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University of Utah 

Multiprocessors 

 Today’s topics: 

Discuss midterm & course interaction level 

Discuss HW4 

Parallelism 

 via threads, cores, and/or processors  

 Flynn’s taxonomy  

 basic organizational issues 

Application Parallelism 

 some simple examples 
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The Midterm 

•  “A lot of theory” say some 
  Al’s view – not really these basic concepts are what you’ll

 retain 
»  equations you can always look up if you don’t remember 

»  but conceptual issues will mark you as architecturally savy or
 not 

•  if you have to look these up it will be embarrassing 

•  Surprised at some questions 
  after HW3 the branch prediction question should have been

 a cake walk 

•  We need to change how we interact 
  I need to talk less and you need to talk more 

  it will take effort from both sides 
»  ask questions if you don’t understand – make me explain 

»  I ask questions to get a pulse – but often there are no takers 
•  we need to fix this 

•  A brief review of the solutions 
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HW4 

•  Will employ a tool called “CACTI 6.5” 
  released last week form HPL and installed yesterday on the

 CADE machines 

•  4 questions – none are trivial 
  you’ll need to formulate experiments to run using CACTI 

  you’ll need to interpret the data and draw conclusions
 which answer the question 

•  Not your typical homework – start NOW! 
  more similar to a research endeavor 

»  as grad students this should be your future 

•  Focus 
  introduce you to a valuable research tool 

  give you some scope on a critical future area 
»  e.g. register, cache, and memory organization  

»  introduce real delay and power/energy 
•  mostly underplayed in your text 
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The Greed for Speed 

•  It’s always been about parallelism 
  earlier – hardware & hidden from programmer 

  today – parallel cores, multiple sockets 
»  and multiple threads per core 

•  Change in usage 
  mobile “average user” 

»  use small dweeby light thing – cell phone, laptop, whatever 

»  grad students in CS or CE aren’t part of this 

  tons of data 
»  sensors and Google camera cars are everywhere 

  heavy weight computing is done elsewhere 
»  data-center 

»  the “Cloud” – SETI@home gets a new name – whatever 

»  supercomputers 
•  check out www.top500.org 

–  IBM Roadrunner 

–  Cray Jaguar 



Page 3 

5 CS6810 
School of Computing 
University of Utah 

What Changes 

•  Arlo 
  “it’s an organization” 

»  organizational problems 
•  what to share vs. keep private 

•  how to communicate 

•  management overhead 

•  3 basic components 
  core – it’s getting simpler  

»  primarily due to power issues & there are lots of them/socket 

  memory 
»  cache 

•  shared on socket at L2 or L3 level 

»  main 
•  also shared in a couple of options 

  interconnect 
»  specialized in supercomputer/data-center/HPC land 

»  commodity (a.k.a. fast ethernet) in cluster land 
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Today’s Similarities 

•  Microprocessor based 
  today’s uP’s: multi-threaded and multi-core 

•  Interconnect and memory system varies 
  but it’s all about communication 

»  memory accesses may be distant or local 

»  communication may be 
•  via shared memory (implicit) 

•  or based on message passing (explicit) 

•  or both 

  power is a dominant concern 
»  all those long wires frequently used 

»  becoming a concern in the national energy footprint 

•  Lots of options 
  today we’ll look at the high level 

  & decode some of the tower of Babel acronyms that are in
 common use 
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Application Parallelism 

•  Multi-processing 
  processes each run in their own protected virtual address

 space 
»  lots of overhead to provide that protection 

»  communicate via explicit mechanisms 
•  pipes, sockets, etc. 

•  Multi-threading 
  share virtual address space 

  Wax hazard avoidance 
»  via synchronization mechanisms 

•  barrier, semaphore, etc. 

•  Confusion 
  both may be inter-twined into the thread or processor term 

»  1 core 2 threads 
•  run two processes or two threads 

  add multiple sockets and life gets even more fuzzy 
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Flynn’s Taxonomy (1972) 

•  Too simple but the only one that moderately works 
  taxonomy of parallel machines is a bit of a red herring 

»  doesn’t work as well as in the plant and animal worlds 

»  change in computer structures isn’t that “genetic” 

•  (Single, Multiple) X (Data stream, Instruction stream) 
  SISD – the killer uP of old 

»  gone in the mainstream segment 

  SIMD 
»  Illiac IV – the original supercomputer 

•  broadcast too expensive and resource utilization problem 

»  today alive and well (exploits data parallelism) 
•  vector processing, media instructions (SSEn, Altivec) 

•  wide SIMD is the theme for GPGPU’s 

  MISD 
»  nothing commercial – closest was HT Kung’s iWARP @ CMU 

  MIMD 
»  exploits TLP – hence the focus of much of the industry 
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SMP Memory Organization 

•  Main memory shared by all cores 
  private caches  

•  UMA – uniform memory access 
  all processors see the same memory org. 

»  hence the SMP moniker 

•  How well does it scale 
  for small core counts – not too bad 

»  banking and a good interconnect helps 

»  large caches should reduce contention on the interconnect 

  for large core count – unlikely win 
»  power consumed in interconnect will be prohibitive 

•  common interconnect becomes the bottleneck 

•  only option is add complexity and power to mitigate 
–  unacceptable option with high core counts 

»  delay and area costs on chip will constrain performance 
•  area is a semi-zero-sum game 
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SMP/UMA Example 

Early examples: Burroughs BSP, Sequent Symmetry S-81 
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DSM/NUMA Organization 

•  Higher core counts 
  distribute memory but shared access  DSM 

»  now have local vs. non-local references 
•  NUMA  

»  compatible with multiple sockets and multiple MC’s/socket 

  new problem 
»  memory chunks now local to some socket or MC 

•  messages must be sent over interconnect for remote accesses 

Processor 
& Caches 

Memory I/O 

Processor 
& Caches 

Memory I/O 

Processor 
& Caches 

Memory I/O 

Processor 
& Caches 

Memory I/O 

Interconnection network 
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Extending the Hierarchy 

•  NUMA opus 2 
  e.g. UIUc Cedar, CMU’s CM* & C.mmp 
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COMA – the Lunatic Fringe 

•  Treat all memory as cache 
  e.g. KSR-1 (which died at 1) 
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Cache Organizations 

•  Possible that caches can be shared as well 
  issue of coherence 

»  CC-NUMA vs. NCC-NUMA 

  CC-NUMA SMP 
»  snooping protocol and bus to maintain coherence 

•  cache to cache transfers  
–  details next lecture 

  CC-NUMA DSM 
»  notion of home node 

»  global vs. local state of the line 
•  MESI, MOESI, MSI variants 

–  details next week 

  NCC-NUMA 
»  no cache impact just DSM/NUMA 

•  More acronyms 
  UCA – banked cache 

  NUCA – distributed cache, possibly banked 



Page 8 

15 CS6810 
School of Computing 
University of Utah 

NORMA 

•  Message-Passing 
  e.g. FAIM-1, Mayfly, Cosmic Cube, Ncube, iPSC, …. 

  Beowulf clusters, easy to make 

16 CS6810 
School of Computing 
University of Utah 

Programming Models 

•  Shared Memory 
  CC-NUMA/NUCA 

  familiar model w/ implicit communication 
»  downside – easy to obtain horrible performance 

»  upside is no OS involvement 

»  communication is happening and it takes time 

»  hardware handles protection 

»  programmer handles synchronization when necessary 

•  Message passing 
  no cache coherence  simpler hardware 

  explicit communication 
»  +: programmer designs it into a good algorithm 

•  visible in restructuring code 

»  -: increased programmer burden 
•  OS tends to want to be in the way 

  model of choice for todays supercomputers 
»  MPI, Open-MP, MCAPI 
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Duality 

•  Shared memory on top of message passing 
  no problem 

»  lots of software packages have done this 

»  e.g. MUNIN and descendants at RICE 

  IBM SP-2 had a library 

•  Message passing on top of shared memory 
  also no problem 

  SGI Origin 2000 actually beat the SP-2 doing just this 
»  why? 

»  remember that OS overhead issue 

18 CS6810 
School of Computing 
University of Utah 

Parallel Performance Scalability 

•  Amdahl’s law in action 
  enhanced = parallel component 

  example 1: code centric 
»  80% of your code is parallel 

•  best you can do is 5x speedup if parallel part goes to 0 

  example 2: speedup centric 
»  want 80x speedup on 100 processors 

•  fractionenhanced = .9975 

•  this will be hard 

•  Linear speed up is hard 
  unless “embarrassingly parallel” threads 

  no dependence or cooperation 

•  Superlinear speed up is easier 
  lots more memory so no paging 

  beware of these claims in the literature 
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Parallel Workloads 

•  Highly varying 
  resource utilization: cores, threads, memory, interconnect 

  slight architecture change  big performance change 

•  3 workload examples 
  commercial 

»  OLTP – TPC-B 

»  DSS – TPC-D 

»  Web index search (AltaVista and a 200GB database) 

  multiprogrammed & OS 
»  2 independent compiles of Andrew file system 

»  phases: compute bound (compile) & I/O bound (install and
 remove files) 

  scientific 
»  FFT, LU, Ocean, Barnes 

20 CS6810 
School of Computing 
University of Utah 

Effort Variation 

•  Commercial workload on a 4 processor server 

•  Multiprogrammed & OS on 8 processors 
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FFT 

•  1 D complex numbers 
  3 data structures: in, out, and read-only roots matrix 

  steps 
»  transpose input data matrix 

»  1D FFT on each row 

»  roots x data matrix 

»  transpose data matrix 

»  1D FFT on each row of data matrix 

»  transpose data matrix 

  communication 
»  all to all communication in the three transpose phases 

•  each processor transposes one local block and sends it to each
 other processor 

•  Synopsis 
  communication bound & tends to scale badly 

22 CS6810 
School of Computing 
University of Utah 

LU 

•  Typical dens matrix factorization 
  used in a variety of solvers & eigenvalue computations 

•  Turn matrix into upper diagonal matrix 
  blocking helps code to be cache friendly 

•  Block size 
  small enough to keep cache miss rate low 

  large enough to maximize parallel phase 

•  Synopsis 
  this one scales well 
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Ocean 

•  3D weather modeling  
  75% of earth’s surface is ocean 

»  major weather impact 

»  eddy effect is significant 

  4D problem 
»  3D physical space + the time dimension 

  model 
»  discrete set of equally space points 

»  simplify into a set of 2D planes 
•  more difficult convergence but simpler communication 

–  both take time 

–  illustrative of the basic issues 
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Ocean Model 
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Ocean Benchmark 

•  Data 
  2D arrays for each variable 

  all arrays model each plane 

•  Time 
  solve set of motion equations 

  sweep through all points per time step 

  then move to next time step 

•  Granularity 
  big influence on compute time 

»  2M miles x 2M miles = Atlantic Ocean 

»  points @ 1 km spacing & 5 years of 1 minute time steps 
•  2.6 M steps x 4M points – intractable now but maybe not in the

 future 
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Ocean Decomposition 
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Ocean Decomposition 

•  side effect of grid based solver 
  perimeter vs. area 
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Blocking for Cache Locality  
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Boundary Issues 

•  Assume row-major order (think C) allocation 
  column lines will have poor spatial locality 
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Barnes-Hut 

•  Simulates evolution of galaxies 
  class N-body gravitation problem 

•  Characteristics 
  no spatial regularity so computation is particle based 

  every particle influences every other particle 
»  O(n2) complexity – UGHly 

»  cluster distant star groups into one particle 
•  based on center of mass since  

•  simplifies complexity to O(n log n) 

•  close stars must be handled individually 
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Oct-tree Hierarchy 

•  3D galaxy representation 
  8 equally sized children 

»  based on equal space volumes 

  tree traversed once per body to determine force 
  bodies move so rebuild tree on every step 

•  Group optimization 
  if cell is far enough away 

»  l/d < x 
•  l = cell side length, d = distance from cell center 

•  x is accuracy parameter – typically between .t and 1.2 

»  then treat as single body 

»  otherwise open cell and proceed 
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2D Quadtree Illustration  
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Algorithm Flow 
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Scientific Workload Scaling 
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Concluding Remarks 

•  Lots of diversity in parallel systems 
  architecture style 

»  memory, interconnect, and processor XU’s 

  application space 
»  any huge problem has lots of parallelism 

•  but what type data vs. control 

»  programming model 
•  message passing vs. shared memory 

  mapping 
»  who does it 

•  programmer, compiler, OS, hardware 

•  all are hard 

  result  
»  big difference in how resources are used 

»  there’s always a bottleneck 
•  trick is to figure out how to reduce it 


