
Page 1

1 CS6810
School of Computing
University of Utah

Caches

 Today’s topics:

Basics

 memory hierarchy

 locality

 cache models

 associative options

 calculating miss penalties

 some fundamental optimization issues

2 CS6810
School of Computing
University of Utah

The Problem

•  Widening memory gap
  DRAM latency CAGR = 7%

  CPU performance CAGR
»  25% prior to 1986, 52% 86-2005, 20% thereafter

Page 2

3 CS6810
School of Computing
University of Utah

The Solution

•  Deepen memory hierarchy
  make dependency on DRAM latency the rare case

»  if you can

multi-ported
single ported

4 CS6810
School of Computing
University of Utah

Balancing Act

•  As always
  performance vs. cost, capacity vs. latency, …

  on-die SRAM is expensive per bit
»  latency depends on size and organization

»  area – 6T/bit

»  power – not so bad since only small portion active/cycle

  DRAM
»  latency is awful in cycles w/ GHz clock speeds

»  area = 1T + 1C/bit - lots of details later

•  Dealing w/ cache size latency
  deepen cache hierarchy

»  small separate IL1$ and DL1$: minimize mem structural stalls

»  unified L2 reduces fragmentation problems

»  multicore introduces global L3
•  may not continue to be a good idea

•  everything runs out of steam at some point
–  key is what % of L1 misses hit in L2 (induction on Ln & Ln+1)

Page 3

5 CS6810
School of Computing
University of Utah

Locality

•  2 basic types
  temporal

»  if you used this block then you will use it again soon

  spatial
»  if you used this block you will use a nearby one soon

•  Exploiting locality
  match of application memory usage and cache design

  some codes are touch once
»  encrypt/decrypt, encode/decode, …

»  here caches are a liability
•  why?

6 CS6810
School of Computing
University of Utah

Locality

•  2 basic types
  temporal

»  if you used this block then you will use it again soon

  spatial
»  if you used this block you will use a nearby one soon

•  Exploiting locality
  match of application memory usage and cache design

»  if you match you win – simple as that

  some codes are touch once  fall through misses
»  e.g. encrypt/decrypt, encode/decode, … (media influence)

»  here caches are a liability
•  you have to swing to miss

–  try L1 – miss? – try L2 – miss? …

•  a lot of extra time if you end up going to DRAM anyway

  historical tidbit
»  Seymour Cray didn’t believe in caches or DRAM

•  or even 2’s complement initially

Page 4

7 CS6810
School of Computing
University of Utah

Performance Issues

•  Basics

•  Enter stalls
  IPC gets degraded by stalls

»  we’ve seen stalls due to hazards and pipeline issues

»  now the focus is on memory stalls
•  influence is based on load & store %

•  with good branch prediction most stalls are memory induced

€

CPUtime = IC∗CPI∗cycle_time

CPI = 1
frequency

IPC =
1

CPI

CPUtime =
IC

IPC∗ frequency

8 CS6810
School of Computing
University of Utah

Computing Memory Effect

•  Misses induce stalls
  ILP & TLP can overlap some of the penalty

»  but a miss is a surprise so some of the penalty won’t be hidden

€

XEQtime = (CPUcycles+MEMstallcycles)∗cycle_time
MEMstallcycles = num_misses∗miss_penalty

MEMstallcycles = IC∗ misses
instruction

∗miss_penalty

MEMstallcycles = IC∗memory_accesses
instruction

∗miss_rate*miss_penalty

Separate

MEMstallcycles = READstalls,Writestalls∑

READstalls = IC∗ reads
instruction

∗ read_miss_rate∗ read_miss_penalty

WRITEstalls = IC∗ writes
instruction

∗write_miss_rate∗write_miss_penalty

Page 5

9 CS6810
School of Computing
University of Utah

4 Questions = $ Organization

  Q1: Where can a block be placed? (examples shortly)
»  fully associative: answer = anywhere

»  direct mapped: answer = only one place

»  set-associative: in a small number of “ways”

  Q2: How is a block found?
»  2 types of tags

•  status: valid and dirty (for now)

•  address: alias chance must be resolved
–  next slide

  Q3: Which block is replaced on a miss?
»  LRU – best but expensive – matches temporal locality model

»  FIFO – good but expensive – LRU but on 1st touch not use

»  random – defeats temporal locality but simple to implement

»  approximation by epochs – add “use” status tag

  Q4: What happens on a write miss?
»  hit: write-through or write-back (requires dirty flag)

»  miss: write-replace or write-around (modern CPU’s ~allow both)
•  a.k.a. write_allocate or write_no_allocate)

10 CS6810
School of Computing
University of Utah

Cache Components

•  Cache block or line
  size varies – 64B is a common choice

»  no reason why the block size can’t be larger the deeper you go
 in the memory hierarchy

•  cache lines typically the same size – reduces some complexity

•  memory to cache transfer in line sized chunks

•  disk to memory transfer in page sized chunks

•  2 main structures & a bunch of logic
  data RAM – holds the cached data

  tag RAM – holds tag information
»  same number of “entries” as data RAM

•  entry = line for direct mapped or fully associative

•  entry = set for set-associative

»  width for set associative a number of ways

»  for each set of address tags
•  status tags present as well

Page 6

11 CS6810
School of Computing
University of Utah

Block Identification

•  Address

  tag = address tag
»  held in tag ram

»  size is what’s left over after index and block offset size

  index
»  log2(number of data RAM entries)

  block offset
»  says which byte, word, or half-word is to be moved to the

 target register
•  silly in a way – word or doubles transferred to register

•  appropriate byte or half-word is then used for the op

»  size = log2(line size)

  increase offset or index reduces tag size

12 CS6810
School of Computing
University of Utah

Cache Access

8-byte words

 101000

Direct-mapped cache:
each address maps to

a unique address

8 words: 3 index bits

Byte address

Data array
Sets

Offset

Alias problem?

Page 7

13 CS6810
School of Computing
University of Utah

De-Alias by Matching Address Tag

8-byte words

 101000

Direct-mapped cache:
each address maps to

a unique address

Tag

Compare

Compare succeeds  hit

14 CS6810
School of Computing
University of Utah

Set Associative Cache

 10100000

Byte address

Tag

Data array Tag array

Set associativity  fewer conflicts; wasted power
 because multiple data and tags are read

Way-1 Way-2

Compare

Page 8

15 CS6810
School of Computing
University of Utah

Miss Types

•  3 C’s (for now – a 4th will show up later)
  compulsory

»  1st access to a block will always miss

»  fix: prefetch if you can
•  LD R0, address will do the trick for MIPS

•  several machines have HW assisted prefetch engines
–  dynamic stride prediction in HP-PA 7400

–  another form of speculation

–  just wastes power if you lose

–  benefit vs. liability is a tricky balance point

  capacity
»  if line that was previously in the cache is evicted and then

 reloaded

»  indication that working set size of app is bigger than the cache

»  fix – bigger cache or prefetch

  conflict
»  e.g. only need 2 lines but they victimize each other

•  how can you tell the difference between capacity and conflict miss?

16 CS6810
School of Computing
University of Utah

Miss Types

•  3 C’s (for now – a 4th will show up later)
  compulsory

»  1st access to a block will always miss

»  fix: prefetch if you can

  capacity
»  if line that was previously in the cache is evicted and then

 reloaded

»  indication that working set size of app is bigger than the cache

»  fix – bigger cache or prefetch

  conflict
»  e.g. only need 2 lines but they victimize each other

•  how can you tell the difference between capacity and conflict miss?
–  conflict misses don’t exist in fully associative cache since any line can be

 anywhere

–  run test on set-assoc or direct mapped cache and then on same capacity
 fully associative cache, intersection of miss sets are capacity misses,
 the rest are conflict misses after discounting all misses that are first
 touch – e.g. compulsory misses

Page 9

17 CS6810
School of Computing
University of Utah

Increasing Associativity

•  Data and Tag RAM” #_entries the same
  will depend on capacity

•  Logic involved in compares
  for n ways  n parallel compares

»  if one of the succeeds then hit in the associated way

»  if none succeed then miss

»  if >1 succeeds somebody made a big mistake

»  if n is large then problems  way prediction

  fully associative
»  huge number of parallel compares (m line capacity  m

 compares
•  power hungry – limits use to smallish caches

–  like a TLB

»  or save power but increase hit-time
•  n compares where n << m

•  walk tag array in n sized chunks
–  stop when you find a hit but miss_time is VERY long

–  variable miss time but in essence this is always true anyway

18 CS6810
School of Computing
University of Utah

Organization Effects

Increasing associativity and capacity
helps but there are trade-offs

Increasing either increases both
power and delay

Need to find the sweet spot

Page 10

19 CS6810
School of Computing
University of Utah

Optimizations to Reduce Miss Rate

•  Increase block size
  +: reduces tag size, compulsory misses, and miss rate if

 there is spatial locality

  -: miss must fetch larger block, no spatial locality  waste,
increases conflict misses since for same capacity there
 will be less blocks in the cache

•  Increase cache size
  +: reduces conflict and capacity misses
  -: larger caches are slower – increased hit time

•  Increased associativity
  issues already discussed

  rule of thumb 2-way associativity w/ capacity N/2 has the
 same miss rate as 1-way size N cache

•  Way prediction
  can use methods similar to branch prediction

»  get it right and reduce power consumption since
•  1 way SA = direct mapped

20 CS6810
School of Computing
University of Utah

Hiding/Tolerating Miss Penalty

•  OOO execution
  combo of ILP and TLP techniques

  do as much as you can in between a load and consumer

•  Non-blocking caches
  first miss doesn’t block subsequent actions

  cache controller keeps track of multiple outstanding
 misses

»  MSHR’s – miss status handling registers & dynamic issue req’d

•  Write buffers
  prioritize reads – handle writes when memory is otherwise

 idle
»  opposite of Itanium ALAT concept

»  reads must check write buffer to get latest result

•  Prefetching (even if you get it right)
  too aggressive  increased cache pressure

  possible to increase conflict/capacity misses

Page 11

21 CS6810
School of Computing
University of Utah

The Problem w/ Addresses

•  Program vs. Memory
  program – virtual addresses

  main memory and I/O land – physical addresses
  what does the cache use?

22 CS6810
School of Computing
University of Utah

The Problem w/ Addresses

•  Program vs. Memory
  program – virtual addresses

  main memory and I/O land – physical addresses
  what does the cache use?

•  Physically indexed physically tagged cache
  result – increased hit_time

»  not a good idea according to Amdahl if you hit most of the time

  why?
»  virtual address needs to be translated to a physical address

 before the cache access can even begin
•  TLB is a cache of these translations

•  miss in the TLB goes to the page table
–  which may be in main memory or even on the disk

–  UGHly

•  Improve by doing address translation in parallel with
 data access
  a bit speculative but if high hit rate then it’s the right

 choice

Page 12

23 CS6810
School of Computing
University of Utah

Virtually Indexed Physically Tagged $

Problems?

Virtual address space
can be > physical addr.
space

24 CS6810
School of Computing
University of Utah

Issues and Options

•  VI-PT $
  page size inherently limits size of the L1$

»  higher associativity can mitigate this BUT
•  delay and/or power may go up

•  VI-VT $’s
  just do everything virtual

»  note these caches do exist so it’s not hypothetical hokum
•  removes page size cache capacity problem

  problems?

Page 13

25 CS6810
School of Computing
University of Utah

Issues and Options

•  VI-PT $
  page size inherently limits size of the L1$

»  higher associativity can mitigate this BUT
•  delay and/or power may go up

•  VI-VT $’s
  just do everything virtual

»  note these caches do exist so it’s not hypothetical hokum
•  removes page size cache capacity problem

  problems
»  multiple processes concurrently running

•  OS guarantees address space privacy

  fix
»  assign process to an address space ID

»  address space part of tag RAM – space ID provided w. virtual
 address

•  processes are not interleaved like threads so process ID is known

•  on context switch OS must flush cache if AS-ID isn’t active

26 CS6810
School of Computing
University of Utah

Concluding Remarks

•  This lecture – somewhat remedial
  but essential to understand what follows

»  if you don’t
•  read the book more thoroughly or go back to the cs3810 text

•  ask questions, confer w/ Dogan, ….

»  mid-term questions will be conceptual

»  subsequent homework will be more substantive

•  Applies to reality as well
  lots of cores complicate cache design

»  foundation however is the same

