Geometric Transformations and Image Warping

Ross Whitaker
SCI Institute, School of Computing
University of Utah

Geometric Transformations

- Greyscale transformations -> operate on range/ output
- Geometric transformations -> operate on image domain
- Coordinate transformations
- Moving image content from one place to another
- Two parts:
- Define transformation
- Resample greyscale image in new coordinates

Geom Trans: Distortion From Optics

3

Geom Trans: Distortion From Optics

Geom. Trans.: Brain Template/Atlas

Geom. Trans.: Mosaicing

Domain Mappings Formulation

$$
f \longrightarrow g \quad \text { New image from old one }
$$

$$
\begin{aligned}
& \binom{x^{\prime}}{y^{\prime}}=T(x, y)=\binom{T_{1}(x, y)}{T_{2}(x, y)} \begin{array}{l}
\text { Coordinate transformation } \\
\text { Two parts - vector valued }
\end{array} \\
& g(x, y)=f\left(x^{\prime}, y^{\prime}\right) \\
& g(x, y)=f\left(x^{\prime}, y^{\prime}\right)=\tilde{f}(x, y) \begin{array}{l}
\text { gis the same image as f, but } \\
\text { sampled on these new } \\
\text { coordinates }
\end{array}
\end{aligned}
$$

Domain Mappings Formulation

$$
\begin{array}{cc}
\bar{x}^{\prime}=T(\bar{x}) \quad \begin{array}{l}
\text { Vector notation is convenient. } \\
\text { Bar useds some times, depends } \\
\text { on context. }
\end{array} \\
g(\bar{x})=\tilde{f}(\bar{x})=f\left(\bar{x}^{\prime}\right)=f(T(\bar{x})) \\
\bar{x}=T^{-1}\left(\bar{x}^{\prime}\right) \quad \begin{array}{l}
\text { T may or may not have an } \\
\text { inverse. If not, it means that } \\
\text { information was lost. }
\end{array}
\end{array}
$$

Domain Mappings

No Inverse?

Not "one to one"

Not "onto" doesn' \dagger cover f

Implementation - Two Approaches

- Pixel filling - backward mapping
- $T()$ takes you from coords in $g()$ to coords in $f()$
- Need random access to pixels in f()
- Sample grid for $g()$, interpolate $f()$ as needed

Interpolate
from nearby grid
 points

Interpolation: Bilinear

- Successive application of linear interpolation along each axis

$$
\begin{aligned}
f\left(R_{1}\right) & \approx \frac{x_{2}-x}{x_{2}-x_{1}} f\left(Q_{11}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} f\left(Q_{21}\right) \\
f\left(R_{2}\right) & \approx \frac{x_{2}-x}{x_{2}-x_{1}} f\left(Q_{12}\right)+\frac{x-x_{1}}{x_{2}-x_{1}} f\left(Q_{22}\right) \\
f(P) & \approx \frac{y_{2}-y}{y_{2}-y_{1}} f\left(R_{1}\right)+\frac{y-y_{1}}{y_{2}-y_{1}} f\left(R_{2}\right)
\end{aligned}
$$

Source: WIkipedia
12

Bilinear Interpolation

- Not linear in x, y

$$
\begin{aligned}
f(x, y) & \approx \frac{f\left(Q_{11}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)}\left(x_{2}-x\right)\left(y_{2}-y\right) \\
& +\frac{f\left(Q_{21}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)}\left(x-x_{1}\right)\left(y_{2}-y\right) \\
& +\frac{f\left(Q_{12}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)}\left(x_{2}-x\right)\left(y-y_{1}\right) \\
& +\frac{f\left(Q_{22}\right)}{\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right)}\left(x-x_{1}\right)\left(y-y_{1}\right) .
\end{aligned}
$$

$$
\begin{aligned}
& b_{1}+b_{2} x+b_{3} y+b_{4} x y \\
& b_{1}= f(0,0) \\
& b_{2}= f(1,0)-f(0,0) \\
& b_{3}= f(0,1)-f(0,0) \\
& b_{4}= f(0,0)-f(1,0) \\
&-f(0,1)+f(1,1) .
\end{aligned}
$$

Binlinear Interpolation

- Convenient form
- Normalize to unit grid $[0,1] \times[0,1]$

$$
\begin{aligned}
f(x, y) & \approx f(0,0)(1-x)(1-y)+f(1,0) x(1-y)+f(0,1)(1-x) y+f(1,1) x y . \\
f(x, y) & \approx\left[\begin{array}{ll}
1-x & x
\end{array}\right]\left[\begin{array}{ll}
f(0,0) & f(0,1) \\
f(1,0) & f(1,1)
\end{array}\right]\left[\begin{array}{c}
1-y \\
y
\end{array}\right] .
\end{aligned}
$$

Implementation - Two Approaches

- Splatting - backward mapping
- T-1 () takes you from coords in f() to coords in g()
- You have $f()$ on grid, but you need $g()$ on grid
- Push grid samples onto g() grid and do interpolation from unorganized data (kernel)

Nearby points
are not
"scatered"
15

Scattered Data Interpolation With Kernels Shepard's method

- Define kernel
- Falls off with distance, radially symmetric

$$
\begin{aligned}
& K\left(\bar{x}_{1}, \bar{x}_{2}\right)=K\left(\left|\bar{x}_{1}-\bar{x}_{2}\right|\right) \\
& g(x)=\frac{1}{\sum_{j=1}^{N} w_{j}} \sum_{i=1}^{N} w_{i} f\left(x_{i}^{\prime}\right) \\
& w_{j}=K\left(\mid \bar{x}-T^{-1}\left(\bar{x}_{j}^{\prime}\right)\right)
\end{aligned}
$$

Kernel examples

$$
\begin{aligned}
& K\left(\bar{x}_{1}, \bar{x}_{2}\right)=\frac{1}{2 \pi \sigma^{2}} e^{\frac{\left|\bar{x}_{1}-\bar{x}_{2}\right|^{2}}{2 \sigma^{2}}} \\
& K\left(\bar{x}_{1}, \bar{x}_{2}\right)=\frac{1}{\left|\bar{x}_{1}-\bar{x}_{2}\right|^{p}}
\end{aligned}
$$

16

Shepard' s Method Implementation

- If points are dense enough
- Truncate kernel
- For each point in $f()$

Data and weights accumulated here

- Form a small box around it in $g()$ - beyond which truncate
- Put weights and data onto grid in $g()$
- Divide total data by total weights: B/A

$$
A=\sum_{j=1}^{N} w_{j} \quad B=\sum_{i=1}^{N} w_{i} f\left(T^{-1}\left(x_{i}^{\prime}\right)\right)
$$

17

Transformation Examples

- Linear $\bar{x}^{\prime}=A \bar{x}+\bar{x}_{0} \quad A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

$$
\begin{aligned}
& x^{\prime}=a x+b y+x_{0} \\
& y^{\prime}=c x+d y+y_{0}
\end{aligned}
$$

- Homogeneous coordinates

$$
\begin{aligned}
& \bar{x}=\left(\begin{array}{l}
x \\
y \\
1
\end{array}\right) \quad A=\left(\begin{array}{llc}
a & b & x_{0} \\
c & d & y_{0} \\
0 & 0 & 1
\end{array}\right) \\
& \bar{x}^{\prime}=A \bar{x}
\end{aligned}
$$

Special Cases of Linear

- Translation)

$$
A=\left(\begin{array}{ccc}
0 & 0 & x_{0} \\
0 & 0 & y_{0} \\
0 & 0 & 1
\end{array}\right)
$$

- Rotation
- Rigid $=$ rotation $\left.{ }^{A=}=\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right)$ translation
- Scaling

$$
A=\left(\begin{array}{lll}
p & 0 & 0 \\
0 & q & 0 \\
0 & 0 & 1
\end{array}\right)
$$

$p, q<1: \operatorname{expand}$

- Include forward and backward rotation for arbitary axis
- Skew

- Reflection

Linear Transformations

- Also called "affine"
- 6 parameters
- Rigid -> 3 parameters
- Invertability
- Invert matrix

$$
T^{-1}(\bar{x})=A^{-1} \bar{x}
$$

- What does it mean if A is not invertible?

Other Transformations

- All polynomials of (x, y)
- Any vector valued function with 2 inputs
- How to construct transformations
- Define form or class of a transformation
- Choose parameters within that class
- Rigid-3 parameters
- Affine - 6 parameters

Correspondences

- Also called "landmarks" or "fiducials"

$\bar{c}_{1}, \bar{c}_{1}^{\prime}$
$\bar{c}_{2}, \bar{c}_{2}^{\prime}$
$\bar{c}_{3}, \bar{c}_{3}^{\prime}$
$\bar{c}_{4}, \bar{c}_{4}^{\prime}$
$\bar{c}_{5}, \bar{c}_{5}^{\prime}$
$\bar{c}_{6}, \bar{c}_{6}^{\prime}$

Transformations/Control Points Strategy

- Define a functional representation for T with k parameters (B)

$$
T(\beta, \bar{x})=\left(\beta_{1}, \beta_{2}, \ldots, \beta_{K}\right)
$$

- Define (pick) N correspondences
- Find B so that

$$
\bar{c}_{i}^{\prime}=T\left(\beta, \bar{c}_{i}\right) i=1, \ldots, N
$$

- If overconstrained $(\mathrm{K}<2 \mathrm{~N})$ then solve

$$
\arg \min _{\beta}\left[\sum_{\mathrm{i}=1}^{\mathrm{N}}\left(\bar{c}_{\mathrm{i}}^{\prime}-\mathrm{T}\left(\beta, \overline{\mathrm{c}}_{\mathrm{i}}\right)^{2}\right]\right.
$$

Example: Quadratic

Transformation

$$
\begin{aligned}
& T_{x}=\beta_{x}^{00}+\beta_{x}^{10} x+\beta_{x}^{01} y+\beta_{x}^{11} x y+\beta_{x}^{20} x^{2}+\beta_{x}^{02} y^{2} \\
& T_{y}=\beta_{y}^{00}+\beta_{y}^{10} x+\beta_{y}^{01} y+\beta_{y}^{11} x y+\beta_{y}^{20} x^{2}+\beta_{y}^{02} y^{2}
\end{aligned}
$$

Denote $\bar{c}_{i}=\left(c_{x, i}, c_{y, i}\right)$

Correspondences must match

$$
\begin{aligned}
& c_{y, i}^{\prime}=\beta_{y}^{00}+\beta_{y}^{10} c_{x, i}+\beta_{y}^{01} c_{y, i}+\beta_{y}^{11} c_{x, i} c_{y, i}+\beta_{y}^{20} c_{x, i}^{2}+\beta_{y}^{02} c_{y, i}^{2} \\
& c_{x, i}^{\prime}=\beta_{x}^{00}+\beta_{x}^{10} c_{x, i}+\beta_{x}^{01} c_{y, i}+\beta_{x}^{11} c_{x, i} c_{y, i}+\beta_{x}^{20} c_{x, i}^{2}+\beta_{x}^{02} c_{y, i}^{2}
\end{aligned}
$$

Note: these equations are linear in the unkowns

Write As Linear System

$$
\begin{aligned}
& \left(\begin{array}{cccccccccccc}
1 & c_{x, 1} & c_{y, 1} & c_{x, 1} c_{y, 1} & c_{x, 1}^{2} & c_{y, 1}^{2} & & & & & \\
1 & c_{x, 2} & c_{y, 2} & c_{x, 2} c_{y, 2} & c_{x, 2}^{2} & c_{y, 2}^{2} & & & & & \\
& & & \vdots & & & & & 0 & & & \\
1 & c_{x, N} & c_{y, N} & c_{x, N} c_{y, N} & c_{x, N}^{2} & c_{y, N}^{2} & & & & & \\
& & & & & & 1 & c_{x, 1} & c_{y, 1} & c_{x, 1} c_{y, 1} & c_{x, 1}^{2} & c_{y, 1}^{2} \\
& & & & & & c_{x, 2} & c_{y, 2} & c_{x, 2} c_{y, 2} & c_{x, 2}^{2} & c_{y, 2}^{2} \\
& & & 0 & & & & & & \vdots \\
\\
& & & & & & 1 & c_{x, N} & c_{y, N} & c_{x, N} c_{y, N} & c_{x, N}^{2} & c_{y, N}^{2}
\end{array}\right)\left(\begin{array}{c}
\beta_{x}^{00} \\
\beta_{x}^{10} \\
\beta_{x}^{01} \\
\beta_{x}^{11} \\
\beta_{x}^{20} \\
\beta_{x}^{02} \\
\beta_{0}^{00} \\
\beta_{y}^{10} \\
\beta_{y}^{01} \\
\beta_{y}^{11} \\
\beta_{y}^{20} \\
\beta_{y}^{02}
\end{array}\right)=\left(\begin{array}{c}
c_{x, 1}^{\prime} \\
c_{x, 2}^{\prime} \\
\vdots \\
c_{x, N}^{\prime} \\
c_{y, 1}^{\prime} \\
c_{y, 2}^{\prime} \\
\vdots \\
c_{y, N}^{\prime}
\end{array}\right) \\
& A x=b
\end{aligned}
$$

A - matrix that depends on the (unprimed) correspondences and the transformation
x - unknown parameters of the transformation
b-the primed correspondences

Linear Algebra Background

$$
\begin{gathered}
A x=b \\
a_{11} x_{1}+\ldots+a_{1 N} x_{N}=b_{1}=b_{2} \\
a_{21} x_{1}+\ldots+a_{2 N} x_{N}= \\
\ldots \\
a_{M 1} x_{1}+\ldots+a_{M N} x_{N}=b_{M}
\end{gathered}
$$

Simple case: A is sqaure ($M=N$) and invertable (det[A] not zero)

$$
A^{-1} A x=I x=x=A^{-1} b
$$

Numerics: Don' t find A inverse. Use Gaussian elimination or some kind of decomposition of \mathbf{A}

Linear Systems - Other Cases

- $\mathrm{M}<\mathrm{N}$ or $\mathrm{M}=\mathrm{N}$ and the equations are degenerate or singular
- System is underconstrained - lots of solutions
- Approach
- Impose some extra criterion on the solution
- Find the one solution that optimizes that criterion
- Regularizing the problem

Linear Systems - Other Cases

- $M>N$
- System is overconstrained
- No solution
- Approach
- Find solution that is best compromise
- Minimize squared error (least squares)

$$
x=\arg \min _{\mathrm{x}}|\mathrm{Ax}-\mathrm{b}|^{2}
$$

Solving Least Squares Systems

- Psuedoinverse (normal equations)

$$
\begin{gathered}
A^{T} A x=A^{T} b \\
x=\left(A^{T} A\right)^{-1} A^{T} b
\end{gathered}
$$

- Issue: often not well conditioned (nearly singular)
- Alternative: singular value decomposition

Singular Value Decomposition

$$
\begin{gathered}
A \\
\left(\begin{array}{c}
\\
\\
\end{array}\right)=U W V^{T}=\left(\begin{array}{cccc}
w_{1} & & & 0 \\
& w_{2} & & \\
& & \cdots & \\
0 & & \cdots & w_{N}
\end{array}\right)\left(\begin{array}{l}
\\
\\
V^{T}
\end{array}\right) \\
I=U^{T} U=U U^{T}=V^{T} V=V V^{T}
\end{gathered}
$$

Invert matrix A with SVD

$$
A^{-1}=V W^{-1} U^{T} \quad W^{-1}=\left(\begin{array}{cccc}
\frac{1}{w_{1}} & & & 0 \\
& \frac{1}{w_{2}} & & \\
& & \cdots & \\
0 & & & \frac{1}{w_{N}}
\end{array}\right)
$$

SVD for Singular Systems

- If a system is singular, some of the w's will be zero

$$
\begin{gathered}
x=V W^{*} U^{T} b \\
w_{j}^{*}=\left\{\begin{array}{cl}
1 / w_{j} & \left|w_{j}\right|>\epsilon \\
0 & \text { otherwise }
\end{array}\right.
\end{gathered}
$$

- Properties:
- Underconstrained: solution with shortest overall length
- Overconstrained: least squares solution

Warping Application: Lens Distortion

- Radial transformation - lenses are generally circularly symmetric
- Optical center is known

$$
\begin{aligned}
\bar{x}^{\prime}= & \bar{x}\left(1+k_{1} r^{2}+\right. \\
& \left.k_{2} r^{4}+k_{3} r^{6}+\ldots\right)
\end{aligned}
$$

32

Correspondences

- Take picture of known grid - crossings

33

Image Mosaicing

- Piecing together images to create a larger mosaic
- Doing it the old fashioned way
- Paper pictures and tape
- Things don' t line up
- Translation is not enough
- Need some kind of warp
- Constraints
- Warping/matching two regions of two different images only works when...

34

Special Cases

- Nothing new in the scene is uncovered in one view vs another
- No ray from the camera gets behind another

2) Arbitrary views of planar surfaces

35

3D Perspective and Projection

- Camera model

Perspective Projection Properties

- Lines to lines (linear)

- Conic sections to conic sections
- Convex shapes to convex shapes

- Foreshortening

37

Image Homologies

- Images taken under cases 1,2 are perspectively equivalent to within a linear transformation
- Projective relationships - equivalence is

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \equiv\left(\begin{array}{l}
d \\
e \\
f
\end{array}\right) \Longleftrightarrow\left(\begin{array}{c}
a / c \\
b / c \\
1
\end{array}\right)=\left(\begin{array}{c}
d / f \\
e / f \\
1
\end{array}\right)
$$

Transforming Images To Make Mosaics

Linear transformation with matrix P

$$
\bar{x}^{*}=P \bar{x} \quad P=\left(\begin{array}{ccc}
p_{11} & p_{12} & p_{13} \\
p_{21} & p_{22} & p_{23} \\
p_{31} & p_{32} & 1
\end{array}\right) \quad \begin{aligned}
& x^{*}=p_{11} x+p_{12} y+p_{13} \\
& y^{*}=p_{21} x+p_{22} y+p_{23} \\
& z^{*}=p_{31} x+p_{32} y+1
\end{aligned}
$$

Perspective equivalence

$$
\begin{aligned}
x^{\prime} & =\frac{p_{11} x+p_{12} y+p_{13}}{p_{31} x+p_{32} y+1} \\
y^{\prime} & =\frac{p_{21} x+p_{22} y+p_{23}}{p_{31} x+p_{32} y+1}
\end{aligned}
$$

Multiply by denominator and reorganize terms

$$
\begin{aligned}
& p_{31} x x^{\prime}+p_{32} y x^{\prime}-p_{11} x-p_{12} y-p_{13}=-x^{\prime} \\
& p_{31} x y^{\prime}+p_{32} y y^{\prime}-p_{21} x-p_{22} y-p_{23}=-y^{\prime}
\end{aligned}
$$

Linear system, solve for p

$$
\left(\begin{array}{cccccccc}
-x_{1} & -y_{1} & -1 & 0 & 0 & 0 & x_{1} x_{1}^{\prime} & y_{1} x_{1}^{\prime} \\
-x_{2} & -y_{2} & -1 & 0 & 0 & 0 & x_{2} x_{2}^{\prime} & y_{2} x_{2}^{\prime} \\
& & & \vdots & & & & \\
-x_{N} & -y_{N} & -1 & 0 & 0 & 0 & x_{N} x_{N}^{\prime} & y_{N} x_{2}^{\prime} \\
0 & 0 & 0 & -x_{1} & -y_{1} & -1 & x_{1} y_{1}^{\prime} & y_{1} y_{1}^{\prime} \\
0 & 0 & 0 & -x_{2} & -y_{2} & -1 & x_{2} y_{2}^{\prime} & y_{2} y_{2}^{\prime} \\
& & & \vdots & & & & \\
0 & 0 & 0 & -x_{N} & -y_{N} & -1 & x_{N} y_{N}^{\prime} & y_{N} y_{N}^{\prime}
\end{array}\right)\left(\begin{array}{c}
p_{11} \\
p_{12} \\
p_{13} \\
p_{21} \\
p_{23} \\
p_{23} \\
p_{31} \\
p_{32}
\end{array}\right)=\left(\begin{array}{c}
-x_{1}^{\prime} \\
-x_{2}^{\prime} \\
\vdots \\
-x_{N}^{\prime} \\
-y_{1}^{\prime} \\
-y_{2}^{\prime} \\
\vdots \\
-y_{N}^{\prime}
\end{array}\right)
$$

Image Mosaicing

4 Correspondences

5 Correspondences

42

6 Correspondences

Mosaicing Issues

- Need a canvas (adjust coordinates/origin)
- Blending at edges of images (avoid sharp transitions)
- Adjusting brightnesses
- Cascading transformations

Specifying Warps - Another Strategy

- Let the \# DOFs in the warp equal the \# of control points (x1/2)
- Interpolate with some grid-based interpolation
- E.g. binlinear, splines

45

Landmarks Not On Grid

- Landmark positions driven by application
- Interpolate transformation at unorganized correspondences
- Scattered data interpolation
- How do we do scattered data interpolation?
- Idea: use kernels!
- Radial basis functions
- Radially symmetric functions of distance to landmark

RBFs - Formulation

- Represent f as weighted sum of basis functions

$$
f(\bar{x})=\underbrace{\sum_{i=1}^{N} k_{i} \phi_{i}(\bar{x})}_{\text {Sum of radial basis functions }} \phi_{i}(\bar{x})=\underbrace{\phi\left(\| \bar{x}_{\substack{ \\
x^{\prime}}}^{\left.\phi \bar{x}_{i} \|\right)}\right.}_{\begin{array}{c}
\text { Basis functions centered } \\
\text { at positions of data }
\end{array}}
$$

- Needinterp $T^{x}(\bar{x})=\sum_{i=1}^{N} k_{i}^{x} \phi_{i}(\bar{x})$ วd function, T":

$$
T^{y}(\bar{x})=\sum_{i=1}^{N} k_{i}^{y} \phi_{i}(\bar{x})
$$

Solve For k' s With Landmarks as Constraints

$$
\left(\begin{array}{cc}
B & 0 \\
0 & B
\end{array}\right)\left(\begin{array}{c}
k_{1}^{x} \\
k_{2}^{x} \\
\vdots \\
k_{N}^{x} \\
k_{1}^{y} \\
k_{2}^{y} \\
\vdots \\
k_{N}^{y}
\end{array}\right)=\left(\begin{array}{c}
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{N} \\
y_{1}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
y_{N}^{\prime}
\end{array}\right) \quad B=\left(\begin{array}{cccc}
\phi_{1}\left(\bar{x}_{1}\right) & \phi_{2}\left(\bar{x}_{1}\right) & \ldots & \phi_{N}\left(\bar{x}_{1}\right) \\
\phi_{1}\left(\bar{x}_{2}\right) & \phi_{2}\left(\bar{x}_{2}\right) & \cdots & \phi_{N}\left(\bar{x}_{2}\right) \\
\vdots & & \\
\phi_{1}\left(\bar{x}_{N}\right) & \phi_{2}\left(\bar{x}_{N}\right) & \cdots & \phi_{N}\left(\bar{x}_{N}\right)
\end{array}\right)
$$

Issue: RBFs Do Not Easily Model Linear Trends

49

RBFs - Formulation w/Linear Term

- Represent f as weighted sum of basis functions

$$
f(\bar{x})=\underbrace{\sum_{i=1}^{N} k_{i} \phi_{i}(\bar{x})}_{\text {Linear part of transformation }}+\underbrace{p_{2} y+p_{1} x+p_{o}}_{\text {_ron }}
$$

$$
\phi_{i}(\bar{x})=\underbrace{\phi\left(\left\|\bar{x}-\bar{x}_{i}\right\|\right)}_{\substack{\text { Basis functions centered } \\ \text { at positions of data }}}
$$

- Nee ${ }^{T^{x}(\bar{x})}=\sum_{i=1}^{N} k_{i}^{x} \phi_{i}(\bar{x})+p_{2}^{x} y_{+} p_{1}^{x} x+p_{o}^{x}$;tion, T :

$$
T^{y}(\bar{x})=\sum_{i=1}^{N} k_{i}^{y} \phi_{i}(\bar{x})+p_{2}^{y} y_{+} p_{1}^{y} x+p_{o}^{y}
$$

50

RBFs - Solution Strategy

- Find the k ' s and p ' s so that $f()$ fits at data points
- The k ' s can have no linear trend (force it into the p ' s)
- Constraints -> linear system

$$
\left.\begin{array}{rl}
T^{x}\left(\bar{x}_{i}\right)=x_{i}^{\prime} & T^{y}\left(\bar{x}_{i}\right)=y_{i}^{\prime} \\
\sum_{i=1}^{N} k_{i}^{x}=0 & \sum_{i=1}^{N} k_{i}^{y}=0 \\
\sum_{i=1}^{N} k_{i}^{x} \bar{x}_{i}=\overline{0} & \sum_{i=1}^{N} k_{i}^{y} \bar{x}_{i}=\overline{0}
\end{array}\right\} \begin{aligned}
& \text { corresponden } \\
& \begin{array}{l}
\text { ces must } \\
\text { match }
\end{array} \\
& \begin{array}{l}
\text { Keeplinear } \\
\text { part separate } \\
\text { from } \\
\text { deformation }
\end{array}
\end{aligned}
$$

RBFs - Linear System

$$
\left(\begin{array}{ll}
B & 0 \\
0 & B
\end{array}\right)\left(\begin{array}{c}
k_{1}^{x} \\
k_{2}^{x} \\
\vdots \\
k_{N}^{x} \\
p_{2}^{x} \\
p_{1}^{x} \\
p_{0}^{x} \\
k_{1}^{y} \\
k_{2}^{y} \\
\vdots \\
k_{N}^{y} \\
p_{2}^{y} \\
p_{1}^{y} \\
p_{0}^{y}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
x_{1}^{\prime} \\
x_{2}^{\prime} \\
\vdots \\
x_{N}^{\prime} \\
0 \\
0 \\
0 \\
y_{1}^{\prime} \\
y_{2}^{\prime} \\
\vdots \\
y_{N}^{\prime}
\end{array}\right) \quad B=\left(\begin{array}{ccccccc}
x_{1} & x_{2} & \ldots & x_{N} & 0 & 0 & 0 \\
y_{1} & y_{2} & \cdots & y_{N} & 0 & 0 & 0 \\
1 & 1 & \cdots & 1 & 0 & 0 & 0 \\
\phi_{11} & \phi_{12} & \cdots & \phi_{1 N} & y_{1} & x_{1} & 1 \\
\phi_{21} & \phi_{22} & \cdots & \phi_{2 N} & y_{2} & x_{2} & 1 \\
\vdots & & & & & & \\
\phi_{N 1} & \phi_{N 2} & \cdots & \phi_{N N} & y_{N} & x_{N} & 1
\end{array}\right)
$$

RBF Warp - Example

What Kernel Should We Use

- Gaussian
- Variance is free parameter - controls smoothness of warp

$\sigma=2.5$

$\sigma=2.0$

$\sigma=1.5$

RBFs - Aligning Faces

Mona Lisa - Target

Venus - Source

Venus - Warped

RBFs - Special Case: Thin Plate Splines

- A special class of kernels

$$
\phi_{i}(x)=\left\|x-x_{i}\right\|^{2} \lg \left(\left\|x-x_{i}\right\|\right)
$$

- Minimizes the distortion function (bending energy)

$$
\int\left[\left(\frac{\partial^{2} f}{\partial x^{2}}\right)^{2}+2\left(\frac{\partial^{2} f}{\partial x \partial y}\right)^{2}+\left(\frac{\partial^{2} f}{\partial y^{2}}\right)^{2}\right] d x d y .
$$

- No scale parameter. Gives smoothest results
- Bookstein, 1989

Application: Image Morphing

- Combine shape and intensity with time parameter t
- Just blending with amounts t produces "fade"

$$
I(t)=(1-t) I_{1}+t I_{2}
$$

- Use control points with interpolation in t
 define T2

Image Morphing

- Create from blend of two warped images

$$
I_{t}(\bar{x})=(1-t) I_{1}\left(T_{1}(\bar{x})\right)+t I_{2}\left(T_{2}(\bar{x})\right)
$$

58

Image Morphing

59

Application: Image Templates/ Atlases

- Build image templates that capture statistics of class of images
- Accounts for shape and intensity
- Mean and variability
- Purpose
- Establish common coordinate system (for comparisons)
- Understand how a particular case compares to the general population

Templates - Formulation

- N landmarks over M different subjects/samples

Correspondences

$$
\begin{aligned}
& \text { Images } \\
& I^{j}(\bar{x}) \\
& \bar{c}_{i}^{j} \quad\left(\begin{array}{ccc}
\bar{c}_{1}^{1} & \ldots & \bar{c}_{N}^{1} \\
\vdots & & \vdots \\
\bar{c}_{1}^{M} & \ldots & \bar{c}_{N}^{M}
\end{array}\right) \\
& \text { Mean of correspondences } \\
& \text { (template) } \\
& \hat{c}_{i}=\frac{1}{M} \sum_{j=1}^{M} \bar{c}_{i}^{j} \\
& \text { Transformations from mean to subjects } \\
& \bar{c}_{i}^{j}=T^{j}\left(\hat{c}_{i}\right) \\
& \hat{I}(\bar{x})=\frac{1}{M} \sum_{j} I^{j}\left(T^{j}(\bar{x})\right)
\end{aligned}
$$

Cars

62

Car Landmarks and Warp

Car Landmarks and Warp

Car Mean

Cars

Cats

67

Brains

68

Brain Template

