

Reduce Hit Time				
• Small and simple cach	les			
keep cache hierarchy	on chip			
» off chip access is 10)-100x penalty			
 small, direct-mapped 				
» note L1\$ size doesn	't change much w/ tec	hnology		
» L2 is where the bigg	jest change occurs			
 associativity is a double 	ble edged sword			
• Next slide				
• models based on CAC	TI			
» common research to	ool			
» book model is CACT	1-IV			
	ccurately deal w/ wire de	lay		
 current version is 6 much better wird 	9.5 e models – SPICE back annota	ted validation		
» undecided				
 might be used in H 	W4			
School of Computing University of Utah	4	CS6810		

Reduce Miss Penalty				
Critical word first				
 overlap transfer with a 	ability to use data			
 complicates next leve 	access			
» not all that bad				
» at DRAM level				
• MEM_CTL in the wa				
overhead to suppor				
Coalesce/Combining/M				
 writes happen from a 	register value			
 cache lines bigger 				
» so buffer writes by c				
» same unit of transfer • cache to cache	r			
 cache to Cache cache to DRAM 				
School of Computing University of Utah	10	C\$6810		

Ancillary Caches				
• Victim cache (Jouppi)				
 small cache to hold v 	victimized lines			
 idea allows arbitrary » total extra associat 	· · · · · · · · · · · · · · · · · · ·			
 downside 				
» parallel check of reg » fully associative	gular and victim			
• Trace cache (Weiser,	Peleg)			
• Intel P4				
» expensive – many in	struction copies			
• Assist cache (HP and	somebody you kn	iow)		
 1st touch goes to assi 	ist			
 2nd touch goes to reg » makes prefetch less 		e cache		
• downside				
» similar to victim ca	che			
School of Computing University of Utah	20	CS6810		

Technique	Miss Rate	Miss Penalty	Hit Time	HW Complex ity	Comments
Larger Cache	win		lose	easy	cost is approx. linear
Larger Block Size	win	lose		easy	trivial engineering effort
Higher Associativity	win		lose	1	associative match isn't free
Victim Caches	win			2	e.g. HP 7200
Pseudo-Associative	win			2	Used in L2 of MIPS R10000
HW Prefetch of I and D	win			2	D fetch hard to do correctly
Compiler controlled prefetch	win			3	Needs non-blocking cache
Compiler cache scheduling (blocking,)	win			0	Too bad it's hard to do for all applications - loop focus for now

Technique	Miss Rate	Miss Penalty	Hit Time	HW Complex ity	Comments
Prioritizing Read Misses		win		1	write buffer - simple
Subblock placement		win		1	good at reducing tag overhead
Early restart + critical word first		win		2	MIPS R10K, IBM 620
Nonblocking Caches		win		3	MIPS R10K, AXP 21064
Second Level Caches		big win		2	big additional cost for all that SRAM
Small Simple Caches	lose		win	0	trivial so it's widely used
Avoid translation effects			win	2	AXP 21064 several PA-whatevers
Pipelining Writes			win	1	AXP 21064, PA-8000, UltraSPARC

