Preparing a Chip for Fab
CS/ECE 6712

First Step: Assemble

- Your core should be routed to the pad frame
- VDD and GND should be connected and verified
- Signals routed to pads (by vcar)
- Pads checked (are they the right flavor?)
- Double check I/O pads (both I and O plus En?)
- Make SURE not to move VDD and GND pins
Step 2: DRC/EXT/LVS
Step 2: DRC/EXT/LVS

Step 3: Simulate!

- Simulate the chip from the pads
 - Use nc_verilog on the schematic
 - Spectre on the layout would take forever…
 - You should have testbench files for the core…
 - Re-use them connected to the pads
 - Might have to modify things for I/O pads…
Step 3: Simulate!

- Make sure you’ve documented your testbenches
 - They’re a great way to make test pattern files
 - Test patterns are basically lists of inputs applied and outputs to be expected
 - $display statements in a whole-chip simulation are a great way to generate test patterns

Step 4: Add Fill

- Poly, M1, and M2 have minimum density requirements
 - You can have MOSIS add fill
 - Or you can add fill
Step 4: Add Fill
Step 4: Add Fill

Step 5: *Export Stream (GDS)*

Remember to load *stream4gds.map* file as a Layer Map File

See the book for details…
Step 6: Import Stream (GDS)

Remember to load streamin.map file as a Layer Map File.

Make a new library to load the design into.

See the book for details…

Step 7: DRC/EXT/LVS imported GDS

✦ Ah crap - DRC violations!

✦ They’re OK though - it’s a known issue…
Step 7: DRC/EXT/LVS imported GDS

Step 8: Send me the Data

- Send me your gds file
- Tell me where your cadence files are
 - Specifically the final schematic version
- I’d like to import your file, and run DRC/EXT/LVS myself…
Whew! That’s it!

✦ Now sit back and wait for the chip to arrive!

✦ It takes a while…