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Intensity Transformation Example 
(log) 
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g(x,y) = log(f(x,y)) 

f(x1,y1) g(x1,y1) 

g(x1,y1) = log ( f(x1,y1)  ) 

f(x2,y2) g(x2,y2) 

g(x2,y2) = log ( f(x2,y2)  ) 

• We can drop the (x,y) and represent this kind of filter as an intensity 
transformation s=T(r). In this case s=log(r) 
- s: output intensity  
- r: input intensity 



Intensity transformation 
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s = T (r)

© 1992–2008  R. C. Gonzalez & R. E. Woods  



Gamma correction 
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s = crγ
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Gamma transformations 

5 
© 1992–2008  R. C. Gonzalez & R. E. Woods  



Gamma transformations 
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More Intensity Transformations 

7 
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Piecewise linear intensity 
transformation 

•  More control 
•  But also more     

parameters for user 
to specify 

–  Graphical user 
interface can be useful 

8 
© 1992–2008  R. C. Gonzalez & R. E. Woods  



Sample Spaces 

•  S = Set of possible outcomes of a random event 
•  Toy examples 

–  Dice 
–  Urn 
–  Cards 

•  Probabilities 
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Conditional Probabilities 
•  Multiple events 

–  SxS Cartesian product - sets 
–  2 throws of Dice - (2, 4) 
–  2 picks from an urn - (black, black) 

•  P(B|A) - probability of B in second experiment 
given outcome (A) of first experiment 
–  This quantifies the effect of the first experiment on the second 

•  P(A,B) - probability of A in first experiment and B 
in second experiment 

•  P(A,B) = P(A) P(B|A) 
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Independence 

•  P(B|A) = P(B) 
–  The outcome of one experiment does not affect the other 

•  Independence: P(A,B) = P(A)P(B) 
•  Dice 

–  Each roll is unaffected by the previous (or history) 

•  Urn 
–  Independence: replace stone after each experiment 

•  Cards 
–  Replace card after it is picked 
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Random Variable (RV) 
•  Variable (number) associated with the outcome 

of a random experiment 
•  Dice 

–  E.g. Assign 1-6 to the faces of die 

•  Urn 
–  Assign 0 to black and 1 to white (or vice versa) 

•  Cards 
–  Lots of different schemes - depends on application 

•  A function of a random variable is also a random 
variable 12 



Cumulative Distribution Function 
(cdf) 

•  F(x), where x is a RV 
•  F(-infty) = 0, F(infty) = 1 
•  F(x) non decreasing 
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Continuous Random Variables 

•  Example: spin a wheel and associate value with 
angle 

•  F(x) – cdf continuous 
–  –> x is a continuous RV 
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Probability Density Functions 

•  f(x) is called a probability density function (pdf) 

 
•  A probability density is not the same as a 

probability 
•  The probability of a specific value as an outcome 

of continuous experiment is (generally) zero 
–  To get meaningful numbers you must specify a range 15 



Expected Value of a RV 

•  Expectation is linear 
–  E[ax] = aE[x] for a scalar (not random) 
–  E[x + y] = E[x] + E[y] 

•  Other properties 
–  E[z] = z –––––– if z is a constant 
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Mean of a PDF 

•  Mean = E[x] 
–  also called “µ” 

•  Variance = E[(x - µ)2] 
•   = E[x2] - E[2µx] + E[µ2] 
•   = E[x2] - µ2 

–  also called “σ2” 
–  Standard deviation is σ 
–  For a distribution having zero mean: E[x2] = σ2 
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Sample Mean 

•  Run N experiments (independent) 
–  Draw N sample points from a single pdf 
–  Sum them up and divide by N 

•  Resulting M is called the sample mean 
–  M is a random variable 
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Sample Mean 
•  How close can we expect to be with a sample mean to the true mean? 
•  Consider variance of sample mean (M) 
•  Define a new random variable: D = (M - m)2 
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As number of samples –> infty,   sample mean –> true mean 

Independence –> E[xy] = E[x]E[y] 

Number of terms off 
diagonal 



Application: Denoising Images 
•  Imagine N images of the same scene with 

random, independent, zero-mean noise added to 
each one 
–  Nuclear medicine–radioactive events are random 
–  Noise in sensors/electronics 

•  At pixel (x,y): g(x,y) = s(x,y) + n(x,y) 
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True pixel value Random zero-mean noise: 
• Independent from one image to the next 
• Variance = σ	





Application: Denoising Images 

•  Take multiple images of the same scene 
–  gi = s + ni 
–  Mean [ni] = 0; Variance [ni] = σ2 
–  Mean [gi] = s; Variance [gi] = σ2 
–  Sample mean = M = (1/N) Σgi = s + (1/N) Σni 
–  Mean [M] = s; Variance [M] = (1/N) σ2 

•  Application: 
–  Digital cameras with large gain (high ISO, light sensitivity) 
–  Astronomy imagery 
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Averaging Noisy Images Can Improve Quality 
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Histograms 

•  h(rk) = nk  
–  Histogram: number of times 

intensity level rk appears in 
the image 

•  p(rk)= nk/NM 
–  normalized histogram 
–  also a probability of 

occurence 
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Histogram of Image Intensities 

•  Create bins of intensities and count number of 
pixels at each level 
–  Normalized (divide by total # pixels) 
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Histogram  
Equalization 

•  Automatic process of 
enhancing the contrast 
of any given image 
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Histogram Equalization 
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Tuning Down Hist. Eq. 
•  Transformation is weighted combination of CDF 

and identity with parameter alpha 
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α = 0.0 α = 0.2 α = 0.4 

α = 0.6 α = 0.8 α = 1.0 



Adaptive Histogram Equalization 
(AHE) 
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AHE Gone Bad… 
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Effect of Window Size 
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10x10 25x25 50x50 Orig 



AHE Application: Microscopy 
Imaging 
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Original AHE 



AHE Application: Microscopy Imaging 
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Original AHE Adaptive Filtering 

Threshold CC Analysis/Morphology CC Analysis/Watersheds 



What is image segmentation? 

•  Image segmentation is the process of subdividing an 
image into its constituent regions or objects. 

•  Example segmentation with two regions: 
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Input image 
intensities 0-255 

Segmentation output 
0 (background)  
1 (foreground) 



Thresholding 

•  How can we choose T?  
–  Trial and error 
–  Use the histogram of f(x,y) 
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Input image f(x,y) 
intensities 0-255 

Segmentation output g(x,y) 
0 (background)  
1 (foreground) 



Histograms and Noise 

•  What happens to the histogram if we add noise?   
–  g(x, y) = f(x, y) + n(x, y) 
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Threshold data 
and assign to 
classes 



Choosing a threshold  
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T=100 

Histogram 



Role of noise 

Univ of Utah, 
CS6640  
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T=120 



Low signal-to-noise ratio 

Univ of Utah, 
CS6640  
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T=140 



Effect of noise on 
image histogram 
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Images 
 
 
 
Histograms 

No noise         With noise        More noise  
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Effect of illumination on 
image histogram 
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Images 
 
 
 
Histograms 

f             x          g             =          h 

Original           Illumination             Final 
 image      image         image 
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Some Extra Things 

•  Gaussian/normal distribution 
•  Weighted means 
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Gaussian Distribution 

•  “Normal” or “bell curve” 
•  Two parameters 

–  µ = mean, σ = standard deviation 
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Gaussian Properties 

•  Best fitting Gaussian to some data is gotten by 
mean and standard deviation of the samples 

•  Occurrence 
–  Central limit theorem: mean of lots of independent & 

identically-distributed RVs 
–  Nature (approximate) 

•  Measurement error, physical characteristic, physical phenomenon 
•  Diffusion of heat or chemicals 
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Weighted Mean from Samples 

•  Suppose  
–  We want to compute the sample mean of a “class” of things 

(or we want to reduce it’s influence) 
–  We are not sure if the ith item belongs to this class or not - 
“partially belongs” 

•  probability wi, random variable ri  
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Sample mean (no weights) Weighted sample mean 



Gaussian Mixture Modeling of 
Image Histograms 

•  K classes, N samples 
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Class 1 

Class 2 

Class 3 

Intensity 
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Problem Statement 
•  Goal: assign pixels to classes based on 

intensities (output = label image) 
•  Problem: can we simultaneously learn the class 

structure and assign the class labels? 

46 Intensity 

Histogram of image samples 



Crisp vs. Soft 
Class Assignment 

•  If we knew the pdfs (Gaussians) of the classes, 
we could assign class labels to each data point/
pixel 
–  Assume equal overall probabilities of classes 
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Find class that has max 
probability for given intensity 
r at pixel I.  Assign that class 
label to that pixel 

Crisp Assign 

For each pixel and each class, 
assign a (conditional) 
probability that that pixel 
belongs to that class 

Soft Assign 



Simultaneously Estimate Class PDFs 
and Pixel Labels – Iterative Algorithm 
•  Start with initial estimate of class models 

•  Compute matrix of soft assignments 

•  Use soft assignments to compute new weighted mean and 
standard deviation for each class 

•  Use new mean and standard deviation to compute new soft 
assignments and repeat (until change in parameters is very 
small) 
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EM Algorithm – Example 

Univ of Utah, 
CS6640  
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MRI Brain Example 
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