
Monads
Why programmers care

by David Darais

Tuesday, February 23, 2010

Why bother?

• Who uses monads?

• Why use monads?

• Do we need monads?

• Will I use monads after learning about
them?

• What do monads have to do with...

• Monoids? Functors? Category Theory?

Tuesday, February 23, 2010

What Monads do

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam = do
p <- lookup “Bob”
c <- favoriteColor p
t <- sportsTeamOfColor c
return t

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam =
case lookup “Bob” of
Nothing -> Nothing
Just p ->
case favoriteColor p of
Nothing -> Nothing
Just c ->
case teamOfColor c of
Nothing -> Nothing
Just t -> Just t

Maybe (Option in ML)

Tuesday, February 23, 2010

What Monads do

genThree :: Gen -> ([Num], Gen)
genThree = do
n <- nextGen
n1 <- nextGen
n2 <- nextGen
return [n, n1, n2]

genThree :: Gen -> ([Num], Gen)
getThree g =
let
(n, g1) = nextGen g
(n1, g2) = nextGen g1
(n2, g3) = nextGen g2

in ([n, n1, n2], g3)

State

Tuesday, February 23, 2010

What Monads do

area :: Rectangle -> Num
area = do
w <- width r
h <- height r
return (w * h)

area :: Rectangle -> Num
area r =
let
w = width r
h = height r

in (w * h)

Identity

Tuesday, February 23, 2010

Monad is just two
functions

• (>>=) :: m a -> (a -> m b) -> m b
• (some people call this “shove” or “bind”)

• return :: a -> m a

Tuesday, February 23, 2010

What Monads do

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam = do
p <- lookup “Bob”
c <- favoriteColor p
t <- sportsTeamOfColor c
return t

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam =
case lookup “Bob” of
Nothing -> Nothing
Just p ->
case favoriteColor p of
Nothing -> Nothing
Just c ->
case teamOfColor c of
Nothing -> Nothing
Just t -> Just t

Maybe (Option in ML)

Tuesday, February 23, 2010

What Monads do

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam = do
p <- lookup “Bob”
c <- favoriteColor p
t <- sportsTeamOfColor c
return t

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam =
case lookup “Bob” of
Nothing -> Nothing
Just p ->
case favoriteColor p of
Nothing -> Nothing
Just c ->
case teamOfColor c of
Nothing -> Nothing
Just t -> Just t

Maybe (Option in ML)
lookup :: String -> Maybe Person

favoriteColor :: Person -> Maybe Color

teamOfColor :: Color -> Maybe Team

Tuesday, February 23, 2010

What Monads do

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam = do
p <- lookup “Bob”
c <- favoriteColor p
t <- sportsTeamOfColor c
return t

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam =
case lookup “Bob” of
Nothing -> Nothing
Just p ->
case favoriteColor p of
Nothing -> Nothing
Just c ->
case teamOfColor c of
Nothing -> Nothing
Just t -> Just t

Maybe (Option in ML)

lookup :: String -> Maybe Person

favoriteColor :: Person -> Maybe Color

teamOfColor :: Color -> Maybe Team

Tuesday, February 23, 2010

What Monads do

genThree :: Gen -> ([Num], Gen)
genThree = do
n <- nextGen
n1 <- nextGen
n2 <- nextGen
return [n, n1, n2]

genThree :: Gen -> ([Num], Gen)
getThree g =
let
(n, g1) = nextGen g
(n1, g2) = nextGen g1
(n2, g3) = nextGen g2

in ([n, n1, n2], g3)

State

Tuesday, February 23, 2010

What Monads do

genThree :: Gen -> ([Num], Gen)
genThree = do
n <- nextGen
n1 <- nextGen
n2 <- nextGen
return [n, n1, n2]

genThree :: Gen -> ([Num], Gen)
getThree g =
let
(n, g1) = nextGen g
(n1, g2) = nextGen g1
(n2, g3) = nextGen g2

in ([n, n1, n2], g3)

State

nextGen :: Gen -> (Num, Gen)

Tuesday, February 23, 2010

What Monads do

genThree :: Gen -> ([Num], Gen)
genThree = do
n <- nextGen
n1 <- nextGen
n2 <- nextGen
return [n, n1, n2]

genThree :: Gen -> ([Num], Gen)
getThree g =
let
(n, g1) = nextGen g
(n1, g2) = nextGen g1
(n2, g3) = nextGen g2

in ([n, n1, n2], g3)

State

nextGen :: Gen -> (Num, Gen)

Tuesday, February 23, 2010

Maybe Monad

data Maybe = Nothing | Just a
(>>=) :: Maybe a -> (a -> Maybe b) -> Maybe b

Nothing >>= f = Nothing

(Just a) >>= f = f a
return :: a -> Maybe a

return x = Maybe x

Tuesday, February 23, 2010

Desugaring “do”

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam = do
p <- lookup “Bob”
c <- favoriteColor p
t <- sportsTeamOfColor c
return t

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam =
lookup “Bob” >>= (\p -> do
c <- favoriteColor p
t <- sportsTeamOfColor c
return t)

Tuesday, February 23, 2010

Desugaring “do”

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam =
lookup “Bob” >>= (\p -> do
c <- favoriteColor p
t <- sportsTeamOfColor c
return t)

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam =
lookup “Bob” >>= (\p ->
favoriteColor p >>= (\c -> do
t <- sportsTeamOfColor c
return t))

Tuesday, February 23, 2010

Desugaring “do”

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam =
lookup “Bob” >>= (\p ->
favoriteColor p >>= (\c -> do
t <- sportsTeamOfColor c
return t))

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam =

lookup “Bob” >>= (\p ->
favoriteColor p >>= (\c ->
sportsTeamOfColor c >>= (\t -> do

return t)))

Tuesday, February 23, 2010

Desugaring “do”

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam =

lookup “Bob” >>= (\p ->
favoriteColor p >>= (\c ->
sportsTeamOfColor c >>= (\t -> do

return t)))

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam =

lookup “Bob” >>= (\p ->
favoriteColor p >>= (\c ->
sportsTeamOfColor c >>= (\t ->

return t)))

Tuesday, February 23, 2010

=

Desugaring “do”

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam =

lookup “Bob” >>= (\p ->
favoriteColor p >>= (\c ->
sportsTeamOfColor c >>= (\t ->

return t)))

bobsFavoriteTeam :: Maybe Team
bobsFavoriteTeam = do
p <- lookup “Bob”
c <- favoriteColor p
t <- sportsTeamOfColor c
return t

Tuesday, February 23, 2010

Identity Monad

data Identity a = Identity a
(>>=) :: Identity a -> (a -> Identity b) -> Identity b

(Identity a) >>= f = f a
return :: a -> m a

return a = Identity a

Tuesday, February 23, 2010

Desugaring “do”

area :: Rectangle -> Num
area = do
w <- width r
h <- height r
return (w * h)

area :: Rectangle -> Num
area =
width r >>= (\w -> do
h <- height r
return (w * h))

Tuesday, February 23, 2010

Desugaring “do”

area :: Rectangle -> Num
area =
width r >>= (\w -> do
h <- height r
return (w * h))

area :: Rectangle -> Num
area =
width r >>= (\w ->
height r >>= (\h ->
return (w * h))

Tuesday, February 23, 2010

What’s Next?

• Functors and Monoids (useful like monads)

• Monad Transformers (necessary)

• A way to compose multiple monads

• Arrows (really cool)

• Also generalizes boilerplate

• All monads are arrows

Tuesday, February 23, 2010

Building the State Monad

• State Monad in Scheme

• DFS state passing style

• DFS monad style

Tuesday, February 23, 2010

