
Page 1

1 CS6810
School of Computing
University of Utah

ILP Ends TLP Begins

 Today’s topics:

Explore a perfect machine

 unlimited budget to see where ILP goes

 answer: not far enough

Look to TLP & multi-threading for help

 everything has it’s issues

 we’ll look at some of them

Apology

 a bit more data than usual

 try not to yawn LOUDLY

2 CS6810
School of Computing
University of Utah

ILP Limits via an Oracle

•  Suspend reality and think of a perfect machine
  infinite number of rename registers

»  no Wax hazards

»  for window size of n: n2-n comparisons for each register field

  perfect branch & jump prediction
»  unbounded buffer of instructions available for execution

  perfect address alias analysis
»  independent loads can be moved ahead of stores

  perfect L1$’s
»  hit in 1 cycle

  as many XU’s as will ever be needed
»  no structural stalls

•  Infinite cost unrealistic
  simulate rather than build

»  allows exploration
•  just how far can we get with ILP on a perfect machine

•  and sequential code

3 CS6810
School of Computing
University of Utah

IBM Power5

•  Most advanced superscalar processor to date
  4 fetch

  6 issue
  88 integer rename regs, 88 float rename regs

  pipeline has over 200 instructions in flight
»  including 32 loads and 32 stores

•  Not quite the Oracle but on the way
  consumes a lot of power

  target is blade server segment

4 CS6810
School of Computing
University of Utah

ILP w/ Infinite Window Size

•  Looks great
  when compared w/ today’s IPC < 3

»  if you can ignore the infinite cost

Page 2

5 CS6810
School of Computing
University of Utah

Limit Window Size

•  ILP shrinks rapidly

2K = ~ 4M * 3 5-bit compares
512 = 785K compares
128 = 49K compares
32 = 3K compares

Plus compares happen every
cycle

conclude 32 is doable but watty

can improve by maybe 3x at great
cost (remember this is still a perfect
machine – just w/ a limited window)

6 CS6810
School of Computing
University of Utah

Switch to Half-Infinity

•  You do the math

•  For the remaining data assume
  2K window size

»  ~12 M 5-bit compares every clock

»  >10x bigger than anything that’s been built

  64 issue
»  ~10x more than anything real

•  Why choose this
  given other restrictions it won’t be a limit

»  can you say “easier to simulate”

»  I knew you could

7 CS6810
School of Computing
University of Utah

Look at Semi-Real Branch Prediction

Tnmt: 8K entry predictor
Jump predictor: 2K entries
48K bits and 3% mispredict rate
which is very good – just expensive

Standard: 512 entry 2-bit predictor

Conclusion:
have to predict
integer codes are a problem
yet highly important in modern
data-center apps

Nobody makes much money on
floating point – sad reality

8 CS6810
School of Computing
University of Utah

Limiting Rename Registers

Integer codes remain problematic

$ problem with FP remains but ILP
looks good if you don’t care about $

conclusion – need around 64 renamed
registers to make much of a difference

Page 3

9 CS6810
School of Computing
University of Utah

Alias Analysis Influence

GL/STK – heap ref’s conflict
but nothing else

Inspection – what can the
compiler do?

10 CS6810
School of Computing
University of Utah

Ambitious but Possible?

•  HAL
  1 better than IBM in all letters

  64 issue no restrictions
»  this one is actually ridiculous

•  it does focus on ILP limits rather than structural stalls

  1K entry tournament predictor
»  this has been done

  perfect disambiguation
»  note close to possible for small window sizes

»  impractical for large windows

  64 register rename pool
»  ~100 have been done

•  What do we get?
  Al the Harpy says “a really good heater”

11 CS6810
School of Computing
University of Utah

And VIOLA!

•  3-4x improvement
  for a machine nobody will buy – too hot, too costly

Interesting study & clear
conclusion:

ILP is already past the point
of diminishing return

Programmer is going to need
to help out w/ exposing
parallelism

Need a different type of HW
support for parallelism

12 CS6810
School of Computing
University of Utah

Enter TLP

•  Again not a new idea
  been around for > 10 years

»  Tullsen – UW – 1995 publishes the SMT idea

»  TERA MTA & IBM Pulsar show up in late 90’s – both MT

•  Thread vs. Process confusion
  process runs in it’s own virtual memory space

»  no shared memory

»  lots of OS protection & overhead

»  communicate via “message like channels” – e.g. pipes in Unix

  threads
»  share memory and therefore synchronization needed

  both are independent entities
»  with their own sets of registers and process state

  TLP difference
»  multiple threads can run concurrently or interleaved on the

 same processor

»  one at a time and context switch for processes

Page 4

13 CS6810
School of Computing
University of Utah

Multi-Threading

•  2 variants
  fine-grained MT – e.g. TERA

»  round robin walk through threads
•  next cycle – next thread

»  TERA – 128 threads
•  built in 128 cycle load-use delay

–  basic idea was to cover main memory latency and do away w/ caches

–  great if you put every app into a 128 thread mold

•  it failed and Burton goes to the dark side (a.k.a. Microsoft)

  coarse grained MT – e.g. IBM Pulsar
»  sometimes called “switch on miss”

»  basic idea
•  anytime something bad happens

–  TLB or L2 miss

•  switch to next runable thread
–  some sort of fairness policy is required

–  usually just round-robin suffices

•  similar goal – hide performance effect of long stalls

14 CS6810
School of Computing
University of Utah

Symmetric Multithreading

•  Idea
  multiple independent threads

  increase number of parallel instructions to issue

»  superscalar – not enough ILP and idle on cache miss

»  FGMT – not enough ILP in any one thread

»  SMT – improves since broader set of independent instructions
•  programmer supplied parallelism

•  takes advantage of dynamic issue superscalar tactics

Cycles

Superscalar Fine-Grained
Multithreading

Simultaneous
Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Idle

15 CS6810
School of Computing
University of Utah

SMT Resource Perspective

•  Each thread has it’s own
  PC, next PC

»  next is needed for exceptions

  private logical registers
»  and mapping to renamed physical registers

  ROB
»  if shared a stall in one thread will stall the others

•  Shared
  branch predictor

»  larger size will be needed

  main memory ports, TLB, page table
»  artifact of shared memory

»  more threads does increase memory pressure
•  biggest problem is single ported L1$’s

16 CS6810
School of Computing
University of Utah

SMT Pipeline Structure

Front
End

Front
End

Front
End

Front
End

Execution Engine

Rename ROB

I-Cache Bpred

Regs IQ

FUs DCache

Shared
Front-end

Private
Front-end

Shared
Exec Engine

What about RAS, LSQ?

PC

Page 5

17 CS6810
School of Computing
University of Utah

SMT Issues

•  Single thread performance goes down
  competition w/ other threads for resources

  resource utilization goes up
»  hence throughput goes up

•  Fetch who?
  which thread has priority?

»  unless set by user dynamic critical path can’t be known in a
 small window

•  setting LSQ and ROB partition sizes is one way of implementing a
 priority in later stages

•  not so simple in Fetch

  ICOUNT
»  widely accepted heuristic

»  fetch each thread to roughly equalize processor resources

  better methods possible
»  BUT beware of creeping complexity

•  power and validation costs can fall off a cliff

18 CS6810
School of Computing
University of Utah

4 Modern’ish Processors

CPU uArch Fetch/
Issue/

Ex

XU’s Clock
(GHz)

T’s &
area

Power
(Watts)

Pent 4
Extreme

Spec. Dyn.
Issue, deep
pipe, 2way
SMT

3/3/4 7 Int
1 FP

3.8 125M
122 mm2

115

Athlon
64

FX-57

Spec. Dyn
Issue

3/3/4 6 Int
3 FP

2.8 114M
115 mm2

104

1 Core of
Power5

Spec, Dyn.
Issue, SMT

8/4/8 6 int
2 FP

1.9 200M
300 mm2

80

Itanium
2

EPIC, mostly
static sched

6/5/11 9 int
2 FP

1.6 592M
423 mm2

130

Power5 is dual core – area, T’s, power estimated for single core
large die size is due to 9 MB L3 cache on chip

19 CS6810
School of Computing
University of Utah

SPECint2000

20 CS6810
School of Computing
University of Utah

SPECfp2000

Page 6

21 CS6810
School of Computing
University of Utah

Efficiency

Note: as we move into multi-core perf/watt becomes the critical efficiency metric
Even better: energy-delay product since that is architecture and workload specific

22 CS6810
School of Computing
University of Utah

Concluding Remarks

•  SMT is a big boost to the ILP game
  uses previous skills in dynamic superscalar architecture

  rules of thumb
»  double threads

•  1.6x performance gain

•  ~10-15% power gain

  where does the curve saturate
»  depends on workload

•  ~4/core seems to be a sweet spot

•  time will tell

»  Sun Niagra Falls
•  8 cores, 8 threads/core

–  simpler cores however

•  performs well in the data-center

•  Next
  leave processor side and examine the memory side

»  both need to be balanced and done right to win

