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Compression 

•  What 
– Reduce the amount of information (bits) 

needed to represent image 
•  Why 

– Transmission 
–  Storage 
–  Preprocessing… 



Redundant & Irrelevant 
Information 

•  “Your wife Helen will meet you at O’Hare 
Airport in Chicago at 5 minutes past 6pm 
tomorrow night” 

•  Irrelevant or redudant can depend on 
context 
– Who is receiving the message? 



Compression Model 

Image 1 compress 

Save/transmit 
(File 2) 

decompress Image 2 

Image1 == Image2 -> “lossless” <- reduces redundant info 

Image1 != Image2 -> “lossy” <- tries to reduce redundant & irrelevant info 

Size(File1)/Size(File2) -> “compression ratio” 

Save/transmit 
(File 1) 

“channel” 



Redundancy 

•  Coding redundancy 
– More bits than necessary to create unique 

codes 
•  Spatial/geometric redundancy 

–  Correlation between pixels 
–  Patterns in image 

•  Psychopysical redundancy (irrelevancy?) 
– Users cannot distinguish 
– Applies to any application (no affect on 

output) 



Transform Coding 
Standard Strategy 

Image 1 Transform 
(mapper) Quantizer Symbol  

encoder Channel 

Image 2 Transform 
inverse 

Symbol  
decoder Channel 

•  Note: can have special source or channel 
modules 
– Account for specific properties of image/

application 
– Account for specific properties of channel (e.g. 

noise) 



Fundamentals 
•  Information content of a signal -> entropy 

•  Lower bound on #bits need to unambiguously 
represent a sequence of symbols 

x 

Low entropy 

High entropy 

p(x) 



Strategy (optimal) 
•  Variable-Length Codes 
•  Devote fewer bits to those symbols that 

are most likely 
– More generally -> sequences of symbols 

•  Where do the statistics come from? 
– A-priori knowledge 
– The signal itself (send dictionary) 
– Ad hoc schemes 



Huffman Coding 
•  Input: sumbols and probabilities 
•  Output: variable length symbol table 

–  Coded/decoded one at a time 
•  Tree 
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Huffman Coding 
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Fixed Length Codes 
•  Dictionary with strategy to capture 

special structure of data 
•  Example: LZW (Lempel-Ziv-Welch) 

–  Start with basic dictionary (e.g. grey levels) 
– As new sequences of symbols are encountered 

add them to dictionary 
•  Hope: encode frequently occuring sequences of 

symbols 
–  Greedy 

–  Can decompress w/out table (first occurance 
not replaced) 



LZW Compress 



LZW Decompress 



Run Length Enoding (RLE) 
•  Good for images with few, discrete color values 
•  Assumption: images have homogeneous regions 
•  Strategy 

–  Row-major order 
–  Encode value of “run” and it’s length 
–  Can combine with symbol encoder 

•  Issues 
–  How homogeneous is the data? 
–  Is there enough continuity in rows? 



RLE For 2D 
•  Complex -> lots of strategies 
•  Trace contours surrounding regions 
•  Encode contours using a incremental 

scheme with a differential strategy (to 
improve statistics) 
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Predictive Coding 

•  Take advantage of correlations 
•  Have a simple model that predicts data 

–  Encode differences from prediction 
– Residual should be lower entropy 

Prediction–encode 
difference 



Lossy Compression 
•  Transforms 

– Move to another representation where 
“importance” of information is more readily 
discernable 

– Usually reversible 
•  Quantization 

–  Strategy for reducing the amount of 
information in the signal 

– Typically not reversible (lossy) 



Quantization 
•  Eliminate symbols that are too small or 

not important 
•  Find a small set of approximating 

symbols (less entropy) 
–  Grey level or “vector quantization” 
–  Find values that minimize error 
–  Related to “clustering” in pattern 

recognition 



Block Transform Coding: JPEG 
•  International standard (ISO) 
•  Baseline algorithm with 

extensions 
•  Transform: discrete cosine 

transform (DCT) 
–  Encodes freq. Info w/out 

complex #s 
–  FT of larger, mirrored signal 
–  Does not have other nice prop. 

of FT 



JPEG Algorithm 

•  Integer grey-level image broken into 8x8 
sub blocks 

•  Set middle (mean?) grey level to zero 
(subtract middle) 

•  DCT of sub blocks (11 bit precision) -> T
(u,v) 

•  Rescale frequency components by Z(u,v) 
and round 



Rescaling 

•  Different scalling matrices possible, but 
recommended is: 



Reordering 
•  DCT entries reordered in zig-zag fashion to 

increase coherency (produce blocks of zeros) 



Coding 

•  Each sub-block is coded as a difference 
from previous sub-block 

•  Zeros are run-length encoded and nonzero 
elements are Huffman coded 
– Modified HC to allow for zeros 



JPEG Example 
Compression Ratio ~10:1 

Loss of high frequencies Block artifacts Ringing 



Other Transformations 
•  Sub-band coding 

– Band-pass transformations that partition the 
Fourier domain into pieces 

–  Convolve with those filters and take advantage 
of sparse structure 

•  Hopefully many values near zero (quantization) 

•  Wavelets 
– Multiscale filters 
–  Like subband filters but typically other 

properties 
•  Eg. Orthogonal (inner between diff filters in bank is 

zero) 



List  of  topics 
•  Why  transform? 
•  Why  wavelets? 
•  Wavelets  like  basis  components. 
•  Wavelets  examples. 
•  Fast  wavelet  transform . 
•  Wavelets  like  filter. 
•  Wavelets  advantages. 

(Wavelet slides from Burd  Alex, U. of Haifa) 



Why transform? 



Image  representation 



Noise  in  Fourier   
spectrum 



Fourier Analysis 
  Breaks down a signal into constituent 

sinusoids of different frequencies 

In other words: Transform the view of the 
signal from time-base to frequency-base. 



What’s wrong with Fourier? 
  By using Fourier Transform , we loose 

the time information : WHEN did a 
particular event take place ? 

  FT  can  not locate drift, trends, abrupt 
changes, beginning and ends of events, 
etc. 

  Calculating  use  complex   numbers.  



Time  and  Space  definition 

•  Time – for  one  dimension   waves  we  
start  point  shifting  from  source  to  end  
in  time  scale . 

•  Space – for  image  point  shifting  is  two  
dimensional  . 

•  Here  they  are  synonyms . 



Short Time Fourier Analysis 
 Analyze a small section of a signal 
  Denis Gabor (1946) developed windowing : 

STFT 



STFT (or: Gabor Transform) 
 A compromise between time-based and 

frequency-based views of a signal. 
  both time and frequency are represented 

in limited precision. 
  The precision is determined by the size 

of the window. 
 Once you choose a particular size for 

the time window - it will be the same for 
all frequencies. 



What’s wrong with Gabor? 

 Many signals require a more flexible 
approach - so we can vary the window 
size to determine more accurately either 
time or frequency. 



What is Wavelet Analysis ? 

 And…what is a wavelet…? 

 A wavelet is a waveform of effectively 
limited duration that has an average value 

of zero. 



Wavelet's   properties  

•  Short time localized waves with zero 
integral value. 

•  Possibility of time shifting. 

•  Flexibility. 



The Continuous Wavelet 
Transform (CWT) 

 A mathematical representation of the 
Fourier transform: 

 Meaning: the sum over all time of the 
signal f(t) multiplied by a complex 
exponential, and the result is the Fourier 
coefficients F(w) . € 

F(w) = f (t)e− iwtdt
−∞

∞

∫



Wavelet Transform 
  Those coefficients, when multiplied by a 

sinusoid of appropriate frequency w, 
yield the constituent sinusoidal 
component of the original signal: 



Wavelet Transform 
  The result of the CWT are Wavelet 

coefficients .  
 Multiplying each coefficient by the 

appropriately scaled and shifted wavelet 
yields the constituent wavelet of the 
original signal: 



Scaling 
 Wavelet analysis produces a time-scale 

view of the signal. 
  Scaling means stretching or 

compressing of the signal. 
  Like a scale factor (a) for sine waves: 



Scaling 

  Scale factor works exactly the same 
with wavelets: 



Wavelet  function 

•  b – shift  
coefficient 

•  a – scale  
coefficient 

•  2D function 

Ψa,b(x) =
1

a
Ψ

�
x− b

a

�

Ψa,bx,by (x, y) =
1

a
Ψ

�
x− bx

a
,
x− by

a
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CWT 
 Reminder: The CWT  is the sum over all 

time of the signal, multiplied by scaled 
and shifted versions of the wavelet 
function  

Step 1: 
Take a Wavelet and compare 

 it to a section at the start  
of the original signal 



CWT 
Step 2: 

Calculate a number, C, that represents 
how closely correlated the wavelet is  

with this section of the signal. The  
higher C is, the more the similarity. 



CWT 
  Step 3: Shift the wavelet to the right and 

repeat steps 1-2 until you’ve covered the 
whole signal 

amount of shift 
proportional to 
scale of wavelet 



CWT 
  Step 4: Scale (stretch) the wavelet and 

repeat steps 1-3 



Wavelets  examples 
Dyadic  transform 

•  For easier calculation we can to 
discrete  continuous  signal. 

•  We have a grid of discrete 
values that called dyadic grid .  

•  Important that wavelet 
functions compact (e.g. no 
overcalculatings) . 



Haar transform 



Wavelet  functions examples 

•  Haar  function 

•  Daubechies 
function 



Properties of Daubechies wavelets 
I. Daubechies, Comm. Pure Appl. Math. 41 (1988) 909. 

  Compact support 
 finite number of filter parameters / fast 

implementations  
 high compressibility 
 fine scale amplitudes are very small in regions where 

the function is smooth / sensitive recognition of 
structures 

  Identical forward / backward filter parameters 
 fast, exact reconstruction 
 very asymmetric 



Wavelets as Hierarchical Decomposition 

•  Image pyramids 
– Represent low-frequency information at 

coarser scale (less resolution) 

Convolution with LP 
and subsampling 



Mallat* Filter Scheme 

 Mallat was the first to implement this 
scheme, using a well known filter design 

called “two channel sub band coder”, 
yielding a ‘Fast Wavelet Transform’ 



Approximations and Details: 

 Approximations: High-scale, low-
frequency components of the signal 

  Details: low-scale, high-frequency 
components 

Input Signal 

LPF 

HPF 



Decimation 

  The former process produces twice the data 
it began with: N input samples produce N 
approximations coefficients and N detail 
coefficients. 

  To correct this, we Down sample (or: 
Decimate) the filter output by two, by 
simply throwing away every second 
coefficient. 



Decimation (cont’d) 

Input 
Signal 

LPF 

HPF 

A* 

D* 

So, a complete one stage block looks like: 



Multi-level Decomposition 

  Iterating the decomposition process, 
breaks the input signal into many lower-
resolution components: Wavelet 
decomposition tree: 



Orthogonality  
•  For 2 vectors 

•  For 2 functions 



Orthogonal  wavelets 

•  It  easier  calculation. 
•  When  we  decompose  some  image  and  

calculating  zero  level  decomposition  we  
have  accurate  values . 

•  Scalar  multiplication  with other  base  
function  equals  zero.   



Wavelet reconstruction 

 Reconstruction (or synthesis) is the 
process in which we assemble all 

components back  
Up sampling  

(or interpolation) is 
done by zero 

inserting  between 
every two 
coefficients 



Wavelets like filters 

 Relationship of  Filters to Wavelet Shape 
  Choosing the correct filter is most 

important. 
  The choice of the filter determines the 

shape of the wavelet we use to perform 
the analysis. 



Wavelet Example: Harr 
Mother wavelet Scaling function 

Orthogonality 

1D signal, discrete, 8 samples -> 

Transformation Matrix 



Extending to 2D 
•  Must take all combinations of wavelet and 

scaling function at a given scale 
–  LL, HL, LH, HH 

•  Typically organized in blocks, recursively 
–  LL is futher decomposed by lower frequency 

wavelets 
– Apply recursively to LL 
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LL 



Wavelet Decomposition 
LL HL 

HH LH 



Wavelet Decomposition 
HL 

HH LH 



Wavelet Decomposition 



Wavelet Compression Algorithm 

•  Like JPEG, but use DWT instead of DCT 
•  Steps 

– Transform 
– Weights (emprical) 
– Quantize 
–  Entropy (lossless encoding) through RLE, VLC, 

or dictionary 



Wavelet Compression 



DWT Compression Artifacts 

~80:1 



Smarter Ways To Encode 
•  Embedded zero-tree wavelets (Shapiro 1993) 

–  Zeros (threshold) at coarse level likely to be 
indicative of finer level 

–  E.g. edges 
–  Continue through levels to hit bit quota 



Other Wavelets 
•  Harr is orthogonal, symmetric, discontinuous 
•  Daubechies biorthogonal wavelet 

–  Continuous, but not symmetric 
–  Family of wavelets with parameters 
–  JPEG 2000 calls for “Daubechies 9/7 biorthogonal” 



Comparisons of Compression 

Grgic et al., 2001 


