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ILP Ends TLP Begins 

 Today’s topics: 

Explore a perfect machine 

 unlimited budget to see where ILP goes 

 answer: not far enough 

Look to TLP & multi-threading for help 

 everything has it’s issues 

 we’ll look at some of them 

Apology 

 a bit more data than usual 

 try not to yawn LOUDLY 
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ILP Limits via an Oracle 

•  Suspend reality and think of a perfect machine 
  infinite number of rename registers 

»  no Wax hazards 

»  for window size of n: n2-n comparisons for each register field 

  perfect branch & jump prediction 
»  unbounded buffer of instructions available for execution 

  perfect address alias analysis 
»  independent loads can be moved ahead of stores 

  perfect L1$’s 
»  hit in 1 cycle 

  as many XU’s as will ever be needed 
»  no structural stalls 

•  Infinite cost unrealistic 
  simulate rather than build 

»  allows exploration 
•  just how far can we get with ILP on a perfect machine 

•  and sequential code 
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IBM Power5 

•  Most advanced superscalar processor to date 
  4 fetch 

  6 issue 
  88 integer rename regs, 88 float rename regs 

  pipeline has over 200 instructions in flight 
»  including 32 loads and 32 stores 

•  Not quite the Oracle but on the way 
  consumes a lot of power 

  target is blade server segment 
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ILP w/ Infinite Window Size 

•  Looks great  
  when compared w/ today’s IPC < 3 

»  if you can ignore the infinite cost 
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Limit Window Size 

•  ILP shrinks rapidly 

2K = ~ 4M * 3 5-bit compares 
512 = 785K compares 
128 = 49K compares 
32 = 3K compares 

Plus compares happen every 
cycle 

conclude 32 is doable but watty 

can improve by maybe 3x at great 
cost (remember this is still a perfect 
machine – just w/ a limited window) 
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Switch to Half-Infinity 

•  You do the math 

•  For the remaining data assume 
  2K window size 

»  ~12 M 5-bit compares every clock 

»  >10x bigger than anything that’s been built 

  64 issue 
»  ~10x more than anything real 

•  Why choose this 
  given other restrictions it won’t be a limit 

»  can you say “easier to simulate” 

»  I knew you could 
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Look at Semi-Real Branch Prediction 

Tnmt: 8K entry predictor 
Jump predictor: 2K entries 
48K bits and 3% mispredict rate 
which is very good – just expensive 

Standard: 512 entry 2-bit predictor 

Conclusion: 
have to predict  
integer codes are a problem 
yet highly important in modern  
data-center apps 

Nobody makes much money on  
floating point – sad reality 
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Limiting Rename Registers 

Integer codes remain problematic 

$ problem with FP remains but ILP 
looks good if you don’t care about $ 

conclusion – need around 64 renamed 
registers to make much of a difference 



Page 5 

9 CS6810 
School of Computing 
University of Utah 

Alias Analysis Influence 

GL/STK – heap ref’s conflict 
but nothing else 

Inspection – what can the 
compiler do? 
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Ambitious but Possible? 

•  HAL  
  1 better than IBM in all letters 

  64 issue no restrictions 
»  this one is actually ridiculous 

•  it does focus on ILP limits rather than structural stalls 

  1K entry tournament predictor 
»  this has been done 

  perfect disambiguation 
»  note close to possible for small window sizes 

»  impractical for large windows 

  64 register rename pool 
»  ~100 have been done 

•  What do we get? 
  Al the Harpy says “a really good heater” 
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And VIOLA! 

•  3-4x improvement 
  for a machine nobody will buy – too hot, too costly 

Interesting study & clear 
conclusion: 

ILP is already past the point 
of diminishing return 

Programmer is going to need 
to help out w/ exposing  
parallelism 

Need a different type of HW 
support for parallelism  
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Enter TLP 

•  Again not a new idea 
  been around for > 10 years 

»  Tullsen – UW – 1995 publishes the SMT idea 

»  TERA MTA & IBM Pulsar show up in late 90’s – both MT 

•  Thread vs. Process confusion 
  process runs in it’s own virtual memory space 

»  no shared memory 

»  lots of OS protection & overhead 

»  communicate via “message like channels” – e.g. pipes in Unix 

  threads 
»  share memory and therefore synchronization needed 

  both are independent entities 
»  with their own sets of registers and process state 

  TLP difference 
»  multiple threads can run concurrently or interleaved on the

 same processor 

»  one at a time and context switch for processes 
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Multi-Threading 

•  2 variants 
  fine-grained MT – e.g. TERA 

»  round robin walk through threads 
•  next cycle – next thread 

»  TERA – 128 threads 
•  built in 128 cycle load-use delay 

–  basic idea was to cover main memory latency and do away w/ caches 

–  great if you put every app into a 128 thread mold 

•  it failed and Burton goes to the dark side (a.k.a. Microsoft) 

  coarse grained MT – e.g. IBM Pulsar  
»  sometimes called “switch on miss” 

»  basic idea 
•  anytime something bad happens 

–  TLB or L2 miss 

•  switch to next runable thread 
–  some sort of fairness policy is required 

–  usually just round-robin suffices 

•  similar goal – hide performance effect of long stalls 
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Symmetric Multithreading 

•  Idea 
  multiple independent threads 

  increase number of parallel instructions to issue 

»  superscalar – not enough ILP and idle on cache miss 

»  FGMT – not enough ILP in any one thread 

»  SMT – improves since broader set of independent instructions 
•  programmer supplied parallelism 

•  takes advantage of dynamic issue superscalar tactics 

Cycles 

Superscalar Fine-Grained 
Multithreading 

Simultaneous 
Multithreading 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Idle 
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SMT Resource Perspective 

•  Each thread has it’s own 
  PC, next PC 

»  next is needed for exceptions 

  private logical registers 
»  and mapping to renamed physical registers 

  ROB 
»  if shared a stall in one thread will stall the others 

•  Shared 
  branch predictor 

»  larger size will be needed 

  main memory ports, TLB, page table 
»  artifact of shared memory 

»  more threads does increase memory pressure 
•  biggest problem is single ported L1$’s 
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SMT Pipeline Structure 

Front 
End 

Front 
End 

Front 
End 

Front 
End 

Execution Engine 

Rename ROB 

I-Cache Bpred 

Regs IQ 

FUs DCache 

Shared 
Front-end 

Private 
Front-end 

Shared 
Exec Engine 

What about RAS, LSQ? 

PC 
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SMT Issues 

•  Single thread performance goes down 
  competition w/ other threads for resources 

  resource utilization goes up  
»  hence throughput goes up 

•  Fetch who? 
  which thread has priority? 

»  unless set by user dynamic critical path can’t be known in a
 small window 

•  setting LSQ and ROB partition sizes is one way of implementing a
 priority in later stages 

•  not so simple in Fetch 

  ICOUNT 
»  widely accepted heuristic 

»  fetch each thread to roughly equalize processor resources 

  better methods possible 
»  BUT beware of creeping complexity 

•  power and validation costs can fall off a cliff 
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4 Modern’ish Processors 

CPU uArch Fetch/ 
Issue/ 

Ex 

XU’s Clock 
(GHz) 

T’s & 
area 

Power 
(Watts) 

Pent 4 
Extreme 

Spec. Dyn. 
Issue, deep 
pipe, 2way 
SMT 

3/3/4 7 Int 
1 FP 

3.8 125M 
122 mm2 

115 

Athlon 
64 

FX-57 

Spec. Dyn 
Issue 

3/3/4 6 Int 
3 FP 

2.8 114M 
115 mm2 

104 

1 Core of 
Power5 

Spec, Dyn. 
Issue, SMT 

8/4/8 6 int 
2 FP 

1.9 200M 
300 mm2 

80 

Itanium 
2 

EPIC, mostly 
static sched 

6/5/11 9 int 
2 FP 

1.6 592M 
423 mm2 

130 

Power5 is dual core – area, T’s, power estimated for single core 
large die size is due to 9 MB L3 cache on chip 
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SPECint2000 
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SPECfp2000 
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Efficiency 

Note: as we move into multi-core perf/watt becomes the critical efficiency metric 
Even better: energy-delay product since that is architecture and workload specific 
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Concluding Remarks 

•  SMT is a big boost to the ILP game 
  uses previous skills in dynamic superscalar architecture 

  rules of thumb 
»  double threads 

•  1.6x performance gain 

•  ~10-15% power gain 

  where does the curve saturate 
»  depends on workload 

•  ~4/core seems to be a sweet spot 

•  time will tell 

»  Sun Niagra Falls 
•  8 cores, 8 threads/core 

–  simpler cores however 

•  performs well in the data-center 

•  Next 
  leave processor side and examine the memory side 

»  both need to be balanced and done right to win   


