CS 6620 Shading

Steve Parker Peter Shirley

Shading models

CS6620

Lambert's cosine law

• Light reaching surface is proportional to projected area: $\cos \theta$

Lambertian shading

Comes from a "rough" surface (at microscopic level
Simple: light that reaches the surface is reflected equally in all directions

Lambertian shading

 $(\overline{N}\cdot\overline{L})C_L$

Ĺ

Color at surface:
 (where N and L are unit vectors)

Ambient light

With this mechanism, the light in a shadowed region is 0 (black)
To avoid this, use "ambient" lighting
C_{ray} = C_{surface} [(N · L)C_{Light}K_d + C_{ambient}K_a]

Guessing ambient light

It should be the average color of surfaces visible to the point being shaded
What does that imply about outdoors?

Two-sided lighting

Z

θ

- What if light hits the back of a polygon
- Options:
 - Black on back
 - Different materials for front/back
 - Two sided lighting:
 - okay: $\overline{N} \cdot \overline{L}$ better:

Negate \overline{N} if $\overline{N} \cdot \overline{V} > 0$

Two-sided lighting

θ

Ray2

- You might consider checking if the light is on the "right side" of the object
 - $\operatorname{sign}(\overline{-V} \cdot \overline{N}) = \operatorname{sign}(\overline{L} \cdot \overline{N}) \operatorname{Ray1}$ $(\overline{V} \cdot \overline{N})(\overline{L} \cdot \overline{N}) < 0: \operatorname{lit}$ $(\overline{L} \cdot \overline{N}) > 0: \operatorname{lit} \text{ (when normal flipped)}$
- Can avoid casting shadow rays too
 Or use absolute value for L·N
 - Or use absolute val

Two-sided lighting

Left: Normal two-sided lighting (Abs L·N)
Right: Comparing signs

CS6620

Lambertian Shading

Compute hit position $(\vec{P} = \vec{O} + t\vec{V})$ Call primitive to get normal (\overline{N}) (normalized) $costheta = \overline{N} \cdot \overline{V}$ if(costheta < 0)normal =-normal Color light = scene.ambient*Ka foreach light source get C_{L} and \overline{L} dist= $\|\overline{L}\|, \overline{L_n} = \frac{\overline{L}}{\|\overline{L}\|}$ $cosphi = \overline{N} \cdot \overline{L_n}$ if(cosphi > 0)if (! intersect with 0 < t < dist) light $+= C_1 * (Kd * cosphi)$ result=light*surface color

Background

- What do you do when the ray misses all objects?
 - Constant color
 - Assign color to ray
 - Gradient
 - Map -1 to 1:
 - Map to colors:
 - Star field:
 - Sum up colors:
 - Environment map

$$= \frac{V_{ray} \cdot V_{up}}{\left\|V_{ray}\right\| \left\|V_{up}\right\|}$$

$$C_{down} + \left(\frac{s+1}{2}\right)C_{up}$$

$$\sum_{stars} \left(\overline{V_{ray}} \cdot \overline{V_{star}}\right)^{p} C_{star}, p \approx 10000$$

Light transport

There are 4 primary ways that light interacts with a surface (are there hybrids?):

- 1. Bounces off (perfect specular reflection)
- 2. Absorbed and retransmitted in an arbitrary direction (perfect diffuse reflection)
- **3**. Travels through surface (perfect specular transmission)
- 4. Absorbed and retransmitted on other side (perfect diffuse transmission)

Reflected and transmitted rays

plane of incidence

boundary

Reflections

- Reflection can be computed by tracing another ray from the intersection point
 Called perfect approximation
- Called perfect specular reflection

CS6620

Reflections

Perfect "bounce": incoming angle equal to outgoing angle • θ_{I} is called "angle of incidence" or "incident angle" • V, N and P define a plane Trace new ray on the same plane with origin at P and direction R Two derivations: algebraic and geometric

Geometric derivation

S

V

Ν

 $\theta_{I=}\theta_{r}$

R

S

N cos θ_i

 $\theta_{\rm r}$

 $\overline{R} = 2\overline{N}\cos\theta_i + \overline{V}$ $\overline{R} = 2\overline{N}\left(-\overline{N}\cdot\overline{V}\right) + \overline{V}$ $\overline{R} = \overline{V} - 2\left(\overline{N}\cdot\overline{V}\right)\overline{N}$

Reflected color

In Material::shade, trace and shade a ray to get the color along R
Reflectivity r (range 0-1)
Result color = r * color along ray
More about the reflectivity later

Transparency

Light is an electromagnetic wave
 Some materials conduct energy at visible frequencies

Transmitted rays

plane of incidence

boundary

Maxwell's equations

 Maxwell's equations relate electricity and magnetism (light) as waves in space

They predict the speed of light in a vacuum:

 $c = \overline{\sqrt{\mu_0 \varepsilon_0}}$ μ_0 : Electric permittivity of free space ε_0 : Magnetic permeability of free space

Speed of light

Speed of light changes (slows) in other materials
 v = 1/õε
 µ : Electrical permittivity of material
 ε: Magnetic permeability of material
 v ≤ c

Fermat's principle (1657)

Light takes the fastest path between two points: $t_{AB} = t_{AC} + t_{BC} = \frac{\|C - A\|}{v_a} + \frac{\|B - C\|}{v_b}$ A

Simplify: $B_v = 0$

$$t_{AB} = \frac{\sqrt{(C_x - A_x)^2 + A_y^2}}{v_a} + \frac{\sqrt{(B_x - C_x)^2 + B_y^2}}{v_b} - \frac{V_b}{v_b}$$

Refraction

Index of refraction

Absolute index of refraction:

 $\eta_{abs} = \frac{c}{v}$

where $c = 2.99 \times 10^8$ m/s. Note: $v \le c$ for all transparent materials, so $\eta \ge 1$.

Relative index of refraction:

$$\eta = \frac{\eta_2}{\eta_1}$$

Snell's Law

plane of incidence

 $\frac{\sin \theta_1}{\sin \theta_2} = \frac{v_1}{v_2} = \frac{\eta_2}{\eta_1} = \eta = \eta_{12}$

boundary

Questions?