
Page 1

1 CS6810
School of Computing
University of Utah

Virtual Memory

 Today’s topics:

Virtual memory

 deeper look at memory hierarchy & management

 TLB’s for incresed speed and protection

 a few examples of approaches to date

Midterm Review

 topics you should pay attention to

2 CS6810
School of Computing
University of Utah

Memory Hierarchy

•  3 physical memory types
  caches – on chip SRAM

  main memory – off chip DRAM
»  fronted by a memory controller

•  lots of details later in the course – for now think slow

  disk – either SSD or HD
»  magnetic or slow NVRAM

•  details later for now thing SUPER SLOW

•  Common principle
  similar to multi-level caches
  miss here?

»  dig deeper

Page 2

3 CS6810
School of Computing
University of Utah

Main Memory Organization

•  Familiar optimizations
  wider memory

»  make a main memory transaction look like a cache line
•  handled primarily by the memory controller

  bus width
»  actually a standard

•  wider & slower: JEDEC

•  skinnier and faster: RAMBUS

  pipeline
»  with synchronous DRAM’s

•  pipeline extended into DIMM and DRAM chips

  interleaved or phased memory
»  n slow banks – interleave return on higher bandwidth path/bus

»  ultimately the trick being used in DDR1, 2, 3, ….

  optimize for sequential memory accesses
»  capitalize on spatial locality similar to caches

4 CS6810
School of Computing
University of Utah

Hierarchy Options

Page 3

5 CS6810
School of Computing
University of Utah

Striping/Interleaving

•  Different for disks
  ignore this for now

•  For caches and main memory
  exploit concurrency in banks

6 CS6810
School of Computing
University of Utah

Virtual Memory

•  Large virtual address space
  mapping mechanism to physical main memory

»  e.g. 64 bit virtual address space
•  smaller physical address

–  36-40 bits common now

•  Multiple process management
  each process has a “private” and “protected” virtual

 address space
»  but share physical memory (caches and main memory)

•  trick is how to manage this private/protected illusion so it’s true

•  for caches
–  virtual indexed and tagged via address spaces

  between DRAM and disk
»  miss becomes a page or TLB fault

•  TLB is just a cache of recently used page table entries

»  block becomes a page or segment

Page 4

7 CS6810
School of Computing
University of Utah

Page Relocation

•  Page table allows contiguous virtual addresses to be
 mapped in a non-contiguous fashion in main memory

8 CS6810
School of Computing
University of Utah

Difficulties

•  TLB is a cache
  usually highly associative

»  conflict miss penalty is huge since miss
•  is to main memory (~300 cycles) or disk (~10 msec)

•  Main memory has 2 masters
  cache line sized blocks move up in the hierarchy
  page sized blocks move down in the the hierarchy

  memory controller has to keep it straight
»  used to be on the Northbridge chipset

»  now moving on chip
•  2 of them on Nehalem for example

Page 5

9 CS6810
School of Computing
University of Utah

Line vs. Page Differences

•  Replacement
  page fault handled by OS

»  time to access disk + context switch is large

»  hence more exotic replacement (LRU’ish) policy is tractable

•  Capacity
  cache size choice is unrelated to either physical or virtual

 address size

  physical address size specifies maximum main memory size
»  smaller is OK but mask exists to based on existing

 configuration

  virtual address size specifies the minimum swap space size
»  multiply by how many processes you’d like to be partially

 resident

•  What’s on the disk
  SWAP partition

  File system partitions

10 CS6810
School of Computing
University of Utah

2 VM Styles: Main Memory

•  Pages are fixed size
  super-page options exist to increase TLB reach

•  Segments
  variable sized – hence base pointer and offset addressing

Page 6

11 CS6810
School of Computing
University of Utah

VM’s & Same 4 Questions

•  Placement
  lower miss rates vs. complex placement

»  large miss penalty
•  choose low miss rate  place anywhere

–  similar to fully associative cache but on a page granularity in main mem

•  Addressing
  pages via a page table

»  VPN  PPN and catenate page offset
•  page table or TLB cache does translation

•  valid bit needed as a minimum to indicate presence in main mem

  segmentation
»  segment table

•  segment #  offset in segment table
–  pointer to head of segment table required

•  lots of segments  bigger segment table required

12 CS6810
School of Computing
University of Utah

VPN  PPN Mapping Basics

Page 7

13 CS6810
School of Computing
University of Utah

Normal Page Tables

•  Size
  # entries = number of virtual pages

•  Role
  VPN  PPN translation

»  enables page relocation

  still need status tags
»  valid

»  protection: priv’d, R, W, Xeq, …

•  Potential problem
  64-bit virtual address space, 34 bit physical address & 4 KB

 page
»  page table has 252 entries

•  YOW that’s more than physical memory

»  ideas of how to fix this?

14 CS6810
School of Computing
University of Utah

Inverted Page Table

•  Make page table reflect what’s in physical memory
  use a hash mechanism

»  create index into inverted page table

  compare VPN with tag to make sure of the hit
»  similar to caches

  if you don’t find it you go to disk
»  double jeopardy

•  disk access to get the page table

•  disk access to get the page you want

•  plus update the IPT

•  The good bit
  caches miss rarely

  IPT miss is even more rare

Page 8

15 CS6810
School of Computing
University of Utah

Page Policies

•  Replacement
  LRU best but same story – expensive

  hence “use” bit idea is employed
»  rarer OS wake up makes this closer to LRU than it is for

 caches

»  strategy
•  spend a few OS cycles to reduce miss rate and horrific page miss

 penalty

•  Write strategy
  always write back – so dirty bit required

»  write-through to disk is silly

  write buffering works as with caches
»  larger grain size  larger buffer size

»  get the requested one first then do the write when you can

16 CS6810
School of Computing
University of Utah

Page Size Dilemma

•  Large pages are good
  reduces page table size

»  increases TLB reach

  amortizes long disk latencies
  works well when spatial locality is in play

•  Large pages are bad
  more internal fragmentaion

»  last page of text, heap, and control stack is 50% wasted

  process start up delay
»  at least the first 3 pages of each type is required

»  big pages  longer transfer time delay

Page 9

17 CS6810
School of Computing
University of Utah

AXP 21064 TLB Example

18 CS6810
School of Computing
University of Utah

Improvements

•  What’s chanaged
  multple process’ data can co-reside in memory

»  technology side-effect
•  larger memories, more processes, higher context switch overhead

  virtual address alias problem
»  use PID’s is an option but there are too many of them

»  use address space numbers instead
•  similar mechanism discussed for caches

–  1 per process

–  no need for TLB flush if valid ASN

–  if start a process without a current ASN

–  remap and flush TLB with evicted ASN

–  no write back needed – just invalidate

•  HP-PA series used this idea from the start

Page 10

19 CS6810
School of Computing
University of Utah

AXP 21264

20 CS6810
School of Computing
University of Utah

Protection Options

•  Base and bound – segmented VM
  check that address falls between 2 register values

»  registers can only be changed by OS/priv’d instructions

»  PID or ASN idea can be used for finer grain ACL control
•  read, write, execute

•  Paged VM
  check as part of the VAPA translation

»  held in TLB on a page based privilege

•  Other options
  ring based

»  MULTICS (late 60’s) and now Pentium
•  inner ring is most priv’d – outer is user

–  allows greater distinction: kernel, OS, loadable module, user

•  capabilities (ala the ill-fated Intel i432)
–  key or password based model

–  OS hands them out so difficult to forge

–  apps can pass them around which could be dangerous

Page 11

21 CS6810
School of Computing
University of Utah

AXP 21264

•  Both segmented and paged
  64 bit address space (only 48 were used)

»  addr63:46

•  all 0’s
–  seg0 for text and heap – grows upward

–  seg 1 for stack grows downward

•  all 1’s
–  kseg – reserved for OS kernel

–  uniformly protected space – no memory management

–  idea is to keep kernel resident w/ no perterbation from seg0 & seg1

•  Advantages
  segmentation conserves page table space

  paging provides VM, protection and relocation
»  paging happens within each segment

»  split page tables

  best of both worlds
»  how about cost?

22 CS6810
School of Computing
University of Utah

21264 VM Problems

•  Big page table
  big memories are slow

  go hierarchical here too
»  3 levels of page table

•  each table is 1 page in size

•  8KB page but support for super pages 16, 32, 64KB in 21364

•  34 bit physical address

•  Virtual addr = [seg index, lvl1, lvl2, lvl3, offset]
  mapping

»  LVL1-TBL[lvl1]+lvel2 points to LVL2-TBL entry
•  and so forth

»  LVL3-TBL entry provides PPN

»  PPN##offset  physical address for main memory

Page 12

23 CS6810
School of Computing
University of Utah

21264 Mapping

24 CS6810
School of Computing
University of Utah

Concluding Remarks

•  Pentium
  both paged and segmented w/ table based translation

»  VA’s mapped to segments and physical addresses
•  contains protection bits – 4 level ring based

–  wrinkle – depends on who calls who

–  allows user code to safe call OS and use shared memory

–  possible Trojan horse problem

–  fix by not allowing OS to provide an indirect reference

–  OS and user stack are separate – hence copy required

–  no parameter passing via registers

»  example of not trusting the OS much (oh that would be MS)

»  lots of other cruft that we’ll ignore

•  Things are getting hairier
  multiple cores, VM’s, hypervisors

»  open question is what is the right HW support for protection
•  mantra – common case goes to HW, flexibility is best done in SW

Page 13

25 CS6810
School of Computing
University of Utah

Midterm Review 1

•  Topics
  cost and market segment issues

  quantitative analysis ala HW1 and HW2
  ISA issues

»  RISC vs. CISC, memory modes

  Pipelining
»  performance issues, hazards, forwarding, laminarity

  ILP
»  various optimizations in both HW and SW/compiler

•  know the trade-offs

  Branch prediction (HW3 should have focused some
 attention)

»  static vs. dynamic

»  local, global, tournament

»  predict what
•  taken-not taken

•  address

•  instruction

26 CS6810
School of Computing
University of Utah

Midterm Review 2

•  More topics
  dynamic issue superscalar

»  Scoreboarding and Tomasulo
•  know how they work

  static issue superscalar
»  VLIW and EPIC

•  understand group and bundle idea from EPIC

  ILP limitations
»  there are good reasons for going multi-core and multi-threaded

»  know why and the basic multi-threading approaches

  Caches
»  we’ve covered the basics

»  conceptual question only is possible

»  understand
•  basic organizations: direct-mapped, set-associative, associative

•  basic tradeoffs and organizations

•  miss types what what helps reduce each type

•  basic memory performance equations

