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Fourier Filtering

* Low-pass filtering

* High-pass filtering

* Band-pass filtering

* Sampling and aliasing

* Tomography

* Optimal filtering and mateh filters
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Fourier Spectrum
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Image Fourier spectrum
Origin in corners
' |
Retiled with origi Log of spectrum
In center
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Fourier Spectrum-Rotation
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Phase vs Spectrum
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Image Reconstruction from Reconstruction from
phase map spectrum
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Low-Pass Filter

* Reduce/eliminate high frequencies

* Applications

- Noise reduction

* uncorrelated noise is broad band
* Images have sprectrum that focus on low

aaaaaaadd

VIV UVl viall, vovv=TV bV' '



Ideal LP Filter - Box, Rect
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Extending Filters to 20 (or
higher)

* Two options
- Separable - -
- Rotate n
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Ideal LP Filter - Box, Rect
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ldeal Low-Pass
Rectangle With Cutoff of 2/3

Image Filtered Filtered + HE
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[deal LP - 1/3
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ldeal LP - 2/3

Univ of Utah, C36640 2011 13



Butterworth Filter

Lowpass filters. Dy is the cutoff frequency and »n is the order of the Butterworth filter.

Ideal Butterworth Gaussian
_ 1 if D(u,v) = Dy _ 1 _ ,—D*uw)/2D}
H(u,v) {0 it D(w, v) > D, A ) = D, v)/ Dy Hu,v) =e
Control of cutoff and slope
Can control ringing
H(ll, v) H(ll, 1))
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Butterworth- 1/3
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Butterworth vs ldeal LP
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Butterworth - 2/3
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Gaussian LP Filtering

ILPF

BLPF

GLPF
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High Pass Filtering

*HP=1-LP
- All the same filters as HP apply
* Applications
- Visualization of high-freq data (accentuate)

* High boost filtering
~HB=(1-a)*+a(1 -LP)=1 -a*lP
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-Pass Filters
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FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.
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igh-Pass Filters in Spatia
Domain

abc

FIGURE 4.53 Spatial representation of tvpical (a) ideal. (b) Butterworth. and (c) Gaussian frequency domain
highpass filters. and corresponding intensity profiles through their centers.
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High-Pass Filtering with [HPF

abc

FIGURE 4.54 Results of highpass filtering the image in Fig. 441(a) using an IHPF with D;, = 30 &0, and 160,
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BHPF

abc

FIGURE 4.55 Results of highpass filtering the image mm Fig. 4. 41iat using a BHPF of order 2 with D, = 30060
and 160 corresponding to the crcles in Fig. 4.41ib 1 These results are much smoother than those obtained

with an IHPF.
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GHPE

FIGURE 4.56 Results of highpass filtering the image in Fig. 4 41¢a) using a GHPF with 2, = 300600 and 1610
corresponding 1o the circles m Fig. 4 41 by Compare with Figs. 4534 and 4.55.
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HP, HE, HE

Univ of Utah, 36640 2011

25



High Boost with GLPF
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Band-Pass Filters

* Shift LP filter in Fourier domain by
convolution with delta

0(s —sg) +0(s+ s
p (s —s0) +d(s+ so)

Typically 2-3 parameters Bp
-Width
~Slope
-Band value
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Band Pass - Two Dimensions

/

* Two strategies

- Rotate
* Radially symmetric

- Translate in 20
* Oriented filters

* Note:

- Convolution with delta-pair in FD is
multiplication with cosine in spatial domain
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Band Bass Filtering
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Radial Band Pass/Reject

Ideal

Butterworth

Gaussian

H(u,v) {

w w
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1 otherwise
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Band Reject Filtering
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Band Reject Filtering

33
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Band Reject Filtering

Univ of Utah, 36640 2011

34



Discrete Sampling and Aliasing

* Digital signals and images are discrete
representations of the real world
- Which is continuous

* What happens to signals/images when we
sample them?
- Can we quantify the effects?

- Can we understand the artifacts and can we limit
them?

- Can we reconstruct the original image from the
discrete data?

Univ of Utah, C36640 2011
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A Mathematical Model of Discrete

Samples

Delta functional

8(x — xo)

R | L
0 xO

Shah functional s:®
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A Mathematical Model of Discrete
Samples

Goal
- To be able to do a continuous Fourier
transform on a signal before and after
0
sar(?)

sampling
Discrete signal

ko s

o =2AT—ATO0 AT2AT -
f(O)sar(t)

Samples from continuous function

fi = F(KAT) AT
k (et

©=2AT—-ATO0 AT2AT "

Representation as a function of 1 i = FAT)
* Multiplication of f(f) with Shah ..
f(t) - (t)SAT t) Z fké(t B kAT) T T .I | | | | | | | | |
k=—o00 o 0 1 2z - k
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Fourier Series of A Shah

Functional
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Fourier Transform of A Discrete
Sampling

F(t) = f®)s(t) +—— F(u) = F(u) * S(u)

U -3AT —2AT —AT 0 AT AT 3AT --- ' 3 2
AT

AT AT

Univ of Utah, C36640 2011 39



Fourier Transform of A Discrete
Sampling

~

Frequencies get _
mixed. The Fu) = F(u) x5(u)

original signal is

/ AN u
3 2 1 1 2 3
AT AT AT AT AT AT
Energy from higher
freqs gets folded back

down into lower freqs -
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What if F(u) is Narrower in the Fourier

o Domain?
* No aliasing!

* How could we recover the original signal?

Univ of Utah, 36640 2011
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What Comes Out of This Model

+ Sampling criterion for complete recovery

* An understanding of the effects of
sampling
- Aliasing and how to avoid it

* Reconstruction of signals from discrete
samples
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Shannon Sampling Theorem

* Assuming a signal that is band limited:

f)=——F(@)  |F(u)|=0YV |u>B
* Given set of samples from that signal
fr = F(kAT) AT < =

* Samples can be used to generate the
original signal
- Samples and continuous signal are equivalent

Univ of Utah, 36640 2011 43



Sampling Theorem

* Quantifies the amount of information in a
signal
- Discrete signal contains limited frequencies

- Band-limited signals contain no more
information then their discrete equivalents

* Reconstruction by cutting away the
repeated signals in the Fourier domain

- Convolution with sinc function in space/time

Univ of Utah, C36640 2011 44



Reconstruction

* Convolution with sinc function

f(t) = f(t)+F [rect (ATu)]

: t : t — kAT
— (zk: fro(t — kAT)) xsinc (ﬁ) = ka sinc ( AT )
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Sinc Interpolation Issues

* Must functions are not band limited

* Forcing functions to be band-limited can
cause artifacts (ringing)

I 0 1 1 1 1 1 1 1 1 1
30 40 50 60 0 005 0.1 015 02 025 03 035 04 045 05
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Sinc Interpolation lssues

14
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Ringing - Gibbs phenomenon
Other issues:
Sinc is infinite - must be truncated
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Aliasing

* High frequencies appear as low frequencies
when undersampled
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Aliasing
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Overcoming Aliasing

* Filter data prior to sampling

- ldeally - band limit the data (conv with sinc

function)

- In practice - limit effects with fuzzy/soft low

pass |

\ L

.

\
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Antialiasing in Graphics

* Screen resolution produces aliasing on

underlying geometry
S Multiple high-res
samples get averaged to
create one screen
sample

® ©

allased antialiased
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Antialiasing
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Interpolation as Convolution

* Any discrete set of samples can be

considered as a functional
F) = ) fud(t — kAT)

k

* Any linear interpolant can be considered

as a convolution
- Nearest neighbor - rect(1)
- Linear - 'l'l'i(f) t .(t):{ t+1 —1<t<0

1—t 0<t<t
0 otherwise

e

AN

Univ of Utah, 36640 2011
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Convolution-Based Interpolation

* (Can be studied in terms of Fourier Domain

* lssues
- Pass energy (=1) in band
- Low energy out of band
- Reduce hard cut off (Gibbs, ringing)
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Tomography
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Tomography Formulation

Attenuation I =Ijexp (— /,u(r,y_) ds)
Log gives line integral p(r,0) = In(I/Iy) = — / w(z,y) ds

Line with angle theta xcos@ + ysinf =r

Volume integral p(r,0) =

/ / f(x,y)o(xcosh + ysin O — r) drdy
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Fourier Slice Theorem

Prajection to 10 10 Slice

10FT
C ~ 20 FT
/z/Flpl — SlFQ\/

y # ky #
slice s(ky) s

projection p(x)

Fourier

-
Transform
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Optimal Filtering

* Systems model
y(t) = h(t) = z(t) + v(t)

* Ergodic signals
- Drawn from a ensemble
- Average over ensemble is constant
- Average over time is ensemble average

- => Expected value of power spectrum

describes ensemble
Univ of Utah, CS6640 2011
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Optimal/Weiner Filter

* Power spectrum of signal, noise are known
* H(u) is known

* Filter that minimizes the expected
squared error of reconstruction is:

H*(u)S(u)

) = TH @ ES (W) + N (w)
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Optimal/Weiner Filter

1 |H (u)]?
A= @) (e + 2
1 H@)
Glu) H(u) H (u)|? s]\ulg(u)
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Image Registration

Find dx and dy that best matches two images

Cross correlation can give the best translation
between two images

Algorithms
- 8D -> FD (mult) -> SD - look for peak
- 8D -> FD -> find the best fit for a phase shift

lssues

- Boundaries, overlap, intensity variations, high
intensity edges

Univ of Utah, C36640 2011
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Normalized Cross Correlation

* Subtract the mean of the image and divide
by the S.D.
- This maps the image to the unit sphere

- A single integral is the dot product of these to
vectors

* angles between the two normalized images
- Helps alleviate intensity differences
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Phase Correlation

def X " .
9(,y) = ga((z — Az)mod M, (y — Ay)mod V)
Go = F{a}, Go = Fig} \ . —omi(vAz_ Ay
Gol(u,v) = Gulu,v)e ™5 +8)
pe G 6
a™p R(U-,U) — a t;
r= 11} Ganezﬁi(%g+ﬂ%a)
— cudT | vA
(Az, Ay) = argmax{r} |GG 5 75|
(,y) GGG*GQM(E%LF%%E)
T GGy
— eQﬂi(%‘%}i+%‘%¥)
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Phase Correlation

Image + noise Translated Image + noise Phase Correlation
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For Midterm - Pseudocode

* High level code to describe algorithm
* Make up reasonable key words
* Key idea - convey the algorithm

* Can adopt syntax from any major
programming language
- Be consistent

Univ of Utah, 36640 2011
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Psuedocode

Input: READ, OBTAIN, GET

Output: PRINT, DISPLAY, SHOW

Compute: COMPUTE, CALCULATE, DETERMINE
Initialize: SET, INIT

Add one: INCREMENT, BUMP

IF HoursWorked > NormalMax THEN
Display overtime message
ELSE

Display regular time message

ENDIF

WHILE employee.type NOT EQUAL manager AND personCount < numEmployees

INCREMENT personCount
CALL employeelList.getPerson with personCount RETURNING employee

ENDWHILE
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Psuedocode

SET Carry to 0
FOR each DigitPosition in Number from least significant to most significant

COMPUTE Total as sum of FirstNum[DigitPosition] and SecondNum[DigitPosition] and Carry

IF Total > 10 THEN
SET Carry to 1
SUBTRACT 10 from Total
ELSE

SET Carry to 0
END IF

STORE Total in Result[DigitPosition]

END LOOP

IF Carry = 1 THEN
RAISE Overflow exception
END IF
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