
Page 1

1 CS6810
School of Computing
University of Utah

Cache Optimization

 Today’s topics:

Look at memory access times

 improve hit time

 reduce miss rate

 reduce miss penalty

Full disclosure

 I’m winging this one

 more detail on white board than slides

2 CS6810
School of Computing
University of Utah

Optimize What

•  Basic quantitative metric

  but in a parallel world it’s about exposed latency

  note that miss penalty
»  f(transfer_rate/bandwidth, latency_next_lower_cache)

»  so improve bandwidth helps

•  Optimize
  reduce hit time (Amdahl’s law – it’s the common case)

  increase cache bandwidth

  reduce miss penalty

  reduce miss rate

  increase overlap

Page 2

3 CS6810
School of Computing
University of Utah

Knee of Curve Problem

•  Bigger problem for small caches – e.g. L1
  latency vs. transfer time

4 CS6810
School of Computing
University of Utah

Reduce Hit Time

•  Small and simple caches
  keep cache hierarchy on chip

»  off chip access is 10-100x penalty

  small, direct-mapped
»  note L1$ size doesn’t change much w/ technology

»  L2 is where the biggest change occurs

  associativity is a double edged sword

•  Next slide
  models based on CACTI

»  common research tool

»  book model is CACTI-IV
•  note this doesn’t accurately deal w/ wire delay

•  current version is 6.5
–  much better wire models – SPICE back annotated validation

»  undecided
•  might be used in HW4

Page 3

5 CS6810
School of Computing
University of Utah

Hit Time Effects

6 CS6810
School of Computing
University of Utah

Hit-time Improvement #2

•  Way prediction
  basics covered last time

»  saves comparator power

»  increased associativity of set-assoc caches
•  reduces conflict misses

•  but way prediction give performance of direct mapped cache

  tactics similar to branch prediction
»  PC of load or store

•  keep track of which way was hit
–  very similar to local Gselect predictor

•  keep track of progression
–  similar to stride prediction

•  Practice
  way prediction used in both MIPS and Pentium IV

 processors

•  Prediction accuracy
  ~85%

Page 4

7 CS6810
School of Computing
University of Utah

Increase Cache Bandwidth

•  Pipelined caches
  just like processor

»  pipelining can increase latency

»  fill and spill penalty when things go wrong

  throughput improves on average
»  note L1 latency increasing

•  3’ish cycles today but launch a new access every cycle

•  Non-blocking caches
  for when L1+ misses occur
  MSHR’s and dynamic issue logic

8 CS6810
School of Computing
University of Utah

Non-blocking Cache Data

Page 5

9 CS6810
School of Computing
University of Utah

Multi-Banked Caches

•  Interleave for improved bandwidth
  practice

»  Opteron – 2 banks

»  Sun Niagra – 4 banks

  idea
»  no conflict accesses issues faster than bank latency

»  alternative to hit-under-miss & MSHR solution

»  banks are smaller so latency is reduced

•  Bigger advantage w/ multi-core and shared L2
  downside

»  faster bus

»  OR multiple buses

»  note:
•  long wires on buses inherently induce problems

–  slower performance – C effect

–  high power – signal integrity

–  pre- and post-emphasis (e.g. QPI, HT, dynamic balance)

10 CS6810
School of Computing
University of Utah

Reduce Miss Penalty

•  Critical word first
  overlap transfer with ability to use data

  complicates next level access
»  not all that bad

»  at DRAM level
•  MEM_CTL in the way anyway

•  overhead to support is minor

•  Coalesce/Combining/Merge Write Buffer
  writes happen from a register value

  cache lines bigger
»  so buffer writes by cache line

»  same unit of transfer
•  cache to cache

•  cache to DRAM

Page 6

11 CS6810
School of Computing
University of Utah

Combining Write Buffer Example

What are the cost effects?

12 CS6810
School of Computing
University of Utah

Reduce Miss Rate

•  Compiler optimizations
  compiler knows cache organization

»  arrange code and data to minimize misses

  loop interchange – improves spatial locality
»  walk cache line in inner loop

•  e.g. matrix multiply is the canonical example

  blocking – improves spatial locality
»  put code into phases

•  do as much as you can on this data frame before moving to next
 frame

•  avoids register spill and refill as well as cache misses

»  matrix multiply again

Page 7

13 CS6810
School of Computing
University of Utah

Matmul Example ijk

14 CS6810
School of Computing
University of Utah

Loop Interchange to jik

Page 8

15 CS6810
School of Computing
University of Utah

Loop Interchange to kij

16 CS6810
School of Computing
University of Utah

All Possibilities

Page 9

17 CS6810
School of Computing
University of Utah

Blocked MatMul Example

18 CS6810
School of Computing
University of Utah

Blocked MatMul Performance

Page 10

19 CS6810
School of Computing
University of Utah

Others

•  Prefetch
  reduces miss penalty and miss rate

»  if done right

»  added complexity, power, and screw up potential
•  discussed last lecture

  can be done either by HW or SW

•  Next level cache
  reduces miss penalty

»  in best case

  increases miss penalty
»  in worst case

»  “swing to miss” principle

20 CS6810
School of Computing
University of Utah

Ancillary Caches

•  Victim cache (Jouppi)
  small cache to hold victimized lines

  idea allows arbitrary associativity for small number of lines
»  total extra associativity = size of victim cache

  downside
»  parallel check of regular and victim

»  fully associative

•  Trace cache (Weiser, Peleg)
  Intel P4

»  expensive – many instruction copies

•  Assist cache (HP and somebody you know)
  1st touch goes to assist

  2nd touch goes to regular cache
»  makes prefetch less likely to contaminate cache

  downside
»  similar to victim cache

Page 11

21 CS6810
School of Computing
University of Utah

Summary I

22 CS6810
School of Computing
University of Utah

Summary II

Page 12

23 CS6810
School of Computing
University of Utah

Conclusion

•  Cost
  focus on HW cost

»  compiler viewed as free if you’re a HW geek

  low
»  small caches, way-prediction, pipelined cache access, banked

 caches, compiler tactics

  medium
»  critical word first and early restart

»  instruction prefetch
•  access is more regular

»  victim and assist caches

  expensive
»  trace caches

•  now that power is a big issue

»  data prefetch
•  access irregular wasted speculation

