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Logistics

OptiX update
Schedule update
Web site update
Outstanding procedural questions?
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Rays

Line segment: two points
Ray: a point and a vector
Line segment: a ray and a distance
Line segment: a ray and two distances
Bounded ray: two ordered points
Bounded ray: a ray and two distances
Directed line segment: bounded ray
Line: any of the above
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Rays

Usyally ray consists of a point and a vector:
Class Ray {
  Point origin;
  Vector direction;
  …
}; Origin

Direction
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Parametric Rays

We usually parameterize rays:

Where O is the origin,
V is direction,
and t is the “ray parameter”

t=0

t=1.0

t=2.0

 P

= O

+ tV
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Bounded Rays

The interval [t1,t2] says which 
part of the ray is 
“live”

t1=1.0

t2=2.0

 P

= O

+ tV
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A implicit equation for a plane can be defined 
with a Vector (the normal to the plane) and a 
point on the plane:

A parametric ray is : 

A ray intersection is an combination of those 
equations:

Ray-Planes

7

(P − P0)• N = 0
P(t) = O + tV

P(t) = O + tV

P(t) = O + tV

(O + tV − P0)• N = 0
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Ray plane 2

Equation from last slide: 

Rearrange:

Solve for t:

8

t(V • N ) + (O − P0)• N = 0

(O + tV − P0)• N = 0

t =
(P0 −O)• N

V • N
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Colors

For the purpose of this class, Color is Red, 
Green, Blue
Range is 0-1 for LDR and positive (usually) for 
HDR
Other color models will be discussed briefly in a 
few weeks
Colors should be represented using the “float” 
datatype - others just don’t make sense
Define operators that make sense
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Image gotchas

Be careful - image coordinate system is 
“upside down”

y=0

y=0

Real world
Our ray tracer
OpenGL
Taught since 2nd grade

Televisions
Raster Images
Other 1950’s technology
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Geometric Queries

Back to the original question:
What queries can we perform on our virtual geometry?

Ray tracing: determine if (and where) rays hit 
an object

Where?

 

O + t


V
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Ray plane again

We have:

What does it mean when the denominator is 
small?

What does it mean when t is negative?

12

t =
(P0 −O)• N

V • N
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Ray-sphere intersection

Points on a sphere are equidistant from the 
center of the sphere

Our measure of distance: dot product

Equation for sphere:

 


P −

C( )i P −


C( ) − r2 = 0

 
t 2

V i

V + 2t


O −

C( )i V +


O −

C( )i O −


C( ) − r2 = 0
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Solve for the roots the using quadratic equation.
Note that because b has a “2” in it we can 

dervive some efficiencies.

Ray-sphere intersection, improved

 

t 2 V i

V + 2t


O −

C( )i V +


O −

C( )i O −


C( ) − r2 = 0

Vector ′

O =


O −

C

a =

V i

V

b = 2 ′

O i

V

c = ′

O i ′

O − r2
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Ray tracing architecture

The major components in a ray tracer are:
Camera (Pixels to Rays)
Objects (Rays to intersection info)
Materials (Intersection info and light to color)
Lights
Background (Rays to Color)

All together: a Scene
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Ray tracing algorithm
Create scene (objects, materials, lights, camera, 

background)
Preprocess scene
foreach frame
  foreach pixel
    foreach sample
      generate ray
      intersect ray with objects
      find normal of closest object
      shade intersection point

Mutually recursive
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Details Scene

LightsCamera
Lights

Lights

Top
Group

Bunny

TeapotTable

Glass Plastic Metal

Back
ground
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Details

Create scene
Preprocess scene

Scene

LightsCamera
Lights

Lights

Top
Group

Bunny

TeapotTable

Glass Plastic Metal

Back
ground
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Details

Create scene
Preprocess scene
foreach pixel
   

Row-major order

Frameless
rendering

Tiled ParallelProgressive
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Details

Create scene
Preprocess scene
foreach pixel
   foreach sample
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Details
Create scene
Preprocess scene
foreach pixel
   foreach sample
      generate ray
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Details

Create scene
Preprocess scene
foreach pixel
   foreach sample
      generate ray
      intersect ray with objects

tnear
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Details

Create scene
Preprocess scene
foreach pixel
   foreach sample
      generate ray
      intersect ray with objects
      find normal of closest object

N
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Details

Create scene
Preprocess scene
foreach pixel
   foreach sample
      generate ray
      intersect ray with objects
      find normal of closest object
      shade intersection point
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Ray tracing algorithm
Create scene (objects, materials, lights, camera, 

background)
Preprocess scene
foreach frame
  foreach pixel
    foreach sample
      generate ray
      intersect ray with objects
      find normal of closest object
      shade intersection point

Mutually recursive
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Ray tracing architecture

The major components in a ray tracer are:
Camera (Pixels to Rays)
Objects (Rays to intersection info)
Materials (Intersection info and light to color)
Lights
Background (Rays to Color)

All together: a Scene
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Ray tracing algorithm
Create scene (objects, materials, lights, camera, 

background)
Preprocess scene
foreach frame
  foreach pixel
    foreach sample
      generate ray
      intersect ray with objects
      find normal of closest object
      shade intersection point

Mutually recursive
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Camera models

The camera maps pixels to rays
What kind of camera models might we want?
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Camera models

Typical:
Orthographic
Pinhole (perspective)

Advanced:
Depth of field (thin lens approximation)
Sophisticated lenses (“A realistic camera model for 
computer graphics,” Kolh, Mitchell, Hanrahan)
Fish-eye lens
Arbitrary distortions



CS6620

Camera models

Map pixel coordinates -1 to 1
Pay careful attention to pixel centers

Non-square images
Longest dimension is -1 to 1, shorter is 
smaller (still centered at 0)
Or camera knows about aspect ratio

1

-1

-1 1

(-.75, -.75)

(-.25, .25)
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Orthographic projection

“Film” is just a rectangle in 
space
Rays are parallel (same 
direction)
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Orthographic projection
Specify with center (P) and 
two vectors (u, v)

 

O

= P

+ xu

+ yv


V

= u

× v


u


, v


:  image size

u


v
 = aspect  ratio

square image: u

⋅ v

= 0

 v


 u


 P


 V


 O




CS6620

Pinhole camera

Most common model for ray 
tracing
Image is projected upside down 
onto image plane
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Pinhole camera

Easier to think about 
rightside up
Focal point is also 
called the eye point
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Pinhole camera
Parameters:

 

E


: Eye point (focal point)
C


: Lookat point
Up
 

:  Up vector
θ: Field of view

 E


 C


 
Up
 

θ
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Pinhole camera

Construction:

 E


 C


 
Up
 

θ

 u


 v


θ
2

 

L

= C

− E


   (look or gaze direction)

Ln


=
L


L

utmp
 

= Ln


×Up
 

vtmp
 

= utmp
 

× Ln


Top View

 L
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Pinhole camera
How do we get the lengths of 
u/v?

 E


 C


 
Up
 

θ

 u


 v


θ
2

 

tanθ
2
=

u


Ln


u


= tanθ
2

u

=
utmp
 

utmp
  tanθ

2

Top View

 
Ln
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Pinhole camera
What about v?

 E


 C


 
Up
 

θ

 u


 v


θ
2

 

aspect ratio =  a =  
u


v


u


= tanθ
2

v

=

tanθ
2

a

v

=
vtmp
 

vtmp
 

tanθ
2

a

Top View

 
Ln
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Pinhole camera

Finally

 E


 u


 v


 

O

= E


V

= Ln


+ xu

+ yv


Top View

 
Ln


 V
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Intersection

Use the sphere algorithm from earlier
Loop over spheres to find minimum t value



CS6620

Shading

The shading step is the key aspect of ray 
tracing
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Shading
Path tracing: consider light from all directions 

Whitted Ray tracing: consider the dominant directions:
direct (unobstructed from light source)
reflection
refraction Light source
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Shadow rays
Shadows are computed by tracing rays from 
(to) the light source
Intersection point: 
Origin:
Direction: 
max t: 1.0

 P

= O

+ tV


 L

− P


 P


 L


} max t
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Shadow ray bugs
Two bugs might show up when you do this:

False shadows (considering rays <0 or > 1)
Freckles (considering rays == 0)

 L

− P


 P


 L


} max t
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Numerical precision
Zoomed in: ideal
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Numerical precision

Zoomed in (numerical roundoff)
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Numerical precision

Zoomed in  (numerical roundoff)
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Solutions:

Only consider intersections where 
t>small_num
Offset ray in normal direction: P
+=N*small_num
Offset ray in light source direction: P+=(L-
P)*small_num

small_num = 1.e-6
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Reflection

θi

V

N

R

P

θI=θr

 

S

= V

+ N

cosθi

R

= N

cosθi + S



R

= N

cosθi +V


+ N

cosθi

R

= 2N

cosθi +V



R

= 2N


−N

⋅V
( ) +V

R

= V

− 2 N

⋅V
( )N

S

S

N cos θi

θr
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Review

The guts of a ray tracer have ray generation, 
ray intersection, and shading
Most ray tracers use RGB color
Now that ray tracers are interactive, the order 
in which you generate the rays may matter

50
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Questions?

51


