
Sample Mid-Term Exam 2 (take-home)

CS 6510, Spring 2017

actual exam due April 10

Name:

Start time:
End time:

Instructions: You have eighty minutes to complete this open-book, open-note, closed-computer exam.
Please write all answers in the provided space, plus the back of the exam if necessary.

1) Which of the following produce different results in an eager language and a lazy language? Both
produce the same result if they both produce the same number or they both produce a procedure
(even if the procedure doesn’t behave exactly the same when applied), but they can differ in errors
reported.

a) {{lambda {y} 12} {1 2}}

b) {lambda {x} {{lambda {y} 12} {1 2}}}

c) {+ 1 {lambda {y} 12}}

d) {+ 1 {{lambda {x} {+ 1 13}} {+ 1 {lambda {z} 12}}}}

e) {+ 1 {{lambda {x} {+ x 13}} {+ 1 {lambda {z} 12}}}}

1



2) Given the type rules

[. . .x← τ . . .] ` x : τ Γ ` 1 : num
Γ ` e1 : num Γ ` e2 : num

Γ ` {+ e1 e2} : num

Γ[x← τ1] ` e : τ2
Γ ` {lambda {[x : τ1]} e} : (τ1 → τ2)

Γ ` e1 : (τ1 → τ2) Γ ` e2 : τ1
Γ ` {e1 e2} : τ2

in one of the following expressions, the ____ can be filled in with a type so that the resulting expression
has a type in the enmpty environment, while there is no type for the ____ that causes the other to
have a type. Pick the right expression and show a derivation tree (which is a trace of typecheck that’s
written in the style as the type rules above) demonstrating that the chosen expression has a type.

{{lambda {[x : ____]} {+ x 1}} x}

{lambda {[x : ____]} {+ {x 1} 1}}

Note that your answer should not include symbols like Γ, τ , or e, except when used as designated
abbreviations, since those are meta-variables that are replaced by concrete environments, types, and
expressions in the derivation tree.

2



3) Given the following expression:

{{lambda {x} {x x}}

{lambda {y} 12}}

Describe a trace of the evalaution in terms of arguments to interp and continue functions for every
call of each. (There will be 7 calls to interp and 5 calls to continue.) The interp function takes
three arguments — an expression, an environment, and a continuation — so show all three for each
interp call. The continue function takes two arguments — a value and a continuation — so show
both for each continue call. Represent continuations using records.

3



4) Suppose a garbage-collected interepreter uses the following three kinds of records:

– Tag 1: a record containing two pointers

– Tag 2: a record containing one pointer and one integer

– Tag 3: a record containing one integer

The interpreter has one register, which always contains a pointer, and a memory pool of size 22. The
allocator/collector is a two-space copying collector, so each space is of size 11. Records are allocated
consecutively in to-space, starting from the first memory location, 0.

The following is a snapshot of memory just before a collection where all memory has been allocated:

– Register: 8

– To space: 1 3 8 3 0 2 3 7 2 0 8

What are the values in the register and the new to-space (which is also addressed starting from 0) after
collection? Assume that unallocated memory in to-space contains 0.

– Register:

– To space:

4



Answers

1) a and d.

2)
Γ1 ` x : (num→ num) Γ1 ` 1 : num

Γ1 ` {x 1} : num Γ1 ` 1 : num
Γ1 = [x← (num→ num)] ` {+ {x 1} 1} : num

∅ ` {lambda {[x : (num→ num))}} {+ {x 1} 1}} : ((num→ num)→ num)

3)

interp expr = {{lambda {x} {x x}} {lambda {y} 12}}
env = mt-env

k = (doneK)

interp expr = {lambda {x} {x x}}
env = mt-env

k = (appArgK {lambda {y} 12} mt-env (doneK))

cont val = (closureV ’x {x x} mt-env) = V1

k = (appArgK {lambda {y} 12} mt-env (doneK))

interp expr = {lambda {y} 12}
env = mt-env

k = (doAppK V1 (doneK))

cont val = (closureV ’y 12 mt-env) = V2
k = (doAppK V1 (doneK))

interp expr = {x x}
env = (extend-env (bind ’x V2) mt-env) = E1

k = (doneK)

interp expr = x

env = E1

k = (appArgk x E1 (doneK))

cont val = V2
k = (appArgK x E1 (doneK))

interp expr = x

env = E1

k = (doAppK V2 (doneK))

cont val = V2
k = (doAppK V2 (doneK))

interp expr = 12

5



env = (extend-env (bind ’y V2) mt-env)

k = (doneK)

cont val = (numV 12)

k = (doneK)

4) Register: 0, To space: 2 3 8 1 6 0 3 0 0 0 0

6


