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Intensity Transformation Example

a(xy) = log(f(x.y)) (log)
m ) =log ( ﬂm
f(x1,y1) g(x1,y1)

f(Xz,yN 1 dlxey)

g(x2,y2) = log ( f(x2,y2) )

*We can drop the (x,y) and represent this kind of filter as an intensity
transformation s=T(r). In this case s=log(r)

-s: output intensity

-r: input intensity



Intensity transformation
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Gamma correction

Original image

Gamma
correction

Gamma-corrected image
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Original image as viewed
on monitor

Gamma-corrected image as
viewed on the same monitor
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Gamma transformations

FIGURE 3.9

(a) Aerial image.
(b)—(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ =1and

v = 3.0, 4.0,and
5.0, respectively.
(Original image
for this example

courtesy of
NASA.)
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FIGURE 3.8

(a) Magnetic
resonance

image (MRI) of a
fractured human
spine.

(b)-(d) Results of
applying the
transformation in
Eq. (3.2-3) with

¢ =1land

y = 0.6, 0.4, and
0.3, respectively.
(Original image
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)



More Intensity Transformations




Piecewise linear intensity
transformation

* More control L _—
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Sample Spaces

» S = Set of possible outcomes of a random event
» Toy examples -. O

— Dice @?‘ | '-

— Urmn
— Cards

* Probabilities
P(S) = AeS=P(A4)>0

PUY A ZP A;) where A;NA; =10




Conditional Probabilities

Multiple events

— SxS Cartesian product - sets
— 2 throws of Dice - (2, 4)
— 2 picks from an urn - (black, black)

P(B|A) - probability of B in second experiment
given outcome (A) of first experiment

— This quantifies the effect of the first experiment on the second

P(A,B) - probability of A in first experiment and B
In second experiment

P(A,B) = P(A) P(B|A) o



Independence

P(B|A) = P(B)
— The outcome of one experiment does not affect the other
Independence: P(A,B) = P(A)P(B)

Dice

— Each roll is unaffected by the previous (or history)

Urn

— Independence: replace stone after each experiment

Cards

— Replace card after it is picked
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Random Variable (RV)

Variable (number) associated with the outcome
of a random experiment

Dice
— E.g. Assign 1-6 to the faces of die
Urn

— Assign 0 to black and 1 to white (or vice versa)

Cards

— Lots of different schemes - depends on application

A function of a random variable is also a random
variable 12



Cumulative Distribution Function
(cdf)

* F(x), where xisa RV
o F(-infty) =0, F(infty) = 1
* F(x) non decreasing

Fa)= Y P()

1=—00

ool I0IL




Continuous Random Variables

» Example: spin a wheel and associate value with

di

o F(x

gle
) — cdf continuous
—> X IS a continuous RV

/ fo)dg

0

e

f

= F'(z)
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Probability Density Functions

» f(x) is called a probability density function (pdf)
/ f@) =1 f(z)>0V a

* A probability density is not the same as a
probabilitv

b
P(anESb)=/ f(g)dg = F(b) — F(a)

— To get meaningful numbers you must specify a range 15



Expected Value of a RV

Bls] = Y ip(i)

1=—00

Elz] = /oo q f(q) dq

 EXxpectation is linear
— E[ax] = aE[x] for a scalar (not random)
- E[x+y]=E[x] + E[y]

o Other properties
- E[z] =2

if zis a constant

16



Mean of a PDF

Mean = E[X]

— also called “u”

Variance =
= E[x2]
= E[x2]

E[(x - u)2]
- E[2ux] + E[u2]

- u2

— also called “02”
— Standard deviation is o

— For a distribution having zero mean: E[x2] = 62

17



Sample Mean

* Run N experiments (independent)
— Draw N sample points from a single pdf
— Sum them up and divide by N

* Resulting M is called the sample mean
— Mis a random variable

1 N
X 1 &
E[M] = E[- ;x] == ;E[xz] =m



Sample Mean

« How close can we expect to be with a sample mean to the true mean?
 Consider variance of sample mean (M)
 Define a new random variable: D = (M - m)2 Independence -> ECxy] = ELXJECy]

1 1
D=—"—"— : ) . 2 Number of terms off
N2 Zmzz% N msz tm diagonal

D] = E[z 5%, 35] — 42mB[S, @i + m?
SHY, zi ) ;w5 —m?
E[Z mzzmﬂ] - N2 ZE[$2]+ ZZE[%%] = ZE[$2]+N(ZZ\\77—2_1)m2

mm=%E

[.’132]—|—N(N_1)m2—N—2m2— 1

1 2
N2 N2 N (

E[z?] —m?) = Nad

As number of samples -> infty, sample mean -> true mean
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Application: Denoising Images

* |magine N images of the same scene with
random, independent, zero-mean noise added to

each one
— Nuclear medicine-radioactive events are random
— Noise in sensors/electronics

+ At pixel (x,y): g(x,y) = s(x,y) + n(x,y)

/5 Random zero-mean noise:

True pixel value ‘Independent from one image to the next
Variance = O

20



Application: Denoising Images

» Take multiple images of the same scene
— gi=s+ni
— Mean [ni] = 0; Variance [ni] = 02
— Mean [gi] = s; Variance [gi] = 02
— Sample mean =M = (1/N) Zgi = s + (1/N) Zni
— Mean [M] = s; Variance [M] = (1/N) 02

* Application:
— Digital cameras with large gain (high ISO, light sensitivity)
— Astronomy imagery

21



Averaging Noisy Images Can Improve Quality

abc
de f

FIGURE 2.26 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)—(f) Results of
averaging 5, 10, 20, 50, and 100 noisy images, respectively. (Original image courtesy of NASA.) 2



Histograms

* h(rk) = nk
— Histogram: number of times

Intensity level rk appears in
the image

* p(rk)= nk/INM

— normalized histogram

— also a probability of
occurence

I I I I
Histogram of dark image

I I I I
Histogram of light image

| | | |

I I I I
Histogram of low-contrast image

I I | I
Histogram of high-contrast image




Histogram of Image Intensities

« Create bins of intensities and count number of

pixels at each level
— Normalized (divide by total # pixels)

Frequency

H

Grey level value
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Histogram
Equalization

* Automatic process of =
enhancing the contrast
of any given image

i
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Histogram Equalization

206



Tuning Down Hist. Eq.

* Transformation is weighted combination of CDF

and identity with parameter alpha
t(s) = (1 —a)s+ aA(s)

a=00

o= 02

LT




Adaptive Histogram Equalization
(AHE)




AHE Gone Bad.
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Effect of Window Size

30



ARE Application: Microscopy




AHE Application: Microscopy Imaging

SN ‘ h ‘

CC Analysis/Morphology cC Analysis/Watershed33 2




What is image segmentation?

* Image segmentation is the process of subdividing an
Image into its constituent regions or objects.

» Example segmentation with two regions:

d

Input image Segmentation output

intensities 0-255 0 (background)
1 (foreground)

33



Thresholding

1 4f flz,y)>T
s =10 if fonzT

* How can we choose T?

uram - n

Input image f(x,y) Segmentatlon output g(x,y)
intensities 0-255 0 (background)
1 (foreground)

34



Histograms and Noise

 \What happens to the histogram if we add noise?
- g(X, y) - f(X’ y) t n(X’ y)

Threshold data
and assign to

classes
AL

\AAA

35



Choosing a threshold

Histogram

=100
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Role of noise

0 50 100 150 200 250

Univ of Utah,
neLAN

300
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Low signal-to-noise ratio

Univ of Utah,
neLAN
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Images

Histograms

Effect of noise on
Image histogram

No noise

With noise

More noise
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Effect of illumination on

Image histogram
b

f X g =

Images

Histograms

Original lllumination Final
Image Image Image
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Some Extra Things

 (Gaussian/normal distribution
» Weighted means

41



Gaussian Distribution

o “Normal” or “bell curve”

* Two parameters
— w =mean, o = standard deviation

Gaussian or
"normal"
distribution

fo(x)

1.1359 | .3413 | .3413 | .1359
30 26 <o 0 o 26 3o
X
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Gaussian Properties

» Best fitting Gaussian to some data is gotten by
mean and standard deviation of the samples

* Qccurrence

— Central limit theorem: mean of lots of independent &
Identically-distributed RVs

— Nature (approximate)
« Measurement error, physical characteristic, physical phenomenon
« Diffusion of heat or chemicals

43



Weighted Mean from Samples

* Suppose

— We want to compute the sample mean of a “class” of things
(or we want to reduce it’ s influence)

— We are not sure if the ith item belongs to this class or not -
“partially belongs”

* probability w,, random variable r

Sample mean (no weights) Weighted sample mean
N
1

44



Class probability

Gaussian Mixture Modeling of

DN

Image Histograms

» Kclasses, N samples

Class 1

Class 2

Intensity

Class 3
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Problem Statement

* (Goal: assign pixels to classes based on
intensities (output = label image)

* Problem: can we simultaneously learn the class
structure and assign the class labels?

DN

Histogram of image samples

-

Intensity
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Crisp vs. Soft
Class Assignment

* |f we knew the pdfs (Gaussians) of the classes,
we could assign class labels to each data point/
pixel
— Assume equal overall probabilities of classes

Crisp Assign
Find class that has max
C; = argmax ; P j (Tz) probability for given intensity
r atf pixel |. Assign that class
label to that pixel

Soft Assign
, 1 For each pixel and each class,
w! = P(C; = jlr) = —% P;(r;) assign a(conditional)
> =1 Pi(rs) probability that that pigey

belongs to that class



Simultaneously Estimate Class PDFs
and Pixel Labels — Iterative Algorithm

« Start with initial estimate of class models

ug,a?forjzl...K

«  Compute matrix of soft assignments
= )
S Pilr)
* Use soft assignments to compute new weighted mean anc
standard deviation for each class

« Use new mean and standard deviation to compute new soft
assignments and repeat (until change in parameters is very
small)

Jj_
w; =

‘11
Ky 05
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EM Algorithm — Example

Univ of Utah,
neLAN
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MRI Brain Example




