Reflected and transmitted rays

plane of incidence

boundary

Index of refraction

Absolute index of refraction:

 $\eta_{abs} = \frac{C}{V}$

where $c = 2.99 \times 10^8$ m/s. Note: $v \le c$ for all transparent materials, so $\eta \ge 1$.

Relative index of refraction:

$$\eta = \frac{\eta_2}{\eta_1}$$

Snell's Law

plane of incidence

 $\frac{\sin\theta_1}{\sin\theta_2} = \frac{v_1}{v_2} = \frac{\eta_2}{\eta_1} = \eta = \eta_{12}$

boundary

Transmission

 $\frac{\sin\theta_1}{\sin\theta_2} = \frac{\eta_2}{\eta_1} = \eta = \frac{S_1}{S_2}, S_2\eta = S_1$ $\cos\theta_1 = C_1 = -\overline{N} \cdot \overline{V}$ $\cos\theta_2 = C_2 = -N \cdot T$ Square both sides of $S_1\eta = S_2$: $S_{2}^{2}\eta^{2} = S_{1}^{2}$ And use $S^2 + C^2 = 1$ to get cosine forms : $(1-C_2^2)\eta^2 = 1-C_1^2$ $C_2^2 = 1 + \frac{\left(C_1^2 - 1\right)}{n^2}$ $1 + \frac{\left(C_1^2 - 1\right)}{n^2}$ CS662

Transmission

 $\overline{T} = -\overline{N'} + k\left(\overline{V'} + \overline{N'}\right) = k\overline{V'} + (k-1)\overline{N'}$ $\left|\overline{T}\right| = 1$ $\overrightarrow{N'} = C_2 \overrightarrow{N}$ $\left| \overrightarrow{V'} \right| C_1 = \left| -\overrightarrow{N'} \right|, \left| \overrightarrow{V'} \right| = \frac{\left| -\overrightarrow{N'} \right|}{C_1}, \left| \overrightarrow{V'} \right| = \frac{C_2}{C_1}$ $\overrightarrow{V'} = \frac{C_2}{C_1} \overrightarrow{V}$ $k = \frac{S_2}{S_1} \frac{\left| \vec{T} \right|}{\left| \vec{V'} \right|} = \frac{S_2}{S_1} \frac{1}{\frac{C_2}{C_1}} = \frac{S_2 C_1}{C_2 S_1}$

 θ_1

$$\overline{T} = -\overline{N'} + k(\overline{V'} + \overline{N'}) = k\overline{V'} + (k-1)\overline{N'}$$

$$k = \frac{S_2}{S_1} \frac{|\overline{T}|}{|\overline{V'}|} = \frac{S_2}{S_1} \frac{1}{C_2} = \frac{S_2C_1}{C_2S_1}$$

$$C_2 = \sqrt{1 + \frac{(C_1^2 - 1)}{\eta^2}}$$

$$\overline{T} = \frac{S_2C_1}{C_2S_1} \frac{C_2}{C_1} \overline{V} + \left(\frac{S_2C_1}{C_2S_1} - 1\right)\overline{C_2N}$$

$$= \frac{S_2}{S_1} \overline{V} + \left(\frac{S_2}{S_1} C_1 - C_2\right)\overline{N}$$

$$= \frac{1}{\eta} \overline{V} + \left(\frac{1}{\eta} C_1 - C_2\right)\overline{N}$$

$$= \frac{1}{\eta} \overline{V} + \left(\frac{C_1}{\eta} - \sqrt{1 + \frac{(C_1^2 - 1)}{\eta^2}}\right)\overline{N}$$

CS6620

Transmitted ray direction, t (cont'd.)

When $\eta_1 < \eta_2$, *t* bends toward the normal direction at the hit point

Transmitted ray direction, t (cont'd.)

When $\eta_1 > \eta_2$, t bends away from the normal direction at the hit point

Total internal reflection

There exists a *critical angle*, θ_c , when the transmitted ray direction *t* is parallel to the boundary and $\theta_2 = \pi/2$

θ_1 approaches θ_c

As θ_1 increases, *t* bends toward the boundary

θ_1 is greater than or equal to θ_c

When $\theta_1 \ge \theta_c$, *t* is parallel to the boundary and it carries no energy (total internal reflection occurs)

Checking for TIR

Recall that the angle of refraction θ_2 is given by:

$\cos \theta_2 = [1 - \frac{1}{\eta^2} (1 - \cos^2 \theta_1)]^{1/2}$

TIR occurs when $\theta_1 = \theta_c$

When $\theta_1 = \theta_c$, the expression:

$$1 - \frac{1}{\eta^2} (1 - \cos^2 \theta_1)$$

becomes zero.

When $\theta_1 > \theta_c$, this expression is negative, so θ_2 is imaginary and *t* is a complex number.

TIR condition

AN ARAB AN AN AN

THE REAL PORT AND THE AVENTIME AND

Thus, TIR occurs when:

$1 - \frac{1}{\eta^2} (1 - \cos^2 \theta_1) < 0$

Spawning secondary rays

 $C(p) = C_{local}(p) + k_r(p)*C_r(p_r) + k_t(p)*C_t(p_t)$

 r_1

