Logical Effort

Sizing Transistors for Speed

Estimating Delays

- Would be nice to have a "back of the envelope" method for sizing gates for speed
- Logical Effort
 - Book by Sutherland, Sproull, Harris
 - Chapter 1 is on our web page
 - Also Chapter 4 in our textbook

Gate Delay Model

- First, normalize a model of delay to dimensionless units to isolate fabrication effects
- $d_{abs} = d \tau$
 - τ is the delay of a minimum inverter driving another minimum inverter with no parasitics
 - In a 0.6u process, this is approx 40ps
 - Now we can think about delay in terms of d and scale it to whatever process we're using

Gate Delay

- Delay of a gate d has two components
 - A fixed part called parasitic delay p
 - A part proportional to the load on the output called the effort delay or stage effort f
 - Total delay is measured in units of τ , and is sum of these delays
- + d = f + p

Effort Delay

- The effort delay (due to load) can be further broken down into two terms: f = g * h
 - g = logical effort which captures properties of the gate's structure
 - h = electrical effort which captures properties of load and transistor sizes
 - $h = C_{out}/C_{in}$
 - C_{out} is capacitance that loads the output
 - C_{in} is capacitance presented at the input
 - So, d = gh + p

Logical Effort

- Logical effort normalizes the output drive capability of a gate to match a unit inverter
 - How much more input capacitance does a gate need to present to offer the same drive as an inverter?

Computing Logical Effort

- DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- Measure from delay vs. fanout plots
- Or estimate by counting transistor widths

Logical Effort of Other Gates

 Logical effort of common gates assuming that P/N size ratio is 2

Number of inputs

Gate Type	1	2	3	4	5	n
Inverter	1					
NAND		4/3	5/3	6/3	7/3	(n+2)/3
NOR		5/3	7/3	9/3	11/3	(2n+1)/3
MUX		2	2	2	2	2
XOR		4	12	32		

Electrical Effort

- Value of logical effort g is independent of transistor size
 - It's related to the ratios and the topology
- Electrical effort h captures the drive capability of the transistors via sizing
 - Electrical effort h = C_{out}/C_{in}
 - Note that as transistor sizes for a gate increase, h decreases because C_{in} goes up

Parasitic Delay

- Parasitic delay p is caused by the internal capacitance of the gate
 - It's constant and independent of transistor size
 - As you increase the transistor size, you also increase the cap of the gate/source/drain areas which keeps it constant
 - For our purposes, normalize p_{inv} to 1
 - N-input NAND = n*p_{inv}
 - N-input NOR = n*p_{inv}
 - N-way mux = 2n*p_{inv}
 - XOR = 4* p_{inv}

Note that g*h term was same for both because NAND2 sized to provide same

current drive.

Remember, τ in Our process $\sim 40 ps$

A_delay = $g*h + p = 1*(CinB/CinA) + 1 \sim 200ps$ = 1*(4*CinA/CinA) + 1 = 4 + 1 = 5 time units

 τ in 180nm = \sim 12ps FO4 Inverter delay = 60ps FO4 NAND delay = 72ps

 $A_{delay} = g*h + p = (4/3)*(CinB/CinA) + 2*1$ $Cin_{delay} = g*h + p = (4/3)*(CinB/CinA) + 2*1$ $Cin_{delay} = g*h + p = (4/3)*(CinB/CinA) + 2*1$

A_delay = (4/3)*(12/4) + 2 = 4 + 2 = 6 units ~ 240 ps

Nand2 worse because of higher parasitic delay than inverter. Note that g*h term was same for both because NAND2 sized to provide same current drive.

Example: Ring Oscillator

Estimate the frequency of an N-stage ring oscillator

Logical Effort: g =

Electrical Effort: h =

Parasitic Delay: p =

Stage Delay: d =

Period of osc =

Example: Ring Oscillator

Estimate the frequency of an N-stage ring oscillator

Logical Effort: g = 1

Electrical Effort: h = 1

Parasitic Delay: p = 1

Stage Delay: $d = 2 \text{ so } d_{abs} = 80 \text{ps}$

Period: $2*N*d_{abs} = 4.96ns$, Freq = $\sim 200MHz$

For N = 31

Example: FO4 Inverter

Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g =

Electrical Effort: h =

Parasitic Delay: p =

Stage Delay: d =

Example: FO4 Inverter

 Estimate the delay of a fanout-of-4 (FO4) inverter

The FO4 delay is about 200 ps in 0.6 μm process 60 ps in a 180 nm process

f/3 ns in an $f \mu m$ process

Logical Effort: g = 1

h = 4

Electrical Effort: Parasitic Delay: p = 1

Stage Delay:

d = gh + p = 5

Delay Estimation

- If Cin = x, Cout = 10x, thus h = 10
- g = 9/3 = 3
- \bullet d = gh + p = 3*10 + 4*1 = 34 (1360 ps)

Multi Stage Delay

MultiStage Delay

- Recall rule of thumb that said to balance the delay at each stage along a critical path
- Concepts of logical effort and electrical effort can be generalized to multistage paths

In general, Path logic effort $G = \Pi g(i)$

Path electrical effort H = Cout / Cin_{first gate}

Must remember that electrical effort only is concerned with effect of logic network on input drivers and output load.

Off-Path Load

Off path load will divert electrical effort from the main path, must account for this. Define a *branching effort b* as:

Ctotal

The branching effort will modify the electrical effort needed at that stage. The branch effort *B* of the path is:

$$B = \Pi b(i)$$

Summary – multistage networks

- Logical effort generalizes to multistage networks
- Path Logical Effort $G = \prod g_i$
- Path Electrical Effort $H = \frac{C_{out-path}}{C_{in-path}}$
- Path Effort $F = \prod f_i = \prod g_i h_i$
- Can we write F = GH?

Branching Effort

- Remember branching effort
 - Accounts for branching between stages in path

$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}$$

$$B = \prod b_i$$
 Note:
$$\prod h_i = BH$$

- Now we compute the path effort
 - F = GBH

Multistage Delays

Path Effort Delay

$$D_F = \sum f_i$$

Path Parasitic Delay

$$P = \sum p_i$$

Path Delay

$$D = \sum d_i = D_F + P$$

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

 Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

• Thus minimum delay of N stage path is

$$D = NF^{\frac{1}{N}} + P$$

- This is a key result of logical effort
 - Find fastest possible delay
 - Doesn't require calculating gate sizes

Minimizing Path Delay

The absolute delay will have the parasitic delays of each stage summed together.

However, can *focus on just Path effort F* for minimization purposes since parasitic delays are constant.

For an N-stage network, the path delay is least when each stage in the path bears the same stage effort.

$$f(min) = g(i) * h(i) = F^{1/N}$$

Minimum achievable path delay

$$D(min) = N * F^{1/N} + P$$

Note that if N=1, then d = f + p, the original single gate equation.

Choosing Transistor Sizes

Remember that the stage effort h(i) is related to transistor sizes.

$$f(min) = g(i) * h(i) = F^{1/N}$$

So

$$h(i) \min = F^{1/N} / g(i)$$

To size transistors, start at end of path, and compute:

$$Cin(i) = gi * Cout(i) / f(min)$$

Once Cin(i) is know, can distribute this among transistors of that stage.

Size the transistors of the nand2 gates for the three stages shown.

Path logic effort =
$$G = g0 * g1 * g2 = 4/3 * 4/3 * 4/3 = 2.37$$

Branching effort B = 1.0 (no off-path load)

Electrical effort
$$H = Cout/Cin = C/C = 1.0$$

Min delay achievable =
$$3* (G*B*H)^{1/3} + 3 (2*pinv)$$

= $3*(2.37*1*1)^{1/3} + 3 (2*1.0) = 10.0$
minD=N*F $^{1/N}$ + P = $3*(1.3333) + 6 = 10$

Example, continued

The effort of each stage will be:

f min =
$$(G*B*H)^{1/3}$$
 = $(2.37*1.0*1.0)^{1/3}$ = 1.33 = $4/3$

Cin of last gate should equal:

$$f(min) = gi * bi * hi$$

Cin last gate (min) = gi * Cout (i) / f(min)
=
$$4/3 * C / (4/3) = C$$

Cin of middle gate should equal:

Cin middle gate = gi * Cin last gate / f(min)
=
$$4/3 * C/ (4/3) = C$$

All gates have same input capacitance, distribute it among transistors.

Transistor Sizes for Example

Where gate capacitance of

$$2 *W *L Mosfet = C/2$$

Choose W accordingly.

Another Example, Larger Load

Let Load = 8C, what changes?

Size the transistors of the nand2 gates for the three stages shown.

Path logic effort = G = g0 * g1 * g2 = 4/3 * 4/3 * 4/3 = 2.37

Branching effort B = 1.0 (no off-path load)

Electrical effort H = Cout/Cin = 8C/C = 8.0

Min delay achievable = $3* (G*B*H)^{1/3} + 3 (2*pinv)$ = $3*(2.37*1*8)^{1/3} + 3 (2*1.0) = 14.0$

8C Load Example Cont.

The effort of each stage will be:

f min =
$$(G*B*H)^{1/3}$$
 = $(2.37*1.0*8)^{1/3}$ = $2.67 = 8/3$

Cin of last gate should equal:

Cin last gate (min) = gi * Cout (i) / f(min)
=
$$4/3 * 8C / (8/3) = 4C$$

Cin of middle gate should equal:

Cin middle gate = gi * Cin last gate / f(min)
=
$$4/3 * 4C/(8/3) = 2C$$

Note that each stage gets progressively larger, as is typical with a multi-stage path driving a large load.

Example 1.6 from Chap 1

Path logic effort G = g0 * g1 * g2 = 4/3 * 4/3 * 4/3 = 2.37

Branch effort, 1^{st} stage = (y+y)/y = 2.

Branch effort, 2^{nd} stage = (z+z+z)/z = 3

Path Branch effort B = 2 * 3 = 6.

Path electrical effort H = Cout/Cin = 4.5C/C = 4.5

Path stage effort = F = G*B*H = 2.37*6*4.5 = 64.

Min delay = $N(F)^{1/N} + P = 3*(64)^{1/3} + 3(2pinv) = 18.0$ units

Example 1.6 Continued

Stage effort of each stage should be:

$$f(min) = (F)^{1/N} = (GBH)^{1/N} = (64)^{1/3} = 4$$

Determine Cin of last stage:

$$f(min) = gi * bi * hi$$

$$Cin(z) = g * Cout / f(min) = 4/3 * 4.5C / 4 = 1.5 C$$

Determine Cin of middle stage:

$$Cin(y) = g * (3*Cin(z))/ f(min) = 4/3 * (3*1.5C) / 4 = 1.5C$$

Is first stage correct?

$$Cin(A) = g * (2*Cin(y))/f(min) = 4/3 * (2*1.5C)/4 = C.$$

Yes, self-consistent.

Example: 3-stage path

 Select gate sizes x and y for least delay from A to B

Example: 3-stage path

Delay

Logical EffortG =Electrical EffortH =Branching EffortB =Path EffortF =Best Stage Effort $\hat{f} =$ Parasitic DelayP =

Example: 3-stage path

D =

Logical Effort G = (4/3)*(5/3)*(5/3) = 100/27

Electrical Effort H = 45/8

Branching Effort B = 3 * 2 = 6

Path Effort F = GBH = 125

Best Stage Effort $\hat{f} = \sqrt[3]{F} = 5$

Parasitic Delay P = 2 + 3 + 2 = 7

Delay D = 3*5 + 7 = 22 = 4.4 FO4

Example: 3-stage path

Work backward for sizes

Example: 3-stage path

Work backward for sizes

$$f(min) = gi * bi * hi$$

$$y = 45 * (5/3) / 5 = 15$$
 $(g_i * b_i * C_{out}) / f_{min} = C_{in}$
 $x = (15*2) * (5/3) / 5 = 10$

Misc. Comments

- Note that you never size the first gate
 - This gate is assumed to be fixed
 - If you were allowed to size it, the algorithm would try to make it as large as possible
- This is an estimation algorithm
 - Authors claim that sizing a gate by 1.5x too big or small still results in a path delay within 15% of minimum

Sensitivity Analysis

 How sensitive is delay to using exactly the best number of stages?

- 2.4 < ρ < 6 gives delay within 15% of optimal
 - We can be sloppy!
 - I like $\rho = 4$

Option #1

Path logic effort G = g0 * g1 * g2 = 1*6/3 * 1 = 2

Path Branch effort B = 1

Path electrical effort H = Cout/Cin = 8C/C = 8

Path stage effort = F = G*B*H = 2*1*8 = 16

Option #2

Path logic effort G = g0 * g1 * g2 = 1*4/3 * 5/3 = 20/9

Path Branch effort B = 1

Path electrical effort H = Cout/Cin = 8C/C = 8

Path stage effort = F = G*B*H = 20/9*1*8 = 160/9

Min delay: = N* (F)^{1/N} + P = 3 *(160/9)^{1/3} + (pinv + 2*pinv + 2*pinv) = 3 * 2.6 + 5 = 12.8

Option #2 appears to be better than Option #1, by a slight margin.

What if we consider gate area and power?

What about a 4-input NOR?

How many stages?

- Consider three alternatives for driving a load
 25 times the input capacitance
 - One inverter
 - Three inverters in series
 - Five inverters in series
- They all do the job, but which one is fastest?

How many stages?

- In all cases: G = 1, B = 1, and H = 25
- ◆ Path delay is N(25)^{1/N} + N P_{inv}
 - N = 1, D = 26 units
 - N = 3, D = 11.8 units
 - N = 5, D = 14.5 units
- Since N=3 is best, each stage will bear an effort of (25)^{1/3} = 2.9
 - So, each stage is ~3x larger than the last
 - In general, the best stage effort is between 3 and 4 (not e as often stated)
 - The e value doesn't use parasitics...

Choosing the Best # of Stages

- You can solve the delay equations to determine the number of stages N that will achieve the minimum delay
 - Approximate by Log₄F

Path Effort	Best	Min Delay	Stage effort
F	N	D	f
0-5.83	1	1.0-6.8	0-5.8
5.83-22.3	2	6.8-11.4	2.4-4.7
22.3-82.2	3	11.4-16.0	2.8-4.4
82.2-300	4	16.0-20.7	3.0-4.2
300-1090	5	20.7-25.3	3.1-4.1
1090-3920	6	25.3-29.8	3.2-4.0

Example

- String of inverters driving an off-chip load
 - Pad cap and load = 40pf
 - Equivalent to 20,000 microns of gate cap
 - Assume first inverter in chain has 7.2u of input cap
 - How many stages in inv chain?
- + H = 20,000/7.2 = 2777
- From the table, 6 stages is best
- Stage effort = $f = (2777)^{1/6} = 3.75$
- Path delay D = 6*3.75 +6*Pinv = 28.5
 - D = 1.14ns if τ = 40ps

Other N's?

- N=2: f=(2777)^{1/2} = 52.7
 - delay = 2(52.7) +2 = 158.1 = 6.324ns
- N=3: f=(2777)^{1/3} = 14
 - delay = 3(14) + 3 = 45 = 1.8ns
- N=4: f=(2777)^{1/4} = 7.26
 - delay = 4(7.26) + 4 = 33.04 = 1.32ns
- N=5: f=(2777)^{1/5} = 4.88
 - delay = 5(4.88) +5 = 29.4 = 1.18ns
- N=6: delay = 1.14ns
- N=7: f=(2777)^{1/7} = 3.105
 - delay = 7(3.105) + 7 = 28.7 = 1.15ns

Summary

- Compute path effort F = GBH
- ◆ Use table, or estimate N = log₄F to decide on number of stages
- Estimate minimum possible delay
 D = NF^{1/N} + Σp_i
- Add or remove stages in your logic to get close to N
- ◆ Compute effort at each stage f_{min} = F^{1/N}
- Starting at output, work backwards to compute transistor sizes C_{in} = (g_i * b_i * C_{out})/f_{min}

Limits of Logical Effort

- Chicken and egg problem
 - Need path to compute G
 - But don't know number of stages without G
- Simplistic delay model
 - Neglects input rise time effects
- Interconnect
 - Iteration required in designs with wire
- Maximum speed only
 - Not minimum area/power for constrained delay

Summary

- Logical effort is useful for thinking of delay in circuits
 - Numeric logical effort characterizes gates
 - NANDs are faster than NORs in CMOS
 - Paths are fastest when effort delays are ~4
 - Path delay is weakly sensitive to stages, sizes
 - But using fewer stages doesn't mean faster paths
 - Delay of path is about log₄F FO4 inverter delays
 - Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits
 - But requires practice to master