$I_{1}=\{(-0.5,1.5),(1.5,-1.5)\}$ the are given two images $I_{2}=\{(-0.5,0.5),(-0.5,-1.5)\} I_{1}$ and I_{2}. The images are represented using two 2D descriptors each

Using the vocabulary tree find the normal, zed difference between J_{1} and I_{2}
$\underset{0}{c 14(0.5,1.5)} \underset{O}{\text { ci }(1.5,1.5)}$
(O)C1(1,1) c43(-1.5,0.5) $\quad \begin{aligned} & 0 \\ & \text { c42(-0.5,0.5) }\end{aligned}$

$$
\begin{array}{ll}
\circ & \mathrm{O} \\
\mathrm{c} 13(0.5,0.5) & \mathrm{c} 12(1.5,0.5)
\end{array}
$$

$$
\mathrm{c} 24(0.5,-0.5) \quad \underset{0}{\mathrm{c}} \mathrm{O}(1.5,-0.5)
$$

$\sigma_{c 2(1,-1)}$

$$
\text { c33(-1.5,-1.5) } \begin{aligned}
& 0 \\
& \text { c32(-0.5,-1.5) }
\end{aligned}
$$

c23(0.5,-1.5)

To find the normalized difference we represent each I_{1} and I_{2}
using 21 dimensional vectors \mathcal{F}_{1} and q_{2}.

$$
S\left(g_{1}, g_{2}\right)=\left|q_{1}-q_{2}\right|=6
$$

We ignore the normalization factor arsumin that each 1 mage has the same \# odes criptors.

Vocabulary tree represents a hierarchical clustering of the descriptors. The cluster centers have the lame dimension as the descriptors.
Given a descriptor how do you parse the tree
Let $d_{1}=(a, b)$ and $d_{2}=(c, d)$
The similarity between d_{1} and d_{2} can be computed using the angle between the vectors

$$
\cos \theta=\frac{d_{1} \cdot d_{2}}{\sqrt{a^{2}+b^{2}} \sqrt{c^{2}+d^{2}}}
$$

If d_{1} and d_{2}
are the same have $=a c+b d$
to i

$$
\begin{aligned}
& \text { the hided } \sqrt{x^{2}+b^{2}} \sqrt{c^{2}+d^{2}} \\
& =\text { varies from }-1
\end{aligned}
$$

If you see the same vector as a cluster center then it has the Maximum Similarity.

