Caches

Today’s topics:
Basics
memory hierarchy
locality
cache models
associative options
calculating miss penalties

some fundamental optimization issues

School of Computing
!w University of Utah 1 CS6810

The Problem

¢ Widening memory gap
= DRAM latency CAGR = 7%

= CPU performance CAGR
» 25% prior to 1986, 52% 86-2005, 20% thereafter

100,000
>
10,000 frreerneennmrnneaie sttt Ty a0, AT
G 1,000 [= (i ——————————
5
§ Processor
o
=
k- 100 |
10 B e e e y
Memory
1 . ; ; ;
1980 1985 1990 1995 2000 2005 2010
Year
©2007 Elsevier, Inc. All rights reserved.
!DJ School of Computing 2 CcS6810
University of Utah

Page 1

The Solution

* Deepen memory hierarchy

* make dependency on DRAM latency the rare case
» if you can

Memory Ot
p us
RS L Memory I/O devices
Disk
memory
Register Cache Memory reference
reference reference reference
Size: 500 bytes 64 KB 1GB 1TB
Speed: 250 ps 1ns 100 ns 10 ms

2007 Elsevier, Inc. All ights reserved.

multi-ported

single ported

!DJ School of Computing 3 CS6810

University of Utah

Balancing Act

¢ As always
= performance vs. cost, capacity vs. latency, ...
= on-die SRAM is expensive per bit
» latency depends on size and organization
» area - 6T/bit
» power - not so bad since only small portion active/cycle
* DRAM
» latency is awful in cycles w/ GHz clock speeds
» area = 1T + 1C/bit - lots of details later
* Dealing w/ cache size latency
= deepen cache hierarchy
» small separate IL1$ and DL1$: minimize mem structural stalls
» unified L2 reduces fragmentation problems
» multicore introduces global L3

* may not continue to be a good idea

¢ everything runs out of steam at some point
- key is what % of L1 misses hit in L2 (induction on Ln & Ln#1)

!DJ School of Computing s CcS6810

University of Utah

Page 2

Locality

* 2 basic types
= temporal
» if you used this block then you will use it again soon
= gpatial
» if you used this block you will use a nearby one soon
* Exploiting locality
= match of application memory usage and cache design
= some codes are touch once
» encrypt/decrypt, encode/decode, ...
» here caches are a liability

School of Computing
!”J University of Utah 5 CS6810

Locality
¢ 2 basic types
= temporal
» if you used this block then you will use it again soon
= gpatial

» if you used this block you will use a nearby one soon

* Exploiting locality
= match of application memory usage and cache design
» if you match you win - simple as that
= some codes are touch once = fall through misses
» e.g. encrypt/decrypt, encode/decode, ... (media influence)

» here caches are a liability
¢ you have to swing to miss
- try L1 - miss? - try L2 — miss? ...
* a lot of extra time if you end up going to DRAM anyway
= historical tidbit
» Seymour Cray didn’t believe in caches or DRAM
¢ or even 2’s complement initially

School of Computing
lDJ University of Utah 6 CS6810

Page 3

Performance Issues

e Basics CPUtime = IC = CPI *# cycle_time

CPI = !
frequency
IPC = .
CPI
CPUtime = — 1=
IPC * frequency

o Enter stalls

= IPC gets degraded by stalls
» we’ve seen stalls due to hazards and pipeline issues
» now the focus is on memory stalls
¢ influence is based on load & store %
* with good branch prediction most stalls are memory induced

!DJ School of Computing

University of Utah 7 CS6810

Computing Memory Effect

e Misses induce stalls

= ILP & TLP can overlap some of the penalty
» but a miss is a surprise so some of the penalty won’t be hidden

XEQtime = (CPUcycles + MEMstallcycles) * cycle_time
MEMstallcycles = num_misses * miss_penalty

MEMstallcycles = IC = & *miss_penalty
1nstruction

memory_accesses

MEMstalleycles = IC = *miss_rate * miss_penalty

instruction
Separate

MEMstallcycles = EREADstalls,Writestalls

reads . .
READstalls = IC #* ———————— *read_miss_rate * read_miss_penalty
nstruction

writes
WRITEstalls = IC * ——————— * write_miss_rate * write_miss_penalty
1nstruction

School of Computing
!”J University of Utah 8 CS6810

Page 4

4 Questions = $ Organization

Q1: Where can a block be placed? (examples shortly)
» fully associative: answer = anywhere
» direct mapped: answer = only one place
» set-associative: in a small number of “ways”
* Q2: How is a block found?
» 2 types of tags
* status: valld and dirty (for now)

* address: alias chance must be resolved
- next slide

Q3: Which block is replaced on a miss?
» LRU - best but expensive - matches temporal locality model
» FIFO - good but expensive - LRU but on 15t touch not use
» random - defeats temporal locality but simple to implement
» approximation by epochs - add “use” status tag
* Q4: What happens on a write miss?
» hit: write-through or write-back (requires dirty flag)
» miss: write-replace or write-around
¢ a.k.a. write_allocate or write_no_allocate)

!”J School of Computing

University of Utah 9 CS6810

Cache Components

¢ Cache block or line
* size varies — 64B is a common choice

» no reason why the block size can’t be larger the deeper you go
in the memory hierarchy

* cache lines typically the same size - reduces some complexity
* memory to cache transfer in line sized chunks
¢ disk to memory transfer in page sized chunks

¢ 2 main structures & a bunch of logic
= data RAM - holds the cached data

= tag RAM - holds tag information
» same number of “entries” as data RAM
* entry = line for direct mapped or fully associative
* entry = set for set-associative
» width for set associative a number of ways
» for each set of address tags
* status tags present as well

lDJ School of Computing 10 CS6810

University of Utah

Page 5

Block Identification

e Address

Block address Block

© 2007 Elsevier, Inc. All rights reserved.

= tag = address tag
» held in tag ram
» size is what’s left over after index and block offset size
* index
» log,(number of data RAM entries)
= block offset
» says which byte, word, or half-word is to be moved to the
target register
¢ silly in a way — word or doubles transferred to register
* appropriate byte or half-word is then used for the op
» size = log,(line size)

* increase offset or index reduces tag size

School of Computing
lyj University of Utah " CS6810

Cache Access

Byte address

101000

Offset
8-byte words

8 words: 3 index bits

Direct-mapped cache:
each address maps to
a unique address

Alias problem? Sets

Data array

School of Computing
!”J University of Utah 12 CS6810

Page 6

De-Alias by

Matching Address Tag

101000

Tag

y

Compare

b

8-byte words

Direct-mapped cache:
each address maps to

a unique address

Compare succeeds = hit

School of Computing
!w University of Utah

13 CS6810

Set Associative Cache

Byte address

10100000

AN \\

N

AN

Set associativity > fewer conflicts; wasted power
because multiple data and tags are read

Way-1 Way-2

Tag array Compare Data array
!'JJ School of Computing 14 CS6810

University of Utah

Page 7

Miss Types

¢ 3 C’s (for now - a 4t will show up later)

= compulsory
» 15t access to a block will always miss
» fix: prefetch if you can
* LD RO, address will do the trick for MIPS

* several machines have HW assisted prefetch engines
- dynamic stride prediction in HP-PA 7400
- ther form of sp lation
- just wastes power if you lose
- benefit vs. llabllity Is a tricky balance point

= capacity
» if line that was previously in the cache is evicted and then
reloaded

» indication that working set size of app is bigger than the cache
» fix — bigger cache or prefetch

= conflict
» e.g. only need 2 lines but they victimize each other

School of Computing
!UJ University of Utah 15 CS6810

Miss Types

e 3 C’s (for now - a 4t will show up later)

= compulsory
» 1%t access to a block will always miss
» fix: prefetch if you can
= capacity
» if line that was previously in the cache is evicted and then
reloaded

» indication that working set size of app is bigger than the cache
» fix — bigger cache or prefetch

= conflict
» e.g. only need 2 lines but they victimize each other

* how can you tell the difference between capacity and conflict miss?
- conflict misses don’t exist In fully assoclatlve cache since any line can be

anywhere
- run test on set-assoc or direct mapped cache and then on same capacity
fully lative he, Int: tlon of miss sets are capacity misses,
she rsst are conflict ml 5 after di ting all ml. that are first
-e.g. P y
School of Computing
W) University of Utah 16 csés10

Page 8

Increasing Associativity

 Data and Tag RAM” # entries the same
= will depend on capacity
¢ Logic involved in compares
= for n ways = n parallel compares
if one of the succeeds then hit in the associated way
» if none succeed then miss
» if >1 succeeds somebody made a big mistake
» if n is large then problems 2 way prediction

* fully associative
» huge number of parallel compares (m line capacity & m
compares
* power hungry - limits use to smallish caches
- llke a TLB
» or save power but increase hit-time
* n compares where n << m

* walk tag array In n sized chunks
- stop when you find a hit but miss_time is VERY long
- variable miss time but In this Is ys true anyway

»

4

!DJ School of Computing

University of Utah 17 CS6810

Organization Effects

& 1-way
- 2-vay
A @ 4-way
A 0 8-way
A W Capacity
0 Compulsory

Missrate 0,05
per type

helps but there are trade-offs

— Increasing either increases both
000 i power and delay

Cache size (KB)

Need to find the sweet spot

Miss rate
per type

W 1-way
40% © 2-way
o 4-way
o 8-way
W Capacity
0 Compulsory

) 8 16 32 64 128 2% 512 1024
Cache size (KB)
©2007 Esavir I Al ighs rosved.

School of Computing
!DJ University of Utah 18 CS6810

Page 9

Increasing associativity and capacity

Optimizations to Reduce Miss Rate

¢ Increase block size

= +: reduces tag size, compulsory misses, and miss rate if
there is spatial locality

= -z miss must fetch larger block, no spatial locality & waste,
increases conflict misses since for same capacity there
will be less blocks in the cache

* Increase cache size

* +: reduces conflict and capacity misses

= =z larger caches are slower - increased hit time
¢ Increased associativity

= jssues already discussed

= rule of thumb 2-way associativity w/ capacity N/2 has the
same miss rate as 1-way size N cache

* Way prediction

= can use methods similar to branch prediction

» get it right and reduce power consumption since
* 1 way SA = direct mapped

!DJ School of Computing 19 CS6810

University of Utah

Hiding/Tolerating Miss Penalty

* 000 execution

= combo of ILP and TLP techniques

= do as much as you can in between a load and consumer
Non-blocking caches

= first miss doesn’t block subsequent actions

= cache controller keeps track of multiple outstanding
misses

» MSHR’s — miss status handling registers & dynamic issue req’d
Write buffers
= Q:liloritize reads - handle writes when memory is otherwise
idle
» opposite of Itanium ALAT concept
» reads must check write buffer to get latest result
Prefetching (even if you get it right)
= too aggressive 2 increased cache pressure
= possible to increase conflict/capacity misses

!DJ School of Computing 20 CS6810

University of Utah

Page 10

The Problem w/ Addresses

* Program vs. Memory
= program - virtual addresses
* main memory and /O land - physical addresses
= what does the cache use?

School of Computing
!yj University of Utah 2 CS6810

The Problem w/ Addresses

* Program vs. Memory
= program - virtual addresses

* main memory and 1/O land - physical addresses
= what does the cache use?

¢ Physically indexed physically tagged cache
= result - increased hit_time
» not a good idea according to Amdahl if you hit most of the time

= why?
» virtual address needs to be translated to a physical address
before the cache access can even begin

* TLB is a cache of these translations

* miss in the TLB goes to the page table
— which may be In maln memory or even on the disk
- UGHIly

* Improve by doing address translation in parallel with
data access

= a bit speculative but if high hit rate then it’s the right
choice

School of Computing
!DJ University of Utah 22 CS6810

Page 11

Virtually Indexed Physically Tagged $

I Virtual address <64> |

| Virtual page number <51> [Page offset <13> |

!

[7L8 tag compare address <43> [TLB index <&> |

[L1 cache index <7> [Biock offset <6> |

ToCPU

LB tag <43> TLB data <27>

L1 tag compare address <27>

L1 cache tag <43> L1 data <512>

‘ Physical address <41> |

Virtual address space [2 1ag compare address <19> | L2 cache index <16 Block offset <6 |
can be > physical addr. Toch
space

L2 cache tag <19> L2 data <512>

Problems?

To L1 cache or CPU

2007 Elsavisr, Inc. Alights reserved.

School of Computing
!w University of Utah 23 CS6810

Issues and Options

e VI-PT $

* page size inherently limits size of the L1$

» higher associativity can mitigate this BUT
¢ delay and/or power may go up

e VI-VT $’s
* just do everything virtual
» note these caches do exist so it’s not hypothetical hokum

* removes page size cache capacity problem
= problems?

School of Computing
!DJ University of Utah 24 CS6810

Page 12

Issues and Options

e VI-PTS
= page size inherently limits size of the L1$
» higher associativity can mitigate this BUT
¢ delay and/or power may go up
e VI-VT $’s
= just do everything virtual
» note these caches do exist so it’s not hypothetical hokum
* removes page size cache capacity problem
= problems
» multiple processes concurrently running
* OS guarantees address space privacy
= fix
» assign process to an address space ID

» address space part of tag RAM - space ID provided w. virtual
address

¢ processes are not interleaved like threads so process ID is known
* on context switch 08 must flush cache if AS-ID isn’t active

School of Computing
!”J University of Utah 25 CS6810

Concluding Remarks

¢ This lecture - somewhat remedial
= but essential to understand what follows
» if you don’t

¢ read the book more thoroughly or go back to the cs3810 text
* ask questions, confer w/ Dogan,

» mid-term questions will be conceptual
» subsequent homework will be more substantive
¢ Applies to reality as well

= lots of cores complicate cache design
» foundation however is the same

School of Computing
lDJ University of Utah 26 CS6810

Page 13

