School of Computing
University of Utah

Blocking for Cache Locality

Page 15

29 CS6810
School of Computing
University of Utah

Boundary Issues

•  Assume row-major order (think C) allocation
  column lines will have poor spatial locality

30 CS6810
School of Computing
University of Utah

Barnes-Hut

•  Simulates evolution of galaxies
  class N-body gravitation problem

•  Characteristics
  no spatial regularity so computation is particle based

  every particle influences every other particle
»  O(n2) complexity – UGHly

»  cluster distant star groups into one particle
•  based on center of mass since

•  simplifies complexity to O(n log n)

•  close stars must be handled individually

Page 16

31 CS6810
School of Computing
University of Utah

Oct-tree Hierarchy

•  3D galaxy representation
  8 equally sized children

»  based on equal space volumes

  tree traversed once per body to determine force
  bodies move so rebuild tree on every step

•  Group optimization
  if cell is far enough away

»  l/d < x
•  l = cell side length, d = distance from cell center

•  x is accuracy parameter – typically between .t and 1.2

»  then treat as single body

»  otherwise open cell and proceed

32 CS6810
School of Computing
University of Utah

2D Quadtree Illustration

Page 17

33 CS6810
School of Computing
University of Utah

Algorithm Flow

34 CS6810
School of Computing
University of Utah

Scientific Workload Scaling

Page 18

35 CS6810
School of Computing
University of Utah

Concluding Remarks

•  Lots of diversity in parallel systems
  architecture style

»  memory, interconnect, and processor XU’s

  application space
»  any huge problem has lots of parallelism

•  but what type data vs. control

»  programming model
•  message passing vs. shared memory

  mapping
»  who does it

•  programmer, compiler, OS, hardware

•  all are hard

  result
»  big difference in how resources are used

»  there’s always a bottleneck
•  trick is to figure out how to reduce it

