
Page 1 

1 CS6810 
School of Computing 
University of Utah 

ILP Ends TLP Begins 

 Today’s topics: 

Explore a perfect machine 

 unlimited budget to see where ILP goes 

 answer: not far enough 

Look to TLP & multi-threading for help 

 everything has it’s issues 

 we’ll look at some of them 

Apology 

 a bit more data than usual 

 try not to yawn LOUDLY 

2 CS6810 
School of Computing 
University of Utah 

ILP Limits via an Oracle 

•  Suspend reality and think of a perfect machine 
  infinite number of rename registers 

»  no Wax hazards 

»  for window size of n: n2-n comparisons for each register field 

  perfect branch & jump prediction 
»  unbounded buffer of instructions available for execution 

  perfect address alias analysis 
»  independent loads can be moved ahead of stores 

  perfect L1$’s 
»  hit in 1 cycle 

  as many XU’s as will ever be needed 
»  no structural stalls 

•  Infinite cost unrealistic 
  simulate rather than build 

»  allows exploration 
•  just how far can we get with ILP on a perfect machine 

•  and sequential code 



Page 2 

3 CS6810 
School of Computing 
University of Utah 

IBM Power5 

•  Most advanced superscalar processor to date 
  4 fetch 

  6 issue 
  88 integer rename regs, 88 float rename regs 

  pipeline has over 200 instructions in flight 
»  including 32 loads and 32 stores 

•  Not quite the Oracle but on the way 
  consumes a lot of power 

  target is blade server segment 

4 CS6810 
School of Computing 
University of Utah 

ILP w/ Infinite Window Size 

•  Looks great  
  when compared w/ today’s IPC < 3 

»  if you can ignore the infinite cost 



Page 3 

5 CS6810 
School of Computing 
University of Utah 

Limit Window Size 

•  ILP shrinks rapidly 

2K = ~ 4M * 3 5-bit compares 
512 = 785K compares 
128 = 49K compares 
32 = 3K compares 

Plus compares happen every 
cycle 

conclude 32 is doable but watty 

can improve by maybe 3x at great 
cost (remember this is still a perfect 
machine – just w/ a limited window) 

6 CS6810 
School of Computing 
University of Utah 

Switch to Half-Infinity 

•  You do the math 

•  For the remaining data assume 
  2K window size 

»  ~12 M 5-bit compares every clock 

»  >10x bigger than anything that’s been built 

  64 issue 
»  ~10x more than anything real 

•  Why choose this 
  given other restrictions it won’t be a limit 

»  can you say “easier to simulate” 

»  I knew you could 



Page 4 

7 CS6810 
School of Computing 
University of Utah 

Look at Semi-Real Branch Prediction 

Tnmt: 8K entry predictor 
Jump predictor: 2K entries 
48K bits and 3% mispredict rate 
which is very good – just expensive 

Standard: 512 entry 2-bit predictor 

Conclusion: 
have to predict  
integer codes are a problem 
yet highly important in modern  
data-center apps 

Nobody makes much money on  
floating point – sad reality 

8 CS6810 
School of Computing 
University of Utah 

Limiting Rename Registers 

Integer codes remain problematic 

$ problem with FP remains but ILP 
looks good if you don’t care about $ 

conclusion – need around 64 renamed 
registers to make much of a difference 



Page 5 

9 CS6810 
School of Computing 
University of Utah 

Alias Analysis Influence 

GL/STK – heap ref’s conflict 
but nothing else 

Inspection – what can the 
compiler do? 

10 CS6810 
School of Computing 
University of Utah 

Ambitious but Possible? 

•  HAL  
  1 better than IBM in all letters 

  64 issue no restrictions 
»  this one is actually ridiculous 

•  it does focus on ILP limits rather than structural stalls 

  1K entry tournament predictor 
»  this has been done 

  perfect disambiguation 
»  note close to possible for small window sizes 

»  impractical for large windows 

  64 register rename pool 
»  ~100 have been done 

•  What do we get? 
  Al the Harpy says “a really good heater” 



Page 6 

11 CS6810 
School of Computing 
University of Utah 

And VIOLA! 

•  3-4x improvement 
  for a machine nobody will buy – too hot, too costly 

Interesting study & clear 
conclusion: 

ILP is already past the point 
of diminishing return 

Programmer is going to need 
to help out w/ exposing  
parallelism 

Need a different type of HW 
support for parallelism  

12 CS6810 
School of Computing 
University of Utah 

Enter TLP 

•  Again not a new idea 
  been around for > 10 years 

»  Tullsen – UW – 1995 publishes the SMT idea 

»  TERA MTA & IBM Pulsar show up in late 90’s – both MT 

•  Thread vs. Process confusion 
  process runs in it’s own virtual memory space 

»  no shared memory 

»  lots of OS protection & overhead 

»  communicate via “message like channels” – e.g. pipes in Unix 

  threads 
»  share memory and therefore synchronization needed 

  both are independent entities 
»  with their own sets of registers and process state 

  TLP difference 
»  multiple threads can run concurrently or interleaved on the

 same processor 

»  one at a time and context switch for processes 



Page 7 

13 CS6810 
School of Computing 
University of Utah 

Multi-Threading 

•  2 variants 
  fine-grained MT – e.g. TERA 

»  round robin walk through threads 
•  next cycle – next thread 

»  TERA – 128 threads 
•  built in 128 cycle load-use delay 

–  basic idea was to cover main memory latency and do away w/ caches 

–  great if you put every app into a 128 thread mold 

•  it failed and Burton goes to the dark side (a.k.a. Microsoft) 

  coarse grained MT – e.g. IBM Pulsar  
»  sometimes called “switch on miss” 

»  basic idea 
•  anytime something bad happens 

–  TLB or L2 miss 

•  switch to next runable thread 
–  some sort of fairness policy is required 

–  usually just round-robin suffices 

•  similar goal – hide performance effect of long stalls 

14 CS6810 
School of Computing 
University of Utah 

Symmetric Multithreading 

•  Idea 
  multiple independent threads 

  increase number of parallel instructions to issue 

»  superscalar – not enough ILP and idle on cache miss 

»  FGMT – not enough ILP in any one thread 

»  SMT – improves since broader set of independent instructions 
•  programmer supplied parallelism 

•  takes advantage of dynamic issue superscalar tactics 

Cycles 

Superscalar Fine-Grained 
Multithreading 

Simultaneous 
Multithreading 

Thread 1 

Thread 2 

Thread 3 

Thread 4 

Idle 



Page 8 

15 CS6810 
School of Computing 
University of Utah 

SMT Resource Perspective 

•  Each thread has it’s own 
  PC, next PC 

»  next is needed for exceptions 

  private logical registers 
»  and mapping to renamed physical registers 

  ROB 
»  if shared a stall in one thread will stall the others 

•  Shared 
  branch predictor 

»  larger size will be needed 

  main memory ports, TLB, page table 
»  artifact of shared memory 

»  more threads does increase memory pressure 
•  biggest problem is single ported L1$’s 

16 CS6810 
School of Computing 
University of Utah 

SMT Pipeline Structure 

Front 
End 

Front 
End 

Front 
End 

Front 
End 

Execution Engine 

Rename ROB 

I-Cache Bpred 

Regs IQ 

FUs DCache 

Shared 
Front-end 

Private 
Front-end 

Shared 
Exec Engine 

What about RAS, LSQ? 

PC 



Page 9 

17 CS6810 
School of Computing 
University of Utah 

SMT Issues 

•  Single thread performance goes down 
  competition w/ other threads for resources 

  resource utilization goes up  
»  hence throughput goes up 

•  Fetch who? 
  which thread has priority? 

»  unless set by user dynamic critical path can’t be known in a
 small window 

•  setting LSQ and ROB partition sizes is one way of implementing a
 priority in later stages 

•  not so simple in Fetch 

  ICOUNT 
»  widely accepted heuristic 

»  fetch each thread to roughly equalize processor resources 

  better methods possible 
»  BUT beware of creeping complexity 

•  power and validation costs can fall off a cliff 

18 CS6810 
School of Computing 
University of Utah 

4 Modern’ish Processors 

CPU uArch Fetch/ 
Issue/ 

Ex 

XU’s Clock 
(GHz) 

T’s & 
area 

Power 
(Watts) 

Pent 4 
Extreme 

Spec. Dyn. 
Issue, deep 
pipe, 2way 
SMT 

3/3/4 7 Int 
1 FP 

3.8 125M 
122 mm2 

115 

Athlon 
64 

FX-57 

Spec. Dyn 
Issue 

3/3/4 6 Int 
3 FP 

2.8 114M 
115 mm2 

104 

1 Core of 
Power5 

Spec, Dyn. 
Issue, SMT 

8/4/8 6 int 
2 FP 

1.9 200M 
300 mm2 

80 

Itanium 
2 

EPIC, mostly 
static sched 

6/5/11 9 int 
2 FP 

1.6 592M 
423 mm2 

130 

Power5 is dual core – area, T’s, power estimated for single core 
large die size is due to 9 MB L3 cache on chip 



Page 10 

19 CS6810 
School of Computing 
University of Utah 

SPECint2000 

20 CS6810 
School of Computing 
University of Utah 

SPECfp2000 



Page 11 

21 CS6810 
School of Computing 
University of Utah 

Efficiency 

Note: as we move into multi-core perf/watt becomes the critical efficiency metric 
Even better: energy-delay product since that is architecture and workload specific 

22 CS6810 
School of Computing 
University of Utah 

Concluding Remarks 

•  SMT is a big boost to the ILP game 
  uses previous skills in dynamic superscalar architecture 

  rules of thumb 
»  double threads 

•  1.6x performance gain 

•  ~10-15% power gain 

  where does the curve saturate 
»  depends on workload 

•  ~4/core seems to be a sweet spot 

•  time will tell 

»  Sun Niagra Falls 
•  8 cores, 8 threads/core 

–  simpler cores however 

•  performs well in the data-center 

•  Next 
  leave processor side and examine the memory side 

»  both need to be balanced and done right to win   


