ILP Ends TLP Begins

Today’s topics:
Explore a perfect machine
unlimited budget to see where ILP goes
answer: not far enough
Look to TLP & multi-threading for help
everything has it’s issues
we’ll look at some of them
Apology
a bit more data than usual

try not to yawn LOUDLY

School of Computing
!yj University of Utah 1 CS6810

ILP Limits via an Oracle

e Suspend reality and think of a perfect machine
* infinite number of rename registers
» no Wax hazards
» for window size of n: n2-n comparisons for each register field
= perfect branch & jump prediction
» unbounded buffer of instructions available for execution
= perfect address alias analysis
» independent loads can be moved ahead of stores
* perfect L1$’s
» hitin 1 cycle
* as many XU’s as will ever be needed
» no structural stalls
* Infinite cost unrealistic

= simulate rather than build
» allows exploration

¢ just how far can we get with ILP on a perfect machine
* and sequential code

School of Computing
!”J University of Utah 2 CS6810

Page 1

IBM Power5

¢ Most advanced superscalar processor to date
= 4 fetch
= 6 issue
= 88 integer rename regs, 88 float rename regs
= pipeline has over 200 instructions in flight
» including 32 loads and 32 stores
* Not quite the Oracle but on the way
= consumes a lot of power
= target is blade server segment

!'JJ School of Computing

University of Utah 3 CS6810

ILP w/ Infinite Window Size

¢ Looks great

* when compared w/ today’s IPC < 3
» if you can ignore the infinite cost

gcc
espresso

SPEC !

benchmarks
fpppp

doduc

tomcatv 150

0 20 40 60 80 100 120 140 160

Instruction issues per cycle

©2007 Elsevier, Inc. All rights reserved.

!”J School of Computing

University of Utah 4 CS6810

Page 2

Limit Window Size

e ILP shrinks rapidly

2K =~ 4M * 3 5-bit compares
512 = 785K compares

128 = 49K compares

32 = 3K compares

espresso

Plus compares happen every l
cycle

Benchmarks

conclude 32 is doable but watty fpppp
can improve by maybe 3x at great

cost (remember this is still a perfect
machine — just w/ a limited window)

doduc

tomcatv

Window size
M Infinite
@m2K

512
o128

|32

150

60

40

s L L s)
80 100 120 140 160

Instruction issues per cycle

©2007 i, n. A ighs esaved.

School of Computing
University of Utah

V)

CS6810

Switch to Half-Infinity

e You do the math

¢ For the remaining data assume
= 2K window size
» ~12 M 5-bit compares every clock
» >10x bigger than anything that’s been built
= 64 issue
» ~10x more than anything real
¢ Why choose this
= given other restrictions it won’t be a limit
» can you say “easier to simulate”
» | knew you could

School of Computing
University of Utah

)

CS6810

Page 3

Look at Semi-Real Branch Prediction

Tnmt: 8K entry predictor

Jump predictor: 2K entries

48K bits and 3% mispredict rate
which is very good - just expensive

Standard: 512 entry 2-bit predictor

Conclusion:

have to predict

integer codes are a problem
yet highly important in modern
data-center apps

Nobody makes much money on
floating point — sad reality

espresso

Benchmarks

Branch predictor

M Perfect

@ Tournament predictor
B Standard 2-bit

41 O Profile-based

B None

35

gee

61

fpppp

58

doduc

60

tomcatv

20 30 40 60

Instruction issues per cycle
©.2007 B i A s resavet

School of Computing
University of Utah

V)

7 CS6810

Limiting Rename Registers

Integer codes remain problematic

$ problem with FP remains but ILP
looks good if you don’t care about $

conclusion — need around 64 renamed
registers to make much of a difference

10 Renaming registers

10 W Infinite

@ 256 integer + 256 FP
M 128 integer + 128 FP
15 O 64 integer + 64 FP
M 32 integer + 32 FP

espresso
O None

Benchmark:
enchmarks 50

fpppp

doduc

tomcatv

20

30

Instruction issues per cycle
[T RRT—

40

School of Computing
University of Utah

)

8 CS6810

Page 4

Alias Analysis Influence

W Perfect

GL/STK - heap ref’s conflict gee
but nothing else B Global/stack
15 perfect
EInspection

Inspection — what can the SSPIESS0

compiler do? DNone

Benchmarks
49

49
fpppp

doduc

tomcatv

0 5 10 15 20 25 30 35 40 45 50
Instruction issues per cycle

©2007 Elsevir, nc. Alrights reserved.

School of Computing
!w University of Utah 9 CS6810

Ambitious but Possible?

 HAL
= 1 better than IBM in all letters
= 64 issue no restrictions

» this one is actually ridiculous
¢ it does focus on ILP limits rather than structural stalls

* 1K entry tournament predictor
» this has been done

= perfect disambiguation
» note close to possible for small window sizes
» impractical for large windows

* 64 register rename pool
» ~100 have been done

* What do we get?
= Al the Harpy says “a really good heater”

School of Computing
!”J University of Utah 10 CS6810

Page 5

And VIOLA!

¢ 3-4x improvement
= for a machine nobody will buy - too hot, too costly

Window size
10 Winfinite
m2s6
mi28

15 Oe4
m32

gee

Interesting study & clear
conclusion:

espresso

ILP is already past the point i
of diminishing return N
Programmer is going to need foppp
to help out w/ exposing
parallelism

doduc
Need a different type of HW
support for parallelism

56

tomeatv

0 10 20 30 40 50 60

Instruction issues per cycle

School of Computing
!yj University of Utah " CS6810

Enter TLP

e Again not a new idea
* been around for > 10 years
» Tullsen - UW - 1995 publishes the SMT idea
» TERA MTA & IBM Pulsar show up in late 90’s - both MT
e Thread vs. Process confusion
= process runs in it’s own virtual memory space
» no shared memory
» lots of OS protection & overhead
» communicate via “message like channels” - e.g. pipes in Unix
= threads
» share memory and therefore synchronization needed
* both are independent entities
» with their own sets of registers and process state
= TLP difference

» multiple threads can run concurrently or interleaved on the
same processor

» one at a time and context switch for processes

School of Computing
!”J University of Utah 12 CS6810

Page 6

Multi-Threading

e 2 variants

* fine-grained MT - e.g. TERA
» round robin walk through threads
¢ next cycle — next thread
» TERA - 128 threads
* bulit In 128 cycle load-use delay
- basic idea was to cover main memory latency and do away w/ caches
- great If you put every app Into a 128 thread mold
« it failed and Burton goes to the dark side (a.k.a. Microsoft)

= coarse grained MT - e.g. IBM Pulsar
» sometimes called “switch on miss”
» basic idea

* anytime something bad happens
- TLB or L2 miss
* switch to next runable thread
- some sort of falmess policy Is required
- lly just d-robin suffices
* simllar goal - hide performance effect of long stalls

School of Computing
!”J University of Utah 13 CS6810

Symmetric Multithreading

e Idea
* multiple independent threads
* increase number of parallel instructions to issue

M: [Thread 1
Il Thread 2
[]Thread 3
Cycles ;E [] Thread 4
[Jlidle
Superscalar Fine-Grained Simultaneous

Multithreading Multithreading
» superscalar — not enough ILP and idle on cache miss
» FGMT - not enough ILP in any one thread
» SMT - improves since broader set of independent instructions
* programmer supplied parallelism
* takes advantage of dynamic Issue superscalar tactics

School of Computing
lDJ University of Utah 14 CS6810

Page 7

SMT Resource Perspective

e Each thread has it’s own
= PC, next PC
» next is needed for exceptions
= private logical registers
» and mapping to renamed physical registers
= ROB
» if shared a stall in one thread will stall the others
o Shared
= branch predictor
» larger size will be needed
* main memory ports, TLB, page table
» artifact of shared memory

» more threads does increase memory pressure
¢ biggest problem Is single ported L1$’s

wj School of Computing

University of Utah 15 CS6810

SMT Pipeline Structure

Shared
Front Front-end
End

Private

Front-end
' | Regs Q |
Shared
Exec Engine | '
: |DCache | | FUs | !
[What about RAS, LSQ? S —— !

School of Computing

!”J University of Utah 16 CS6810

Page 8

SMT Issues

¢ Single thread performance goes down
= competition w/ other threads for resources
= resource utilization goes up
» hence throughput goes up
¢ Fetch who?

= which thread has priority?

» unless set by user dynamic critical path can’t be known in a
small window

* setting LSQ and ROB partition sizes is one way of implementing a
priority in later stages
* not so simple in Fetch
= ICOUNT
» widely accepted heuristic
» fetch each thread to roughly equalize processor resources
= better methods possible

» BUT beware of creeping complexity
* power and validation costs can fall off a cliff

School of Computing
!”J University of Utah 17 CS6810

4 Modern’ish Processors

Pent4 Spec. Dyn. 3/3/14 7 Int 3.8 125M 115
Extreme Issue, deep 1FP 122 mm?
pipe, 2way
SMT
Athlon Spec. Dyn 3/3/14 6 Int 2.8 114M 104
64 Issue 3 FP 115 mm?
FX-57
1 Core of Spec, Dyn. 8/4/8 6 int 1.9 200M 80
Power5 Issue, SMT 2FP 300 mm?
Itanium EPIC, mostly 6/5/11 9 int 1.6 592M 130
2 static sched 2 FP 423 mm?2

Power5 is dual core — area, T’s, power estimated for single core
large die size is due to 9 MB L3 cache on chip

School of Computing
lDJ University of Utah 18 CS6810

Page 9

SPECint2000

gzip

vpr

gce

mcf

crafty

parser

eon

perlbmk

gap

vortex

B tanium 2
Pentium 4@3,8
[l AMD Athlon 64

Power5

bzip2

twolf

2000 2500

SPECRatio

2007 Elsavier, Inc. Al rights reserved.

500 1000 1500

3000 3500

School

U

University of Utah

of Computing 19

CS6810

SPECfp2000

wupwise
swim
mgrid
applu
mesa
galgel
art
equake
facerec
ammp
lucas
fma3d
sixtrack

apsi

o

Power5

B itanium 2
Pentium 4@3,8
[l AMD Athlon 64

Al I” ‘ ! || | \| |

6000 8000 10,000

SPECRatio

©2007 Elsevier Inc. Alights reserved.

2000 4000

12,000

14,000

School

)

University of Utah

of Computing 20

CS6810

Page 10

Efficiency

SPECint/M
transistors
SPECIM B tanium 2
transistors Pentium 4@3,8
SPECint/mmA2 Bl AMD Athion 64
Power5
SPECfp/mm~2
SPECint/watt
SPECfp/watt
Efficiency ratio 0 5 10 15 20 25 30 35 40

©2007 Elsevier, Inc. All rights reserved.

Note: as we move into multi-core perf/watt becomes the critical efficiency metric
Even better: energy-delay product since that is architecture and workload specific

School of Computing
!yj University of Utah 2 CS6810

Concluding Remarks

e SMT is a big boost to the ILP game

= uses previous skills in dynamic superscalar architecture
* rules of thumb
» double threads
* 1.6x performance gain
¢ ~10-15% power gain
= where does the curve saturate
» depends on workload

¢ ~4/core seems to be a sweet spot
o time will tell

» Sun Niagra Falls
* 8 cores, 8 threads/core

h

* performs well In the data-center
¢ Next

= leave processor side and examine the memory side
» both need to be balanced and done right to win

School of Computing
!DJ University of Utah 22 CS6810

Page 11

