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Cache Optimization 

 Today’s topics: 

Look at memory access times 

 improve hit time 

 reduce miss rate 

 reduce miss penalty 

Full disclosure 

 I’m winging this one 

 more detail on white board than slides 
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Optimize What 

•  Basic quantitative metric 

  but in a parallel world it’s about exposed latency  

  note that miss penalty 
»  f(transfer_rate/bandwidth, latency_next_lower_cache) 

»  so improve bandwidth helps 

•  Optimize 
  reduce hit time (Amdahl’s law – it’s the common case) 

  increase cache bandwidth 

  reduce miss penalty 

  reduce miss rate 

  increase overlap 
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Knee of Curve Problem 

•  Bigger problem for small caches – e.g. L1 
  latency vs. transfer time 
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Reduce Hit Time 

•  Small and simple caches 
  keep cache hierarchy on chip 

»  off chip access is 10-100x penalty 

  small, direct-mapped 
»  note L1$ size doesn’t change much w/ technology 

»  L2 is where the biggest change occurs 

  associativity is a double edged sword 

•  Next slide 
  models based on CACTI 

»  common research tool 

»  book model is CACTI-IV 
•  note this doesn’t accurately deal w/ wire delay 

•  current version is 6.5 
–  much better wire models – SPICE back annotated validation 

»  undecided 
•  might be used in HW4 
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Hit Time Effects 
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Hit-time Improvement #2 

•  Way prediction 
  basics covered last time 

»  saves comparator power 

»  increased associativity of set-assoc caches 
•  reduces conflict misses 

•  but way prediction give performance of direct mapped cache 

  tactics similar to branch prediction 
»  PC of load or store 

•  keep track of which way was hit 
–  very similar to local Gselect predictor 

•  keep track of progression 
–  similar to stride prediction 

•  Practice 
  way prediction used in both MIPS and Pentium IV

 processors 

•  Prediction accuracy 
  ~85% 
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Increase Cache Bandwidth 

•  Pipelined caches 
  just like processor 

»  pipelining can increase latency  

»  fill and spill penalty when things go wrong 

  throughput improves on average 
»  note L1 latency increasing 

•  3’ish cycles today but launch a new access every cycle 

•  Non-blocking caches 
  for when L1+ misses occur 
  MSHR’s and dynamic issue logic 
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Non-blocking Cache Data 
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Multi-Banked Caches 

•  Interleave for improved bandwidth 
  practice 

»  Opteron – 2 banks 

»  Sun Niagra – 4 banks 

  idea 
»  no conflict accesses issues faster than bank latency 

»  alternative to hit-under-miss & MSHR solution 

»  banks are smaller so latency is reduced 

•  Bigger advantage w/ multi-core and shared L2 
  downside 

»  faster bus 

»  OR multiple buses 

»  note: 
•  long wires on buses inherently induce problems 

–  slower performance – C effect 

–  high power – signal integrity 

–  pre- and post-emphasis (e.g. QPI, HT, dynamic balance) 
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Reduce Miss Penalty 

•  Critical word first 
  overlap transfer with ability to use data 

  complicates next level access 
»  not all that bad 

»  at DRAM level 
•  MEM_CTL in the way anyway 

•  overhead to support is minor 

•  Coalesce/Combining/Merge Write Buffer 
  writes happen from a register value 

  cache lines bigger 
»  so buffer writes by cache line 

»  same unit of transfer 
•  cache to cache 

•  cache to DRAM 



Page 6 

11 CS6810 
School of Computing 
University of Utah 

Combining Write Buffer Example 

What are the cost effects? 
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Reduce Miss Rate 

•  Compiler optimizations 
  compiler knows cache organization 

»  arrange code and data to minimize misses 

  loop interchange – improves spatial locality 
»  walk cache line in inner loop 

•  e.g. matrix multiply is the canonical example 

  blocking – improves spatial locality 
»  put code into phases 

•  do as much as you can on this data frame before moving to next
 frame 

•  avoids register spill and refill as well as cache misses 

»  matrix multiply again   
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Matmul Example ijk 
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Loop Interchange to jik 
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Loop Interchange to kij 
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All Possibilities 



Page 9 

17 CS6810 
School of Computing 
University of Utah 

Blocked MatMul Example 
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Blocked MatMul Performance 
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Others 

•  Prefetch 
  reduces miss penalty and miss rate 

»  if done right 

»  added complexity, power, and screw up potential 
•  discussed last lecture 

  can be done either by HW or SW 

•  Next level cache 
  reduces miss penalty 

»  in best case 

  increases miss penalty 
»  in worst case 

»  “swing to miss” principle 
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Ancillary Caches 

•  Victim cache (Jouppi) 
  small cache to hold victimized lines 

  idea allows arbitrary associativity for small number of lines 
»  total extra associativity = size of victim cache 

  downside 
»  parallel check of regular and victim 

»  fully associative 

•  Trace cache (Weiser, Peleg) 
  Intel P4 

»  expensive – many instruction copies 

•  Assist cache (HP and somebody you know) 
  1st touch goes to assist 

  2nd touch goes to regular cache 
»  makes prefetch less likely to contaminate cache 

  downside 
»  similar to victim cache 
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Summary I 
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Summary II 
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Conclusion 

•  Cost 
  focus on HW cost 

»  compiler viewed as free if you’re a HW geek 

  low 
»  small caches, way-prediction, pipelined cache access, banked

 caches, compiler tactics 

  medium 
»  critical word first and early restart 

»  instruction prefetch 
•  access is more regular 

»  victim and assist caches 

  expensive 
»  trace caches  

•  now that power is a big issue 

»  data prefetch 
•  access irregular  wasted speculation 


