Reflected and transmitted rays

plane of incidence

Index of refraction

Absolute index of refraction:

$$
\eta_{\text {abs }}=\frac{C}{V}
$$

where $c=2.99 \times 10^{8} \mathrm{~m} / \mathrm{s}$. Note: $v \leq c$ for all transparent materials, so $\eta \geq 1$.

Relative index of refraction:

$$
\eta=\frac{\eta_{2}}{\eta_{1}}
$$

Snell's Law

$$
\frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{v_{1}}{v_{2}}=\frac{\eta_{2}}{\eta_{1}}=\eta=\eta_{12}
$$

boundary

Transmission

$$
\begin{aligned}
& \frac{\sin \theta_{1}}{\sin \theta_{2}}=\frac{\eta_{2}}{\eta_{1}}=\eta=\frac{S_{1}}{S_{2}}, S_{2} \eta=S_{1} \\
& \cos \theta_{1}=C_{1}=-\bar{N} \cdot \bar{V} \\
& \cos \theta_{2}=C_{2}=-\bar{N} \cdot \bar{T}
\end{aligned}
$$

Square both sides of $S_{1} \eta=S_{2}$:
$S_{2}^{2} \eta^{2}=S_{1}^{2}$

And use $S^{2}+C^{2}=1$ to get cosine forms:
$\left(1-C_{2}^{2}\right) \eta^{2}=1-C_{1}^{2}$
$C_{2}^{2}=1+\frac{\left(C_{1}^{2}-1\right)}{\eta^{2}}$
$C_{2}=\sqrt{1+\frac{\left(C_{1}^{2}-1\right)}{\eta^{2}}}$

Transmission

$$
\begin{aligned}
& \bar{T}=-\overline{N^{\prime}}+k\left(\overline{V^{\prime}}+\overline{N^{\prime}}\right)=k \overline{V^{\prime}}+(k-1) \overline{N^{\prime}} \\
& |\bar{T}|=1 \\
& \overline{N^{\prime}}=C_{2} \bar{N} \\
& \left.\left|\overrightarrow{V^{\prime}}\right| C_{1}=\left|-\overline{N^{\prime}}\right|\left|\overline{V^{\prime}}\right|=\frac{\left|-\overline{N^{\prime}}\right|}{C_{1}}| | \overline{V^{\prime}} \right\rvert\,=\frac{C_{2}}{C_{1}} \\
& \overline{V^{\prime}}=\frac{C_{2}}{C_{1}} \bar{V} \\
& k=\frac{S_{2}}{S_{1}} \frac{|\vec{T}|}{\mid \overrightarrow{V^{\prime}}}=\frac{S_{2}}{S_{1}} \frac{1}{\frac{C_{2}}{C_{1}}}=\frac{S_{2} C_{1}}{C_{2} S_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{T}=-\bar{N}^{\prime}+k\left(\overline{V^{\prime}}+\bar{N}^{\prime}\right)=k \bar{V}^{\prime}+(k-1) N^{\prime} \\
& k=\frac{S_{2}}{S_{1}}|\bar{T}| \\
&\left|\overline{V^{\prime}}\right| \frac{S_{2}}{S_{1}} \frac{1}{C_{2}}=\frac{S_{2} C_{1}}{C_{2} S_{1}} \\
& C_{2}=\sqrt{1+\frac{\left(C_{1}^{2}-1\right)}{\eta^{2}}} \\
& \bar{T}=\frac{S_{2} C_{1}}{C_{2} S_{1} C_{2}} C_{1} \\
& \bar{V}+\left(\frac{S_{2} C_{1}}{C_{2} S_{1}}-1\right) C_{2} \bar{N} \\
&=\frac{S_{2}}{S_{1}} \bar{V}+\left(\frac{S_{2}}{S_{1}} C_{1}-C_{2}\right) \bar{N} \\
&=\frac{1}{\eta} \bar{V}+\left(\frac{1}{\eta} C_{1}-C_{2}\right) \bar{N} \\
&=\frac{1}{\eta} \bar{V}+\left(\frac{C_{1}}{\eta}-\sqrt{1+\frac{\left(C_{1}^{2}-1\right)}{\eta^{2}}}\right) \bar{N}
\end{aligned}
$$

Transmitted ray direction, t (cont’d.)

When $\eta_{1}<\eta_{2,} t$ bends toward the normal direction at the hit point

Transmitted ray direction, t (cont'd.)

When $\eta_{1}>\eta_{2}, t$ bends away from the normal direction at the hit point

Total internal reflection

There exists a critical angle, θ_{c}, when the transmitted ray direction t is parallel to the boundary and $\theta_{2}=\pi / 2$

θ_{1} approaches θ_{c}

As θ_{1} increases, t bends toward the boundary

$\theta_{1} \ll \theta_{c}$

$\theta_{1}<\theta_{\mathrm{c}}$

θ_{1} is greater than or equal to θ_{c}

When $\theta_{1} \geq \theta_{c}$, t is parallel to the boundary and it carries no energy (total internal reflection occurs)

$\theta_{1}=\theta_{c}$

$\theta_{1}>\theta_{\mathrm{c}}$

Checking for TIR

Recall that the angle of refraction θ_{2} is given by:
$\cos \theta_{2}=\left[1-\frac{1}{\eta^{2}}\left(1-\cos ^{2} \theta_{1}\right)\right]^{1 / 2}$

TIR occurs when $\theta_{1}=\theta_{\mathrm{c}}$

When $\theta_{1}=\theta_{c}$, the expression:

$$
1-\frac{1}{\eta^{2}}\left(1-\cos ^{2} \theta_{1}\right)
$$

becomes zero.
When $\theta_{1}>\theta_{c}$, this expression is negative, so θ_{2} is imaginary and t is a complex number.

TIR condition

Thus, TIR occurs when:

$$
1-\frac{1}{n^{2}}\left(1-\cos ^{2} \theta_{1}\right)<0
$$

Spawning secondary rays

