
CS6620

The Ray Tracing
Algorithm

January 25, 2010

1

CS6620

Logistics

OptiX update
Schedule update
Web site update
Outstanding procedural questions?

CS6620

Rays

Line segment: two points
Ray: a point and a vector
Line segment: a ray and a distance
Line segment: a ray and two distances
Bounded ray: two ordered points
Bounded ray: a ray and two distances
Directed line segment: bounded ray
Line: any of the above

CS6620

Rays

Usyally ray consists of a point and a vector:
Class Ray {
 Point origin;
 Vector direction;
 …
}; Origin

Direction

CS6620

Parametric Rays

We usually parameterize rays:

Where O is the origin,
V is direction,
and t is the “ray parameter”

t=0

t=1.0

t=2.0

 P

= O

+ tV

CS6620

Bounded Rays

The interval [t1,t2] says which
part of the ray is
“live”

t1=1.0

t2=2.0

 P

= O

+ tV

CS6620

A implicit equation for a plane can be defined
with a Vector (the normal to the plane) and a
point on the plane:

A parametric ray is :

A ray intersection is an combination of those
equations:

Ray-Planes

7

(P − P0)• N = 0
P(t) = O + tV

P(t) = O + tV

P(t) = O + tV

(O + tV − P0)• N = 0

CS6620

Ray plane 2

Equation from last slide:

Rearrange:

Solve for t:

8

t(V • N) + (O − P0)• N = 0

(O + tV − P0)• N = 0

t =
(P0 −O)• N

V • N

CS6620

Colors

For the purpose of this class, Color is Red,
Green, Blue
Range is 0-1 for LDR and positive (usually) for
HDR
Other color models will be discussed briefly in a
few weeks
Colors should be represented using the “float”
datatype - others just don’t make sense
Define operators that make sense

CS6620

Image gotchas

Be careful - image coordinate system is
“upside down”

y=0

y=0

Real world
Our ray tracer
OpenGL
Taught since 2nd grade

Televisions
Raster Images
Other 1950’s technology

CS6620

Geometric Queries

Back to the original question:
What queries can we perform on our virtual geometry?

Ray tracing: determine if (and where) rays hit
an object

Where?

O + t

V

CS6620

Ray plane again

We have:

What does it mean when the denominator is
small?

What does it mean when t is negative?

12

t =
(P0 −O)• N

V • N

CS6620

Ray-sphere intersection

Points on a sphere are equidistant from the
center of the sphere

Our measure of distance: dot product

Equation for sphere:

P −

C()i P −

C() − r2 = 0

t 2

V i

V + 2t

O −

C()i V +

O −

C()i O −

C() − r2 = 0

CS6620

Solve for the roots the using quadratic equation.
Note that because b has a “2” in it we can

dervive some efficiencies.

Ray-sphere intersection, improved

t 2 V i

V + 2t

O −

C()i V +

O −

C()i O −

C() − r2 = 0

Vector ′

O =

O −

C

a =

V i

V

b = 2 ′

O i

V

c = ′

O i ′

O − r2

CS6620

Ray tracing architecture

The major components in a ray tracer are:
Camera (Pixels to Rays)
Objects (Rays to intersection info)
Materials (Intersection info and light to color)
Lights
Background (Rays to Color)

All together: a Scene

CS6620

Ray tracing algorithm
Create scene (objects, materials, lights, camera,

background)
Preprocess scene
foreach frame
 foreach pixel
 foreach sample
 generate ray
 intersect ray with objects
 find normal of closest object
 shade intersection point

Mutually recursive

CS6620

Details Scene

LightsCamera
Lights

Lights

Top
Group

Bunny

TeapotTable

Glass Plastic Metal

Back
ground

CS6620

Details

Create scene
Preprocess scene

Scene

LightsCamera
Lights

Lights

Top
Group

Bunny

TeapotTable

Glass Plastic Metal

Back
ground

CS6620

Details

Create scene
Preprocess scene
foreach pixel

Row-major order

Frameless
rendering

Tiled ParallelProgressive

CS6620

Details

Create scene
Preprocess scene
foreach pixel
 foreach sample

CS6620

Details
Create scene
Preprocess scene
foreach pixel
 foreach sample
 generate ray

CS6620

Details

Create scene
Preprocess scene
foreach pixel
 foreach sample
 generate ray
 intersect ray with objects

tnear

CS6620

Details

Create scene
Preprocess scene
foreach pixel
 foreach sample
 generate ray
 intersect ray with objects
 find normal of closest object

N

CS6620

Details

Create scene
Preprocess scene
foreach pixel
 foreach sample
 generate ray
 intersect ray with objects
 find normal of closest object
 shade intersection point

CS6620

Ray tracing algorithm
Create scene (objects, materials, lights, camera,

background)
Preprocess scene
foreach frame
 foreach pixel
 foreach sample
 generate ray
 intersect ray with objects
 find normal of closest object
 shade intersection point

Mutually recursive

CS6620

Ray tracing architecture

The major components in a ray tracer are:
Camera (Pixels to Rays)
Objects (Rays to intersection info)
Materials (Intersection info and light to color)
Lights
Background (Rays to Color)

All together: a Scene

CS6620

Ray tracing algorithm
Create scene (objects, materials, lights, camera,

background)
Preprocess scene
foreach frame
 foreach pixel
 foreach sample
 generate ray
 intersect ray with objects
 find normal of closest object
 shade intersection point

Mutually recursive

CS6620

Camera models

The camera maps pixels to rays
What kind of camera models might we want?

CS6620

Camera models

Typical:
Orthographic
Pinhole (perspective)

Advanced:
Depth of field (thin lens approximation)
Sophisticated lenses (“A realistic camera model for
computer graphics,” Kolh, Mitchell, Hanrahan)
Fish-eye lens
Arbitrary distortions

CS6620

Camera models

Map pixel coordinates -1 to 1
Pay careful attention to pixel centers

Non-square images
Longest dimension is -1 to 1, shorter is
smaller (still centered at 0)
Or camera knows about aspect ratio

1

-1

-1 1

(-.75, -.75)

(-.25, .25)

CS6620

Orthographic projection

“Film” is just a rectangle in
space
Rays are parallel (same
direction)

CS6620

Orthographic projection
Specify with center (P) and
two vectors (u, v)

O

= P

+ xu

+ yv

V

= u

× v

u

, v

: image size

u

v
 = aspect ratio

square image: u

⋅ v

= 0

 v

 u

 P

 V

 O

CS6620

Pinhole camera

Most common model for ray
tracing
Image is projected upside down
onto image plane

CS6620

Pinhole camera

Easier to think about
rightside up
Focal point is also
called the eye point

CS6620

Pinhole camera
Parameters:

E

: Eye point (focal point)
C

: Lookat point
Up

: Up vector
θ: Field of view

 E

 C

Up

θ

CS6620

Pinhole camera

Construction:

 E

 C

Up

θ

 u

 v

θ
2

L

= C

− E

 (look or gaze direction)

Ln

=
L

L

utmp

= Ln

×Up

vtmp

= utmp

× Ln

Top View

 L

CS6620

Pinhole camera
How do we get the lengths of
u/v?

 E

 C

Up

θ

 u

 v

θ
2

tanθ
2
=

u

Ln

u

= tanθ
2

u

=
utmp

utmp
 tanθ

2

Top View

Ln

CS6620

Pinhole camera
What about v?

 E

 C

Up

θ

 u

 v

θ
2

aspect ratio = a =
u

v

u

= tanθ
2

v

=

tanθ
2

a

v

=
vtmp

vtmp

tanθ
2

a

Top View

Ln

CS6620

Pinhole camera

Finally

 E

 u

 v

O

= E

V

= Ln

+ xu

+ yv

Top View

Ln

 V

CS6620

Intersection

Use the sphere algorithm from earlier
Loop over spheres to find minimum t value

CS6620

Shading

The shading step is the key aspect of ray
tracing

CS6620

Shading
Path tracing: consider light from all directions

Whitted Ray tracing: consider the dominant directions:
direct (unobstructed from light source)
reflection
refraction Light source

CS6620

Shadow rays
Shadows are computed by tracing rays from
(to) the light source
Intersection point:
Origin:
Direction:
max t: 1.0

 P

= O

+ tV

 L

− P

 P

 L

} max t

CS6620

Shadow ray bugs
Two bugs might show up when you do this:

False shadows (considering rays <0 or > 1)
Freckles (considering rays == 0)

 L

− P

 P

 L

} max t

CS6620

Numerical precision
Zoomed in: ideal

CS6620

Numerical precision

Zoomed in (numerical roundoff)

CS6620

Numerical precision

Zoomed in (numerical roundoff)

CS6620

Solutions:

Only consider intersections where
t>small_num
Offset ray in normal direction: P
+=N*small_num
Offset ray in light source direction: P+=(L-
P)*small_num

small_num = 1.e-6

CS6620

Reflection

θi

V

N

R

P

θI=θr

S

= V

+ N

cosθi

R

= N

cosθi + S

R

= N

cosθi +V

+ N

cosθi

R

= 2N

cosθi +V

R

= 2N

−N

⋅V
() +V

R

= V

− 2 N

⋅V
()N

S

S

N cos θi

θr

CS6620

Review

The guts of a ray tracer have ray generation,
ray intersection, and shading
Most ray tracers use RGB color
Now that ray tracers are interactive, the order
in which you generate the rays may matter

50

CS6620

Questions?

51

