Introduction to CMOS VLSI Design

Lecture 5: Logical Effort

David Harris

Harvey Mudd College Spring 2004

Outline

- Introduction
- ☐ Delay in a Logic Gate
- Multistage Logic Networks
- $\hfill \Box$ Choosing the Best Number of Stages
- □ Example
- □ Summary

5: Logical Effort

CMOS VLSI Design

Introduction

- ☐ Chip designers face a bewildering array of choices
 - What is the best circuit topology for a function?
 - How many stages of logic give least delay?
 - How wide should the transistors be?

- ☐ Logical effort is a method to make these decisions
 - Uses a simple model of delay
 - Allows back-of-the-envelope calculations
 - Helps make rapid comparisons between alternatives
 - Emphasizes remarkable symmetries

5: Logical Effort

CMOS VLSI Design

Slide 3

Example

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
 - 16 word register file
 - Each word is 32 bits wide
 - Each bit presents load of 3 unit-sized transistors
 - True and complementary address inputs A[3:0]
 - Each input may drive 10 unit-sized transistors
- Ben needs to decide:
 - How many stages to use?
 - How large should each gate be?
 - How fast can decoder operate?

5: Logical Effort

CMOS VLSI Design

Delay in a Logic Gate

☐ Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

 $\tau = 3RC$

≈ 12 ps in 180 nm process 40 ps in 0.6 μ m process

5: Logical Effort

CMOS VLSI Design

Slide 5

Delay in a Logic Gate

☐ Express delays in process-independent unit

$$\frac{d}{d} = \frac{d_{abs}}{\tau}$$

■ Delay has two components

$$d = f + p$$

5: Logical Effort

CMOS VLSI Design

Delay in a Logic Gate

☐ Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

□ Delay has two components

$$d = f + p$$

- \Box Effort delay f = gh (a.k.a. stage effort)
 - Again has two components

5: Logical Effort

CMOS VLSI Design

Slide 7

Delay in a Logic Gate

☐ Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

□ Delay has two components

$$d = f + p$$

- \Box Effort delay f = gh (a.k.a. stage effort)
 - Again has two components
- ☐ g: logical effort
 - Measures relative ability of gate to deliver current
 - $-g \equiv 1$ for inverter

5: Logical Effort

CMOS VLSI Design

Delay in a Logic Gate

☐ Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

■ Delay has two components

$$d = f + p$$

- \Box Effort delay f = gh (a.k.a. stage effort)
 - Again has two components
- ☐ h: electrical effort = C_{out} / C_{in}
 - Ratio of output to input capacitance
 - Sometimes called fanout

5: Logical Effort

CMOS VLSI Design

Slide 9

Delay in a Logic Gate

☐ Express delays in process-independent unit

$$d = \frac{d_{abs}}{\tau}$$

Delay has two components

$$d = f + p$$

- ☐ Parasitic delay p
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance

5: Logical Effort

CMOS VLSI Design

- □ DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- Measure from delay vs. fanout plots
- ☐ Or estimate by counting transistor widths

5: Logical Effort

CMOS VLSI Design

Slide 13

Catalog of Gates

□ Logical effort of common gates

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n+1)/3
Tristate / mux	2	2	2	2	2
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8	

5: Logical Effort

CMOS VLSI Design

Catalog of Gates

- □ Parasitic delay of common gates
 - In multiples of p_{inv} (≈1)

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		2	3	4	n
NOR		2	3	4	n
Tristate / mux	2	4	6	8	2n
XOR, XNOR		4	6	8	

5: Logical Effort

CMOS VLSI Design

Slide 15

Example: Ring Oscillator

☐ Estimate the frequency of an N-stage ring oscillator

Logical Effort: g =

Electrical Effort: h =

Parasitic Delay: p =

Stage Delay: d =

Frequency: $f_{osc} =$

5: Logical Effort

CMOS VLSI Design

Example: Ring Oscillator

☐ Estimate the frequency of an N-stage ring oscillator

Logical Effort: g = 1 31 stage ring oscillator in 0.6 μ m process has frequency of ~ 200 MHz

Parasitic Delay: p = 1Stage Delay: d = 2

Frequency: $f_{osc} = 1/(2*N*d) = 1/4N$

5: Logical Effort CMOS VLSI Design Slide 17

Example: FO4 Inverter

☐ Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g = Electrical Effort: h = Parasitic Delay: p = Stage Delay: d =

5: Logical Effort

CMOS VLSI Design

Example: FO4 Inverter

☐ Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: g = 1

Electrical Effort: h = 4

Parasitic Delay: p = 1

Stage Delay: d = 5

The FO4 delay is about

200 ps in 0.6 μm process

60 ps in a 180 nm process

f/3 ns in an $f \mu m$ process

5: Logical Effort

CMOS VLSI Design

Slide 19

Multistage Logic Networks

- ☐ Logical effort generalizes to multistage networks
- \Box Path Logical Effort $G = \prod g_i$
- $egin{array}{ccc} egin{array}{ccc} Path & Electrical & Effort \\ \hline C_{
 m in-path} \end{array} & H = rac{C_{
 m out-path}}{C_{
 m in-path}} \end{array}$
- ☐ Path Effort

$$F = \prod f_i = \prod g_i h_i$$

5: Logical Effort

CMOS VLSI Design

Multistage Logic Networks

- ☐ Logical effort generalizes to multistage networks
- \Box Path Logical Effort $G = \prod g_i$
- $egin{array}{ccc} egin{array}{ccc} Path & Electrical & Effort \\ \hline C_{in-path} \end{array} & H = rac{C_{out-path}}{C_{in-path}} \end{array}$
- \square Path Effort $F = \prod f_i = \prod g_i h_i$
- \Box Can we write F = GH?

5: Logical Effort

CMOS VLSI Design

Slide 21

Paths that Branch

□ No! Consider paths that branch:

G =

H =

GH =

 $h_1 =$

 $h_{\alpha} =$

F = GH?

5: Logical Effort

CMOS VLSI Design

Paths that Branch

□ No! Consider paths that branch:

G = 1
H =
$$90 / 5 = 18$$

GH = 18
h₁ = $(15 + 15) / 5 = 6$
h₂ = $90 / 15 = 6$

 $F = g_1g_2h_1h_2 = 36 = 2GH$

5: Logical Effort

CMOS VLSI Design

Slide 23

Branching Effort

- ☐ Introduce *branching effort*
 - Accounts for branching between stages in path

$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}$$

$$B = \prod b_i$$

Note:

$$\prod h_i = BH$$

- lacksquare Now we compute the path effort
 - -F = GBH

5: Logical Effort

CMOS VLSI Design

Multistage Delays

- f D Path Effort Delay $D_{\it F} = \sum f_{\it i}$

5: Logical Effort

CMOS VLSI Design

Slide 25

Designing Fast Circuits

$$D = \sum d_i = D_F + P$$

 $\hfill \Box$ Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

☐ Thus minimum delay of N stage path is

$$D = NF^{\frac{1}{N}} + P$$

- ☐ This is a key result of logical effort
 - Find fastest possible delay
 - Doesn't require calculating gate sizes

5: Logical Effort

CMOS VLSI Design

Gate Sizes

☐ How wide should the gates be for least delay?

$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$

$$\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- ☐ Check work by verifying input cap spec is met.

5: Logical Effort

CMOS VLSI Design

Slide 27

Example: 3-stage path

☐ Select gate sizes x and y for least delay from A to B

5: Logical Effort

CMOS VLSI Design

Example: 3-stage path

A 8 45 45

Electrical Effort H =

Branching Effort B =

Path Effort F =

Best Stage Effort $\hat{f} =$

Parasitic Delay P =

Delay D =

5: Logical Effort

CMOS VLSI Design

Slide 29

Example: 3-stage path

Logical Effort $^{\Diamond}$ G = $(4/3)^*(5/3)^*(5/3) = 100/27$

Electrical Effort H = 45/8

Branching Effort B = 3 * 2 = 6

Path Effort F = GBH = 125

Best Stage Effort $\hat{f} = \sqrt[3]{F} = 5$ Parasitic Delay $\hat{f} = 2 + 3 + 2 = 7$

Delay D = 3*5 + 7 = 22 = 4.4 FO4

5: Logical Effort

CMOS VLSI Design

Best Number of Stages

- ☐ How many stages should a path use?
 - Minimizing number of stages is not always fastest
- ☐ Example: drive 64-bit datapath with unit inverter

D =

5: Logical Effort

CMOS VLSI Design

Slide 33

Best Number of Stages

- ☐ How many stages should a path use?
 - Minimizing number of stages is not always fastest
- ☐ Example: drive 64-bit datapath with unit inverter

 $D = NF^{1/N} + P$ $= N(64)^{1/N} + N$

5: Logical Effort

CMOS VLSI Design

Derivation

- □ Consider adding inverters to end of path

- How many give least delay?
$$D = NF^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + \left(N - n_1\right) p_{inv} \xrightarrow{\text{Logic Block} \\ n_i, \text{Stages} \\ \text{Path EffortF}}$$

$$\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0$$

 \Box Define best stage effort $\rho = F^{\frac{1}{N}}$

$$p_{inv} + \rho (1 - \ln \rho) = 0$$

5: Logical Effort

Slide 35

Best Stage Effort

- $\Box p_{inv} + \rho (1 \ln \rho) = 0$ has no closed-form solution
- \square Neglecting parasitics (p_{inv} = 0), we find ρ = 2.718 (e)
- \Box For $p_{inv} = 1$, solve numerically for $\rho = 3.59$

5: Logical Effort

CMOS VLSI Design

Number of Stages

☐ Decoder effort is mainly electrical and branching

Electrical Effort: H = Branching Effort: B =

 \Box If we neglect logical effort (assume G = 1)

Path Effort: F =

Number of Stages: N =

5: Logical Effort

CMOS VLSI Design

Slide 39

Number of Stages

☐ Decoder effort is mainly electrical and branching

Electrical Effort: H = (32*3) / 10 = 9.6

Branching Effort: B = 8

 \Box If we neglect logical effort (assume G = 1)

Path Effort: F = GBH = 76.8

Number of Stages: $N = log_4F = 3.1$

☐ Try a 3-stage design

5: Logical Effort

CMOS VLSI Design

Logical Effort: G =Path Effort: F =Stage Effort: $\hat{f} =$ Path Delay: D =Gate sizes: Z = $A^{(3)}$ $A^{(3)}$ $A^{(2)}$ $A^{(3)}$ $A^{(3)}$ $A^{(2)}$ $A^{(3)}$ $A^{(3)}$ $A^{(2)}$ $A^{(3)}$ $A^{(3)}$ $A^{(2)}$ $A^{(3)}$ $A^{(3)}$ $A^{(3)}$ $A^{(2)}$ $A^{(3)}$ $A^{($

Comparison

☐ Compare many alternatives with a spreadsheet

Design	N	G	Р	D
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	20/9	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	20/9	6	20.5
NAND2-INV-NAND2-INV	4	16/9	6	19.7
INV-NAND2-INV-NAND2-INV	5	16/9	7	20.4
NAND2-INV-NAND2-INV-INV	6	16/9	8	21.6

5: Logical Effort

CMOS VLSI Design

Slide 43

Review of Definitions

Term	Stage	Path
number of stages	1	N
logical effort	g	$G = \prod g_i$
electrical effort	$h = \frac{C_{\text{out}}}{C_{\text{in}}}$	$H = \frac{C_{ ext{out-path}}}{C_{ ext{in-path}}}$
branching effort	$b = \frac{C_{\text{on-path}} + C_{\text{off-path}}}{C_{\text{on-path}}}$	$B = \prod b_i$
effort	f = gh	F = GBH
effort delay	f	$D_F = \sum f_i$
parasitic delay	p	$P = \sum p_i$
delay	d = f + p	$D = \sum d_i = D_F + P$

5: Logical Effort

CMOS VLSI Design

Method of Logical Effort

1) Compute path effort

F = GBH

2) Estimate best number of stages

 $N = \log_{\Lambda} F$

3) Sketch path with N stages

4) Estimate least delay

 $D = NF^{\frac{1}{N}} + P$

5) Determine best stage effort

 $\hat{f} = F^{7}$

6) Find gate sizes

$$C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

5: Logical Effort

CMOS VLSI Design

Slide 45

Limits of Logical Effort

- ☐ Chicken and egg problem
 - Need path to compute G
 - But don't know number of stages without G
- □ Simplistic delay model
 - Neglects input rise time effects
- Interconnect
 - Iteration required in designs with wire
- Maximum speed only
 - Not minimum area/power for constrained delay

5: Logical Effort

CMOS VLSI Design

Summary

- ☐ Logical effort is useful for thinking of delay in circuits
 - Numeric logical effort characterizes gates
 - NANDs are faster than NORs in CMOS
 - Paths are fastest when effort delays are ~4
 - Path delay is weakly sensitive to stages, sizes
 - But using fewer stages doesn't mean faster paths
 - Delay of path is about log₄F FO4 inverter delays
 - Inverters and NAND2 best for driving large caps
- ☐ Provides language for discussing fast circuits
 - But requires practice to master

5: Logical Effort

CMOS VLSI Design