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1 Introduction

These notes discuss the strategy of warping or transforming one image onto another using
sets of landmarks or fiducial pairs, which we also call correspondences. The transformation
maps points in one image, g(x̄), to points in another image f(x̄), where x̄ = (x, y). We can
therefore create a warped version of f by sampling the function f̃(x̄) = f(T (x̄)), where T is
the transformation. If we were overlay f̃ on g, the correspondences should align.

We denote the set of N correspondences as points {(x1, x
′
1), (x2, x

′
2), . . . , (xN , x′

N)} in g
and f respectively. The goal is to find a transformation between two images such that x′

1 =
T (x1). To find such a warp we normally parameterize the transformation, so that T (x̄) =
T (x̄, β̄) and β ∈ <M . This parameterization effectively restricts the class of transformations,
and each member of this class can be viewed as a point β in an M -dimensional space.

The strategy of geometric image warping is to find the β that satisfies the constraints
given by the correspondences. Generally, this problem is well posed only if the number of
constraints (equations) equals the number of unknowns. For two-dimensional images, each
correspondence establishes two constraints (one for x and one for y), and thus the problem is
well posed if 2N = M . Normally we over constrain the problem and solve the least-squares
problem

β =
argmin

β
N∑

i=1

(x̄′
i − T (x̄i; β))

2
. (1)

2 Radial Basis Functions

Each correspondence establishes an offset of points (∆xi, ∆yi) between the coordinates of
f and g. The problem of finding T is really a problem of interpolating these offsets so
that they cover the image in a smooth way without introducing folds or tears in the image
coordinate system. Therefore we can use some tricks from scattered data interpolation, which
is a field that has studied this problem quite extensively. A thin plate spline is a function
that minimizes the thin plate bending energy given by∫

(f 2
xx + 2f 2

xy + f 2
yy)dxdy. (2)
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Researchers have shown 1 the thin plate spline that satisfies a specific set of constraints has
the form

f(x̄) =
N∑

i=1

kiφi(x̄) + p2y + p1x + po, (3)

where
φi(x̄) = ||x̄− x̄i||2 lg (||x̄− x̄i||) , (4)

is radially symmetric around the point x̄i (it is a function of ri = ||x̄− x̄i||) and is therefore
called a radial basis function. In order for this function to be optimal (minimize Equation 2),
there is the additional constraint that the radial basis function part of the solution should
have no constant or linear terms (i.e. this must be entirely captured in the P s).

We can use the sparse data interpolation of the RBFs to create a smooth transformation
from a set of correspondences. We model the transformation as two functions T x(x̄) and
T y(x̄), with two different sets of coefficients. This gives T (x̄) = (T x(x̄, T y(x̄)) and

T x(x̄) =
N∑

i=1

kx
i φi(x̄) + px

2y+px
1x + px

o (5)

T y(x̄) =
N∑

i=1

ky
i φi(x̄) + py

2y+py
1x + py

o (6)

where the superscripts in x and y are merely labels for the two sets of coefficients (not
exponents).

The parameters (unknowns) of this transformation are the kis and the P s—and T is
linear in all of these variables. Thus, we say that the transformation is a linear function of
β, and the solution is given by a linear system Az̄ = b̄. Each row of this linear system is
one constraint, e.g. T x(x̄i) = x′

i or T y(x̄i) = y′
i. The vector b̄ consists of all the unknowns,

and the coefficients for T x and T y don’t really interact, so we actually have two separate
approximation problems. For convenience, we will put them together into one system, and

1F. L. Bookstein, “Principal Warps: Thin-Plate Splines and the Decomposition of Deformations”, IEEE
Trans. Pattern Analysis and Machine Intelligence, (11)6, 1989.
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we therefore have

(
B 0
0 B

)
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N

px
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ky
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ky
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=



0
0
0
x′

1

x′
2
...

x′
N

0
0
0
y′

1

y′
2
...

y′
N



(7)

where the first three constraints (the zeros) for the xs and ys cover the constraint that the
RBF part can have no constant or linear terms and B is an (N + 3) × (N + 3) matrix. B
encodes evaluations of the RBFs at the fiducial points x̄i. If we let φij be φ(x̄i− x̄j), we have

B =



x1 x2 . . . xN 0 0 0
y1 y2 . . . yN 0 0 0
1 1 . . . 1 0 0 0

φ11 φ12 . . . φ1N y1 x1 1
φ21 φ22 . . . φ2N y2 x2 1
...

φN1 φN2 . . . φNN yN xN 1


(8)

Thus, solving the linear system given in Equation 7 gives the coefficients needed to construct
a smooth transformation T (x̄) that maps all of the correspondences correctly.

3 Image Mosaicing

Two images that are produced from either a pure rotation of an observer or arbitrary views
of a planar object are related to one another by a 2D perspective transformation. We
denote two corresponding points in homogeneous coordinates as (x, y, 1) and (x′, y′, 1). In
perspective mappings, two points are equivalent if they are identical to within a scale factor.
That is, x, y, z is equivalent to x′, y′, z′ if there exists some λ such that x = λx′, y = λy′ ,
and z = λz′. Notice this is the same as saying that two points are equivalent if x/z = x′/z′

and y/z = y′/z′. The perspective transformation relating two points is a 3 × 3 matrix
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multiplication followed by the division (normalization) described above. That is x∗

y∗

z∗

 = P

 x
y
1

 (9)

Thus, when we are trying to find perspective transformations, must find the 3 × 3 matrix
that maps sets of control points (in homogeneous coordinates) to within a scale factor. We
denote the elements of this linear mapping as P = pij:

P =

 p11 p12 p13

p21 p22 p23

p31 p32 1

 (10)

The linear part of the mapping is:

x∗ = p11x + p12y + p13 (11)

y∗ = p21x + p22y + p23 (12)

z∗ = p31x + p32y + 1 (13)

Because the mapping is defined to within only a constant scale factor, we set the lower right
corner to 1 (in order to avoid a homogeneous linear system—there are other ways to handle
this). I.e. p33 = 1.

x′ =
p11x + p12y + p13

p31x + p32y + 1
(14)

y′ =
p21x + p22y + p23

p31x + p32y + 1
(15)

This is a nonlinear relationship but if we multiply both sides by the denominator, we have

p31xx′ + p32yx′ + x′ = p11x + p12y + p13 (16)

p31xy′ + p32yy′ + y′ = p21x + p22y + p23 (17)

If we rearrange the terms we have the following linear relationship

p31xx′ + p32yx′ − p11x− p12y − p13 = −x′ (18)

p31xy′ + p32yy′ − p21x− p22y − p23 = −y′ (19)

If we take multiple correspondences (xi, yi) and (x′
i, y

′
i) we have the following linear system

−x1 −y1 −1 0 0 0 x1x
′
1 y1x

′
1

−x2 −y2 −1 0 0 0 x2x
′
2 y2x

′
2

...
−xN −yN −1 0 0 0 xNx′

N yNx′
2

0 0 0 −x1 −y1 −1 x1y
′
1 y1y

′
1

0 0 0 −x2 −y2 −1 x2y
′
2 y2y

′
2

...
0 0 0 −xN −yN −1 xNy′

N yNy′
N





p11

p12

p13

p21

p23

p23

p31

p32


=



−x′
1

−x′
2

...
−x′

N

−y′
1

−y′
2

...
−y′

N


(20)
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Solving this system gives us P . To actually implement the transformation (e.g. in image
warping), is a two step process. You first multiply each coordinate (homogeneous) by the
matrix P and then divide by w.
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