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Geometric Transformations

» Greyscale transformations -> operate on range/
output

» (Geometric transformations -> operate on image

domain

— Coordinate transformations
— Moving image content from one place to another

* Two parts:
— Define transformation
— Resample greyscale image in new coordinates



Geom Trans: Distortion From Optics

Barrel Distortion Pincushion Distortion




Geom Trans: Distortion From Optics




Geom. Trans.: Brain Template/Atlas
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Geom. Trans.: Mosaicing




Domain Mappings Formulation

f — (g New image from old one
/
Z = T(z,y) = T (z,y) Coordinate transformation
Yy’ ’ T (g;, y) Two parts - vector valued

_ !
g(.’L‘, y) - f(x J ) - g is the same image as f, but
g(z,y) = f(2',y) = f(z,y)  sampledonihesenew

coordinates



Domain Mappings Formulation

—/ T ( —) Vector notation is convenient.
L Bar used some times, depends
on context.

9(z) = f(z) = f(z') = f(T(2))

3 1y T may or may not have an
r="1T (:I: ) inverse. If not, it means that
information was lost.



Domain Mappings
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No Inverse?
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Implementation — Two Approaches

* Pixel filling — backward mapping
— T() takes you from coords in g() to coords in ()
— Need random access to pixels in f()
— Sample grid for g(), interpolate f() as needed
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Interpolation: Bilinear

* Successive application of linear interpolation
along each axis

 Q,, A, . Q,,
.VZ“""':*""""“"'.:"“'""“"""“".:"“' To — 1 €T — :]‘,1
i b f(Ry) = — F(Q11) A f(Q21)
: : o — I o — I
Ypoo *
Ty — X T — I
5 : f(Ry) =~ f(Q12) f(Q22)
? | T2 — I1 Ty — T
Ya — Y Yy—1
; z P) =~ Ry) R,).
e o (P~ B p(R) ¢ EE Ry
):(1 X Xz
Source: Wikipedia

12



Bilinear Interpolation

* Notlinearinx,y

. f(Qu) oo — 2 (g —
flz,y) =~ (7 — 21) (42 — yl)( 2 —2)(y2— )
f(Qa) v ) (e —
i (22 — x1) (32 — yl)( ) =)
f(Qi2) o — 2)(y —
R yl)( =)
[(Qn) (z —21)(y—w1).

(T2 — 1) (y2 — ¥1)

by + bax + byy + byzy

=( 0)
— f(1,0) — f(0,0)
f(0,1) — £(0,0)
b4 f(0.0) f(1,0)
— f(0, 1)+ f(1,1).
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Binlinear Interpolation

* Convenient form
— Normalize to unit grid [0,1]x[0,1]

f(z,y) = £(0,0) (1 —2)(1-y) + f(1,0) (1 —y) + f(0,1) (1 —2)y + f(1,1)xy.

0,0) f(0,1)|1—
flz,y) = [l -z 2] [;ELO) ;El,l)” y"
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Implementation — Two Approaches

» Splatting — backward mapping

— T-1() takes you from coords in f() to coords in g()
— You have f() on grid, but you need g() on grid

— Push grid samples onto g() grid and do interpolation from
unorganized data (kernel)
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Scattered Data Interpolation With Kernels
Shepard’ s method

* Define kernel
— Falls off with distance, radially symmetric

K(Z1,Z2) = K(|Z1 — Z2) K(%1,72) = 2730_26—"”12;22
1
@)= = fj (7) Henn) T G wp
g\xr) = N wzf ZT;
Zj:l Wj ;=1
g

w; = K (|z —T~(z}))

o

el
5
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Shepard’ s Method Implementation

* |f points are dense enough
— Truncate kernel
Data and weights

— For each point in () accumulated here
 Form a small box around it in g() — beyond which truncate

* Put weights and data onto grid in g()
— Divide total data by total weights: B/A .




Transformation Examples

o Linear Z' =Az+ I, A:("’ b)
c d

' =azx+ by + g
y' = cx + dy + Yo

* Homogeneous coordinates

() ~(313)

S0 8
O Qo
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Special Cases of Linear
Translation) A= 3 3 'ZS .
ROtatlon cosO —sin @ 0
Rigid = rotation” 8139 R
translation

Scaling A= P.q<1:expand

— Include forward and
backward rotation
for arbitary axis
Skew -

Reflection

OO"G
o O
e )
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Linear Transformations

Also called “affine”
— 0 parameters

Rigid -> 3 parameters

Invertability
— Invert matrix T 'z)=A""z

What does it mean if A is not invertible?
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Other Transformations

* All polynomials of (x,y)
* Any vector valued function with 2 inputs

* How to construct transformations
— Define form or class of a transformation

— Choose parameters within that class
* Rigid - 3 parameters
* Affine - 6 parameters
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Correspondences

o Also called “landmarks” or “fiducials”
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Transformations/Control Points
Strategy

Define a functional representation for T with k
parameters (B) T(B, ifg — (81, 5s..
Define (pick) N correspondences
Find B so that

¢, =T(8,¢) i=1,...,N

If overconstrained (K < 2N) then solve

N
arg mﬂin {Z (¢ — T(ﬂﬁi)ﬂ

i=1

.+, BK)
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Example: Quadratic

Transformation

Te = B2 + B+ By + By ey + By w” + By
=By + By T+ By y + By ey + B, + By

Denote ¢; = (c4,¢y4)

Correspondences must match
1 1 11
C;,i :ﬂOO ﬂ Oca:z +ﬁ0 Cy,i +ﬂ Cx zcyz+ﬂ20 22012/,

't _ 00 10 01 11 20 2 02 .2
Ca:,i_/Ba: +/Ba: cw,i_l—ﬁa: Cyz /B c.’L"Lcy’L+ xz+ x cy,i

Note: these equations are linear in the unkowns
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Write As Linear System

2

/ 1 cmvl Cyal cmﬁlcyvl cCE,l cg,l \
2

cm72 cy,2 c$,2cy,2 CCC,2 c’y,2

2 2
1 c:L‘,N cyvN Cx,NCy,N c.’L‘,N cy,N 9
1 Cz,l c’!/,l cIalcy7l cg,l cg 1
1 Cz2 Cy2 Cz,2Cy 2 Cz2 Cy2

2
]' C:E,N Cy’N CwaNCyaN c.’I),N ¢

Az =0b
A - matrix that depends on the (unprimed)
correspondences and the transformation

X - unknown parameters of the
transformation

b - the primed correspondences




Linear Algebra Background

Az =0b
a1121+ ... +ainzy = by
a2121+ ...+ aenzNy = b
apy1x1+ ... tayunrny = by

Simple case: A is sqaure (M=N) and invertable (detLA] not zero)

A 1Az =TIz =2=A"1b

Numerics: Don’ t find A inverse. Use Gaussian elimination or
some kind of decomposition of A
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Linear Systems — Other Cases

* M<N or M =N and the equations are degenerate

or singular
— System is underconstrained — lots of solutions

* Approach
— |Impose some extra criterion on the solution

— Find the one solution that optimizes that criterion
— Regularizing the problem
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Linear Systems — Other Cases

« M>N

— System is overconstrained
— No solution

* Approach
— Find solution that is best compromise
— Minimize squared error (least squares)

z = argmin |Ax — b|*
X
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Solving Least Squares Systems

* Psuedoinverse (normal equations)
AT Az = AT
T = (ATA)_lATb
— Issue: often not well conditioned (nearly singular)

» Alternative: singular value decomposition
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Singular Value Decomposition

=UWVT =

ATt =vwlUT Wl = (

V("

)\ o

Invert matrix A with SVD

2

w1

0

o

o

w2

()

I=U'U=0U0"=V'V=VV"!
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SVD for Singular Systems

+ If a system is singular, some of the w’ s will be
Zero
r=VW*U"b

*_{ 1/w; |wji| > €

w; 0  otherwise

* Properties:

— Underconstrained: solution with shortest overall length
— Overconstrained: least squares solution
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Warping Application: Lens Distortion

» Radial transformation — lenses are generally

XL

circularly symmetric
— Optical center is known

"=Z (1 + ki +
k‘z’l‘4+k37°6-|-...)
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Correspondences

» Take picture of known grid — crossings

-+
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Image Mosaicing

Piecing together images to create a larger
mosaic

Doing it the old fashioned way
— Paper pictures and tape

— Things don’ t line up

— Translation is not enough

Need some kind of warp

Constraints

— Warping/matching two regions of two different images only
works when...
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Special Cases

* Nothing new in the scene is uncovered in one

view vs another
— No ray from the camera gets behind another

1) Pure rotations-arbitrary scene 2) Arbitrary views of planar surfaces
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3D Perspective and Projection

« Camera model

( i ) ::rg:g;inates
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Perspective Projection Properties

Lines to lines (linear) T

Conic sections to conic sections

Convex shapes to convex shapes O \
Foreshortening Q Q
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Image Homologies

* Images taken under cases 1,2 are perspectively

equivalent to within a linear transformation
— Projective relationships — equivalence is

()= = () ()

~ 0O &
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Transforming Images To Make Mosaics

Linear transformation with matrix P

P11 P12 P13 " = p11% +p12y + P13
z* = Px P = P21 P22 P23 y* = p21T + pa2y + po3
p31 p32 1 2 = pax+psy+1
Perspective equivalence Multiply by denominator and reorganize terms
o = p11w+p12y+pis p312x’ + p3oyr’ — p11T — p1oy —p13 = —x'
paretpa2yt p312Y’ + p3yy’ — po1T — paoy —p23z = —Y
! _  P21T+P22Y+pa3
vy = p31Z+p32y+1

Linear system, solve for P

[ —z1 —y1 —1 0 0 0 zz) yz) ) —z
—r5 —yp —1 0 0 0  zoxy, Yoy (pn\ ( —:v’; \

P12
p13 .
—xy —yn —1 0 0 0 zyzly ynzh pa1 | | -y
0 0 0 -z -y -1 =y, wny; pa3 | | —ui
0 0 0 —zo —yo —1 5 You5 P23 —Y5
. Pp31

L0 0 0 —av —uw —1 zvuh wvuk ) NP 2 ) \ —o /
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Image Mosaicing

40



4 Correspondences
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5 Correspondences




6 Correspondences
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Mosaicing Issues

Need a canvas (adjust coordinates/origin)

Blending at edges of images (avoid sharp
transitions)

Adjusting brightnesses
Cascading transformations



Specifying Warps — Another Strategy

Let the # DOFs in the warp equal the # of control
points (x1/2)

— Interpolate with some grid-based interpolation

[N <7
\ /
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Landmarks Not On Grid

Landmark positions driven by application

Interpolate transformation at unorganized

correspondences
— Scattered data interpolation

How do we do scattered data interpolation?
— |dea: use kernels!

Radial basis functions
— Radially symmetric functions of distance to landmark
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RBFs — Formulation

 Represent f as weighted sum of basis functions

\ J

~
A g Basis functions centered
Sum of radial basis functions at positions of data

« Need interp?"@ = Xl k6@ function, T:
TY(Z) = Yo kie:()
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Solve For k’ s With Landmarks as

Constraints
ka: xl
(Y (3
: 61(Z1)  ¢2(Z1) ... oOn(Z1)
(B 0 ) kJ“\’/. B fo B( ¢1('532) $2(Z2) ... oOnN(T2)
0 o Zg Zy/i br(an) da(en) on(ZN)
\ kY ) \ Un
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Issue: RBFs Do Not Easily Model
Linear Trends

f(x)
f2 /

f1 /
X Xy Xy X3
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RBFs — Formulation w/Linear Term

. Represent f as weighted sum of basis functions

Zkﬁb% ) + P2y + P12+ po ¢:(z) = ¢ (||z — zil|)

~ J \ J

w Yy Y Y
Y Linear part of transformation Basis functions centered
Sum of radial basis functions at positions of data
T°(z) = Yo, kf¢u(@) + z +
— i=1 g Pi P3Y+DpT Py

¢ Nee tion, T:
TY(z) S kY i(7) + pYyp¥a + pY
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RBFs — Solution Strategy

* Findthek sand p’ s so that f() fits at data points

— The k’ s can have no linear trend (force it into the p” s)

* Constraints -> linear system

_ _ Corresponden
T (SL’,L) — .CU,/L TY (CBZ) = y;: " cesmust
J match
N N .
1=1 i=1 \ Keep linear
part separate
N — N _ from
E k¥z; =0 E k z; =0 ) deformation
i
1=1 1=1
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RBFs — Linear System

k®
( o

kX
p3
pY
Py
ki
ks

ky

Py

pY

\ 7 /

)
Y2

P12
P22

éN2 .-

ONN YN TN 1)

0 0 O
0 0 O \
0 0 O
y xq 1
y2 z2 1
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RBF Warp — Example
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What Kernel Should We Use

* (Gaussian
— Variance is free parameter — controls smoothness of warp

From: Arad et al. 1994



RBFs — Aligning Faces

Mona Lisa - Target

Venus - Source Venus - Warped
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RBFs — Special Case: Thin Plate
Splines

* A special class of kernels
¢i(z) = [|z — =4 |*1g (|l — z:|)

* Minimizes the distortion function (bending
energy)

92f\° 92f\° [02f\°
[(G) +2(2) + (58) | o

— No scale parameter. Gives smoothest results
— Bookstein, 1989
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Application: Image Morphing

» Combine shape and intensity with time

parameter t
— Just blending with amounts t produces “fade”

I(t) = (1—t)I; + tl
— Use control points with interpolation in t

— Use c1, c(t) Ieﬁ |(ut||)|aia(u])- u;u.t.z-clll ,t. .ﬁcgz,c(t) landmarks to

define T2
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Image Morphing

» Create from blend of two warped images
Ii(z) = (1 —t)I; (T1(Z)) + t12 (T2(T))

-

l;

—\./

1,

.
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Image Morphing
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Application: Image Templates/
Atlases

» Build image templates that capture statistics of

class of images
— Accounts for shape and intensity
— Mean and variability

* Purpose

— Establish common coordinate system (for comparisons)

— Understand how a particular case compares to the general
population
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Templates — Formulation

* N landmarks over M different subjects/samples

Correspondences
=1 =1
Images Py ci ... Cpn
I’ (z) & : :
! 5
1 &
Mean of correspondences =77 > d
(template) j=1
Transformations from mean to subjects Templated image
. , R 1 S
= — I A, ) — I(TI (7
=T7(&) i@ =~ Ejjf (T7(z)
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Cars




Car Landmarks and Warp

... ._

_..5.1._:L.r___,

=4 JHIF-TITJ vl JJJIJH

CE
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e e A AN
] - H
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Car Landmarks and Warp
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Car Mean
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Cats




Brains
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Brain Template
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