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Fourier Filtering 

•  Low-pass filtering 
•  High-pass filtering 
•  Band-pass filtering 
•  Sampling and aliasing 
•  Tomography 
•  Optimal filtering and match filters 
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Some Identities to Remember 
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Fourier Spectrum 

Fourier spectrum 
Origin in corners 

Retiled with origin 
In center 

Log of spectrum 

Image 
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Fourier Spectrum–Rotation 
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Phase vs Spectrum 

Image Reconstruction from 
phase map 

Reconstruction from 
spectrum 
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Low-Pass Filter 
•  Reduce/eliminate high frequencies 
•  Applications 

– Noise reduction 
•  uncorrelated noise is broad band 
•  Images have sprectrum that focus on low 

frequencies 
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Ideal LP Filter – Box, Rect 

Cutoff freq Ringing – Gibbs phenomenon 
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Extending Filters to 2D (or 
higher) 

•  Two options 
–  Separable 

•  H(s) -> H(u)H(v) 
•  Easy, analysis 

– Rotate 
•  H(s) -> H((u2 + v2)1/2) 
•  Rotationally invariant 



Univ of Utah, CS6640 2011 10 

Ideal LP Filter – Box, Rect 
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Ideal Low-Pass  
Rectangle With Cutoff of 2/3 

Image Filtered Filtered + HE 
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Ideal LP – 1/3 
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Ideal LP – 2/3 
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Butterworth Filter 

Control of cutoff and slope 
Can control ringing 
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Butterworth - 1/3 
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Butterworth vs Ideal LP 
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Butterworth – 2/3 
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Gaussian LP Filtering 
ILPF BLPF GLPF 

F1 

F2 
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High Pass Filtering 

•  HP = 1 - LP 
– All the same filters as HP apply 

•  Applications 
– Visualization of high-freq data (accentuate) 

•  High boost filtering 
– HB = (1- a) + a(1 - LP) = 1 - a*LP 
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High-Pass Filters 
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High-Pass Filters in Spatial 
Domain 
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High-Pass Filtering with IHPF 
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BHPF 
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GHPF 
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HP, HB, HE 
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High Boost with GLPF 
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High-Boost Filtering 
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Band-Pass Filters 

•  Shift LP filter in Fourier domain by 
convolution with delta 

LP 

BP Typically 2-3 parameters 
- Width 
- Slope 
- Band value 
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Band Pass - Two Dimensions 

•  Two strategies 
– Rotate 

•  Radially symmetric 
– Translate in 2D 

•  Oriented filters 

•  Note: 
–  Convolution with delta-pair in FD is 

multiplication with cosine in spatial domain  
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Band Bass Filtering 
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Radial Band Pass/Reject 
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Band Reject Filtering 
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Band Reject Filtering 
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Band Reject Filtering 
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Discrete Sampling and Aliasing 
•  Digital signals and images are discrete 

representations of the real world  
–  Which is continuous 

•  What happens to signals/images when we 
sample them? 
–  Can we quantify the effects?   
–  Can we understand the artifacts and can we limit 

them? 
–  Can we reconstruct the original image from the 

discrete data? 
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A Mathematical Model of Discrete 
Samples 

Delta functional 

Shah functional 
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A Mathematical Model of Discrete 
Samples 

Discrete signal 

Samples from continuous function 

Representation as a function of t 
•  Multiplication of f(t) with Shah 

•  Goal 
–  To be able to do a continuous Fourier 

transform on a signal before and after 
sampling 
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Fourier Series of A Shah 
Functional 

u 
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Fourier Transform of A Discrete 
Sampling 

u 
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Fourier Transform of A Discrete 
Sampling 

u 

Energy from higher 
freqs gets folded back 
down into lower freqs – 
Aliasing 

Frequencies get 
mixed.  The 
original signal is 
not recoverable. 
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What if F(u) is Narrower in the Fourier 
Domain? 

u 

•  No aliasing! 
•  How could we recover the original signal? 
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What Comes Out of This Model 

•  Sampling criterion for complete recovery  
•  An understanding of the effects of 

sampling 
– Aliasing and how to avoid it 

•  Reconstruction of signals from discrete 
samples 
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Shannon Sampling Theorem 

•  Assuming a signal that is band limited: 

•  Given set of samples from that signal 

•  Samples can be used to generate the 
original signal 
–  Samples and continuous signal are equivalent 
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Sampling Theorem 
•  Quantifies the amount of information in a 

signal 
–  Discrete signal contains limited frequencies 
– Band-limited signals contain no more 

information then their discrete equivalents 
•  Reconstruction by cutting away the 

repeated signals in the Fourier domain 
–  Convolution with sinc function in space/time 
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Reconstruction 
•  Convolution with sinc function 
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Sinc Interpolation Issues 

•  Must functions are not band limited 
•  Forcing functions to be band-limited can 

cause artifacts (ringing) 

f(t) |F(s)| 
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Sinc Interpolation Issues 

Ringing - Gibbs phenomenon 
Other issues: 

 Sinc is infinite - must be truncated 
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Aliasing 
•  High frequencies appear as low frequencies 

when undersampled 
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Aliasing 

16 pixels 8 pixels 

0.9174 
pixels 

0.4798 
pixels 
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Overcoming Aliasing 

•  Filter data prior to sampling 
–  Ideally - band limit the data (conv with sinc 

function) 
–  In practice - limit effects with fuzzy/soft low 

pass 
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Antialiasing in Graphics 

•  Screen resolution produces aliasing on 
underlying geometry 

Multiple high-res 
samples get averaged to 
create one screen 
sample 
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Antialiasing 
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Interpolation as Convolution 
•  Any discrete set of samples can be 

considered as a functional 

•  Any linear interpolant can be considered 
as a convolution 
– Nearest neighbor - rect(t) 
–  Linear - tri(t) 
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Convolution-Based Interpolation 
•  Can be studied in terms of Fourier Domain 
•  Issues 

–  Pass energy (=1) in band 
–  Low energy out of band 
–  Reduce hard cut off (Gibbs, ringing) 
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Tomography 
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Tomography Formulation 

Attenuation 

Log gives line integral 

Line with angle theta 

Volume integral 
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Fourier Slice Theorem 
1D FT 

Projection to 1D 1D Slice 
2D FT 



Optimal Filtering 

•  Systems model 

•  Ergodic signals 
–  Drawn from a ensemble 
– Average over ensemble is constant 
– Average over time is ensemble average 
–  -> Expected value of power spectrum 

describes ensemble 
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Optimal/Weiner Filter 

•  Power spectrum of signal, noise are known 
•  H(u) is known 
•  Filter that minimizes the expected 

squared error of reconstruction is: 
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Optimal/Weiner Filter 
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Image Registration 
•  Find dx and dy that best matches two images 
•  Cross correlation can give the best translation 

between two images 
•  Algorithms 

–  SD -> FD (mult) -> SD – look for peak 
–  SD -> FD -> find the best fit for a phase shift 

•  Issues 
–  Boundaries, overlap, intensity variations, high 

intensity edges  
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Normalized Cross Correlation 

•  Subtract the mean of the image and divide 
by the S.D. 
– This maps the image to the unit sphere 
– A single integral is the dot product of these to 

vectors 
•  angles between the two normalized images 

– Helps alleviate intensity differences 
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Phase Correlation 
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Phase Correlation 
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For Midterm – Pseudocode 

•  High level code to describe algorithm 
•  Make up reasonable key words 
•  Key idea – convey the algorithm 
•  Can adopt syntax from any major 

programming language 
– Be consistent 
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Psuedocode 
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Psuedocode 
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