

Outline

- Introduction
\square Delay in a Logic Gate
M Multistage Logic Networks
Choosing the Best Number of Stages
- Example
\square Summary

Introduction

- Chip designers face a bewildering array of choices
- What is the best circuit topology for a function?
- How many stages of logic give least delay?
- How wide should the transistors be?
- Logical effort is a method to make these decisions
- Uses a simple model of delay

- Allows back-of-the-envelope calculations
- Helps make rapid comparisons between alternatives
- Emphasizes remarkable symmetries

Example

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
- 16 word register file
- Each word is 32 bits wide

- Each bit presents load of 3 unit-sized transistors
- True and complementary address inputs A[3:0]
- Each input may drive 10 unit-sized transistors
- Ben needs to decide:
- How many stages to use?
- How large should each gate be?
- How fast can decoder operate?

Delay in a Logic Gate

\square Express delays in process-independent unit
$d=\frac{d_{a b s}}{\tau}$
$\tau=3 R C$
$\approx 12 \mathrm{ps}$ in 180 nm process
40 ps in $0.6 \mu \mathrm{~m}$ process

Delay in a Logic Gate

\square Express delays in process-independent unit $d=\frac{d_{a b s}}{\tau}$

- Delay has two components
$d=f+p$

Delay in a Logic Gate

- Express delays in process-independent unit $d=\frac{d_{a b s}}{\tau}$
D Delay has two components
$d=f+p$
- Effort delay $f=g h$ (a.k.a. stage effort)
- Again has two components

Delay in a Logic Gate

\square Express delays in process-independent unit $d=\frac{d_{a b s}}{\tau}$

- Delay has two components
$d=f+p$
\square Effort delay $f=g h$ (a.k.a. stage effort)
- Again has two components
$\square \mathrm{g}$: logical effort
- Measures relative ability of gate to deliver current
$-g \equiv 1$ for inverter

Delay in a Logic Gate

- Express delays in process-independent unit $d=\frac{d_{a b s}}{\tau}$
\square Delay has two components
$d=f+p$
\square Effort delay $f=g h$ (a.k.a. stage effort)
- Again has two components
\square h: electrical effort $=\mathrm{C}_{\text {out }} / \mathrm{C}_{\text {in }}$
- Ratio of output to input capacitance
- Sometimes called fanout

Delay in a Logic Gate

\square Express delays in process-independent unit
$d=\frac{d_{a b s}}{\tau}$

- Delay has two components
$d=f+p$
\square Parasitic delay p
- Represents delay of gate driving no load
- Set by internal parasitic capacitance

Delay Plots

$$
\begin{aligned}
d & =f+p \\
& =g h+p
\end{aligned}
$$

Delay Plots

$d=f+p$
$=g h+p$

- What about

NOR2?

Computing Logical Effort

\square DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
\square Measure from delay vs. fanout plots
\square Or estimate by counting transistor widths

$C_{\text {in }}=3$
$g=3 / 3$

5: Logical Effort

Catalog of Gates

Logical effort of common gates

Gate type	Number of inputs					
	1	2	3	4	n	
Inverter	1				$(n+2) / 3$	
NAND		$4 / 3$	$5 / 3$	$6 / 3$	$(2 n+1) / 3$	
NOR		$5 / 3$	$7 / 3$	$9 / 3$	2	
Tristate / mux	2	2	2	2		
XOR, XNOR		4,4	$6,12,6$	$8,16,16,8$		

Catalog of Gates

- Parasitic delay of common gates
- In multiples of $p_{\text {inv }}(\approx 1)$

Gate type	Number of inputs					
	1	2	3	4	n	
Inverter	1					
NAND		2	3	4	n	
NOR		2	3	4	n	
Tristate / mux	2	4	6	8	2 n	
XOR, XNOR		4	6	8		

Example: Ring Oscillator

\square Estimate the frequency of an N -stage ring oscillator

Logical Effort: $\quad \mathrm{g}=$
Electrical Effort: h =
Parasitic Delay: $\mathrm{p}=$
Stage Delay: $\quad d=$
Frequency: $\quad f_{\text {osc }}=$

Example: Ring Oscillator

\square Estimate the frequency of an N -stage ring oscillator

Logical Effort: $\quad \mathrm{g}=1 \quad 31$ stage ring oscillator in
Electrical Effort: h=1
$0.6 \mu \mathrm{~m}$ process has
frequency of $\sim 200 \mathrm{MHz}$
Parasitic Delay: $\mathrm{p}=1$
Stage Delay: $\quad d=2$
Frequency: $\quad f_{\text {osc }}=1 /(2 * N * d)=1 / 4 N$

Example: FO4 Inverter

Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: $\quad \mathrm{g}=$
Electrical Effort: h =
Parasitic Delay: p=
Stage Delay: d =

Example: FO4 Inverter

Estimate the delay of a fanout-of-4 (FO4) inverter

Logical Effort: $\quad \mathrm{g}=1$
Electrical Effort: h = 4 The FO4 delay is about
Parasitic Delay: $p=1 \quad 200 \mathrm{ps}$ in $0.6 \mu \mathrm{~m}$ process
Stage Delay: d=5
60 ps in a 180 nm process $\mathrm{f} / 3 \mathrm{~ns}$ in an $f \mu \mathrm{~m}$ process

Multistage Logic Networks

L Logical effort generalizes to multistage networks

- Path Logical Effort $G=\prod g_{i}$
- Path Electrical Effort $H=\frac{C_{\text {out-path }}}{C_{\text {in-path }}}$
- Path Effort
$F=\prod f_{i}=\prod g_{i} h_{i}$

Multistage Logic Networks

- Logical effort generalizes to multistage networks
- Path Logical Effort $G=\prod g_{i}$

Path Electrical Effort $H=\frac{C_{\text {out-path }}}{C_{\text {in-path }}}$

- Path Effort
$F=\prod f_{i}=\prod g_{i} h_{i}$
- Can we write $\mathrm{F}=\mathrm{GH}$?

5: Logical Effort

Paths that Branch

No! Consider paths that branch:

Paths that Branch

- No! Consider paths that branch:

G $=1$
H $=90 / 5=18$
GH $=18$
$\mathrm{h}_{1}=(15+15) / 5=6$
$\mathrm{h}_{2}=90 / 15=6$
F $\quad=g_{1} g_{2} h_{1} h_{2}=36=2 G H$

Branching Effort

Introduce branching effort

- Accounts for branching between stages in path

$$
\begin{array}{ll}
b=\frac{C_{\text {on path }}+C_{\text {off path }}}{C_{\text {on path }}} \\
B=\prod b_{i} & \prod_{i} h_{i}=B H
\end{array}
$$

Now we compute the path effort
$-F=G B H$

Multistage Delays

- Path Effort Delay $\quad D_{F}=\sum f_{i}$
- Path Parasitic Delay $\quad P=\sum p_{i}$
- Path Delay
$D=\sum d_{i}=D_{F}+P$

Designing Fast Circuits

$D=\sum d_{i}=D_{F}+P$

- Delay is smallest when each stage bears same effort
$\hat{f}=g_{i} h_{i}=F^{\frac{1}{N}}$
- Thus minimum delay of N stage path is
$D=N F^{\frac{1}{N}}+P$
- This is a key result of logical effort
- Find fastest possible delay
- Doesn't require calculating gate sizes

Gate Sizes

How wide should the gates be for least delay?
$\hat{f}=g h=g \frac{C_{\text {out }}}{C_{\text {in }}}$
$\Rightarrow C_{i n_{i}}=\frac{g_{i} C_{\text {out }_{i}}}{\hat{f}}$
W Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
\square Check work by verifying input cap spec is met.

Example: 3-stage path

Select gate sizes x and y for least delay from A to B

Example: 3-stage path

㐫

G =
Electrical Effort $\mathrm{H}=$
Branching Effort $B=$
Path Effort $F=$
Best Stage Effort $\quad \hat{f}=$
Parasitic Delay $\quad \mathrm{P}=$
Delay $\quad D=$

Example: 3-stage path

$G=(4 / 3)^{\star}(5 / 3)^{\star}(5 / 3)=100 / 27$
Electrical Effort
$H=45 / 8$
Branching Effort
B $=3$ * $2=6$
Path Effort
$\mathrm{F}=\mathrm{GBH}=125$
Best Stage Effort
$\hat{f}=\sqrt[3]{F}=5$
Parasitic Delay
$\mathrm{P}=2+3+2=7$
Delay
$\mathrm{D}=3 * 5+7=22=4.4 \mathrm{FO} 4$

Example: 3-stage path

- Work backward for sizes

$$
y=
$$

$$
x=
$$

Example: 3-stage path

- Work backward for sizes
$y=45$ * $(5 / 3) / 5=15$
$x=(15 * 2)$ * $(5 / 3) / 5=10$

Best Number of Stages

- How many stages should a path use?
- Minimizing number of stages is not always fastest
\square Example: drive 64-bit datapath with unit inverter

D =

Best Number of Stages

\square How many stages should a path use?

- Minimizing number of stages is not always fastest
\square Example: drive 64-bit datapath with unit inverter
$D=N F^{1 / N}+P$
$=N(64)^{1 / N}+N$

Derivation

\%

- Consider adding inverters to end of path
- How many give least delay?

\qquad $\mathrm{N}-\mathrm{n}_{1}$ Extralnverters $\frac{\partial D}{\partial N}=-F^{\frac{1}{N}} \ln F^{\frac{1}{N}}+F^{\frac{1}{N}}+p_{\text {inv }}=0$

Define best stage effort $\rho=F^{\frac{1}{N}}$

$$
p_{i n v}+\rho(1-\ln \rho)=0
$$

Best Stage Effort

- $p_{\text {inv }}+\rho(1-\ln \rho)=0$ has no closed-form solution
\square Neglecting parasitics $\left(\mathrm{p}_{\text {inv }}=0\right)$, we find $\rho=2.718$ (e)
\square For $p_{\text {inv }}=1$, solve numerically for $\rho=3.59$

Sensitivity Analysis

- How sensitive is delay to using exactly the best number of stages?

- $2.4<\rho<6$ gives delay within 15% of optimal
- We can be sloppy!
- I like $\rho=4$

Example, Revisited

- Ben Bitdiddle is the memory designer for the Motoroil 68W86, an embedded automotive processor. Help Ben design the decoder for a register file.
- Decoder specifications:
- 16 word register file
- Each word is 32 bits wide

- Each bit presents load of 3 unit-sized transistors
- True and complementary address inputs A[3:0]
- Each input may drive 10 unit-sized transistors
- Ben needs to decide:
- How many stages to use?
- How large should each gate be?
- How fast can decoder operate?

Number of Stages

\square Decoder effort is mainly electrical and branching Electrical Effort: $\quad \mathrm{H}=$
Branching Effort: $\quad \mathrm{B}=$
\square If we neglect logical effort (assume $G=1$)
Path Effort: $\quad F=$

Number of Stages: $\quad \mathrm{N}=$

Number of Stages

[Decoder effort is mainly electrical and branching
Electrical Effort: $\quad \mathrm{H}=(32 * 3) / 10=9.6$
Branching Effort: $\quad \mathrm{B}=8$

- If we neglect logical effort (assume $G=1$)

Path Effort: $\quad F=G B H=76.8$

Number of Stages: $\quad \mathrm{N}=\log _{4} \mathrm{~F}=3.1$

- Try a 3-stage design

Gate Sizes \& Delay

Gate Sizes \& Delay

Logical Effort: $\quad G=1$ * $6 / 3$ * $1=2$
Path Effort: $\quad \mathrm{F}=\mathrm{GBH}=154$
Stage Effort: $\quad \hat{f}=F^{1 / 3}=5.36$
Path Delay: $\quad D=3 \hat{f}+1+4+1=22.1$
Gate sizes: $\quad z=96^{\star} 1 / 5.36=18 \quad y=18^{*} 2 / 5.36=6.7$
$A[3] \overline{A[3]} \quad A[2] \overline{A[2]} \quad A[1] \overline{A[1]} \quad A[0] \bar{A}[0]$

Comparison

- Compare many alternatives with a spreadsheet

Design	N	\mathbf{G}	\mathbf{P}	\mathbf{D}
NAND4-INV	2	2	5	29.8
NAND2-NOR2	2	$20 / 9$	4	30.1
INV-NAND4-INV	3	2	6	22.1
NAND4-INV-INV-INV	4	2	7	21.1
NAND2-NOR2-INV-INV	4	$20 / 9$	6	20.5
NAND2-INV-NAND2-INV	4	$16 / 9$	6	19.7
INV-NAND2-INV-NAND2-INV	5	$16 / 9$	7	20.4
NAND2-INV-NAND2-INV-INV-INV	6	$16 / 9$	8	21.6

Review of Definitions

Term	Stage	Path
number of stages	1	N
logical effort	g	$G=\prod g_{i}$
electrical effort	$h=\frac{C_{\text {out }}}{C_{\text {in }}}$	$H=\frac{C_{\text {outrath }}}{C_{\text {inprath }}}$
branching effort	$b=\frac{C_{\text {orpant }}+C_{\text {offpath }}}{C_{\text {orppat }}}$	$B=\prod b_{i}$
effort	$f=g h$	$F=G B H$
effort delay	f	$D_{F}=\sum f_{i}$
parasitic delay	p	$P=\sum p_{i}$
delay	$d=f+p$	$D=\sum d_{i}=D_{F}+P$

Method of Logical Effort

1) Compute path effort $\quad F=G B H$
2) Estimate best number of stages
$N=\log _{4} F$
3) Sketch path with N stages
4) Estimate least delay
$D=N F^{\frac{1}{N}}+P$
5) Determine best stage effort
$\hat{f}=F^{\frac{1}{N}}$
6) Find gate sizes
$C_{i n_{i}}=\frac{g_{i} C_{\text {out }_{i}}}{\hat{f}}$

Limits of Logical Effort

\square Chicken and egg problem

- Need path to compute G
- But don't know number of stages without G
- Simplistic delay model
- Neglects input rise time effects
- Interconnect
- Iteration required in designs with wire
\square Maximum speed only
- Not minimum area/power for constrained delay

Summary

\square Logical effort is useful for thinking of delay in circuits

- Numeric logical effort characterizes gates
- NANDs are faster than NORs in CMOS
- Paths are fastest when effort delays are ~ 4
- Path delay is weakly sensitive to stages, sizes
- But using fewer stages doesn't mean faster paths
- Delay of path is about $\log _{4}$ F FO4 inverter delays
- Inverters and NAND2 best for driving large caps
\square Provides language for discussing fast circuits
- But requires practice to master

