CS 6320 Computer Vision Practice Set
Spring 2019
Name:
ID:

Each question carries 20 points. Show the necessary steps to compute the final solutions. You are free to use extra papers.

1. Pose Estimation: Let us consider a calibrated camera. Let the origin of the camera be given by $\mathrm{O}(0,0,0)$. The image resolution is 640×480 and the principal point is given by $(320,240)$. We assume the following parameters for the camera:

$$
\left(\begin{array}{l}
u \\
v \\
1
\end{array}\right) \sim\left(\begin{array}{cccc}
200 & 0 & 320 & 0 \\
0 & 200 & 240 & 0 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & \mathbf{0} \\
\mathbf{0}^{T} & 1
\end{array}\right)\left(\begin{array}{c}
X^{m} \\
Y^{m} \\
Z^{m} \\
1
\end{array}\right)
$$

where (u, v) correspond to pixel coordinates and I denotes the 3×3 identity matrix.

$$
\mathrm{K}^{-1}=\frac{1}{200}\left(\begin{array}{ccc}
1 & 0 & -320 \\
0 & 1 & -240 \\
0 & 0 & 200
\end{array}\right)
$$

The projections of two 3 D points A and B on the image are given by $\mathbf{a}(120,240)$ and $\mathbf{b}(320,240)$, respectively. Find the coordinates of the two 3 D points $A\left(X_{1}, Y_{1}, Z_{1}\right)$ and $B\left(X_{2}, Y_{2}, Z_{2}\right)$ that satisfy the 2 conditions: (1) the length of the line segment $O A$ is given by $|O A|=200$, and (2) the line segments $O A$ and $A B$ are perpendicular to each other. [20 points]

$$
\begin{aligned}
& A=\lambda_{1} k^{-1}\left[\begin{array}{l}
a \\
1
\end{array}\right]=\lambda_{1}\left(\begin{array}{c}
-1 \\
0 \\
1
\end{array}\right) \quad B=\lambda_{2} k^{-1}\left[\begin{array}{l}
b \\
1
\end{array}\right]=\lambda_{2}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right) \\
&|O A|=\sqrt{\left(-\lambda_{1}-0\right)^{2}+0+\left(\lambda_{1}-0\right)^{2}}=200 \\
& \Rightarrow 2 \lambda^{2}=40000 \Rightarrow \lambda= \pm 100 \sqrt{2}
\end{aligned}
$$

Since A is in front of camera its z value has to
2. Model fitting: In Figure ??, you are given a set of 62 D points (A, B, C, D, E, F). We can obtain a line equation by choosing 2 points at a time. Given two 2D points (x_{1}, y_{1}) and $\left(x_{2}, y_{2}\right)$, we can obtain the line equation using the expression $\left(y-y_{1}\right)\left(x_{1}-x_{2}\right)=\left(x-x_{1}\right)\left(y_{1}-y_{2}\right)$. The distance of a point $\left(x_{0}, y_{0}\right)$ from a line $a x+b y+c=0$ is given by $\frac{\left|a x_{0}+b y_{0}+c\right|}{\sqrt{a^{2}+b^{2}}}$. Let the threshold in selecting the inliers for a given line equation is given by 0.6 .

- (a) Find a pair of points that gives the line equation with the maximum number of inliers. Show the line equations and inliers.
- (b) Find a point pair that gives the line equation with the minimum number of inliers. Show the line equations and inliers.
[20 points]

Figure 1:

AD

$$
\begin{aligned}
\text { Inlier } & =\{A, B, E, D\} \\
\text { Inliers } & =\{B, E\}
\end{aligned}
$$

3. 3D Modeling: Let us consider a scenario where a 3D point \mathbf{Q} is observed by two cameras. Let the 2 camera matrices be given by:

$$
\mathrm{K}_{1}=\mathrm{K}_{2}=\left(\begin{array}{ccc}
200 & 0 & 320 \\
0 & 200 & 240 \\
0 & 0 & 1
\end{array}\right)
$$

Rotation matrices: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{I}$.
Translation matrices: $\mathbf{t}_{1}=\mathbf{0}, \mathbf{t}_{2}=(100,0,0)^{T}$.
The corresponding 2 D points on the images are given by:

$$
\mathbf{q}_{\mathbf{1}}=\left(\begin{array}{c}
520 \\
440 \\
1
\end{array}\right) \mathbf{q}_{\mathbf{2}}=\left(\begin{array}{c}
320 \\
440 \\
1
\end{array}\right)
$$

$$
\begin{aligned}
& k_{1}^{-1}=k_{2}^{-1}= \\
& \frac{1}{200}\left[\begin{array}{lll}
1 & 0 & -320 \\
0 & 1 & -240 \\
0 & 0 & 200
\end{array}\right]
\end{aligned}
$$

Compute the 3D point Q. [20 points]

$$
\begin{aligned}
& Q_{1}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right]+\lambda_{1} k_{1}^{-1}\left[q_{1}\right] \\
& =\lambda[1]=\left[\begin{array}{l}
\lambda_{1} \\
\lambda_{1} \\
\lambda_{1}
\end{array}\right] \\
& \Phi_{2}=\left(\begin{array}{c}
100 \\
0 \\
0
\end{array}\right)+\lambda_{2}\left(\begin{array}{l}
0 \\
1 \\
1
\end{array}\right) \\
& \begin{array}{l}
=\left(\begin{array}{l}
100 \\
\lambda_{2} \\
\lambda_{2}
\end{array}\right) \\
+2\left(\lambda_{1}-\lambda_{2}\right)^{2}
\end{array} \\
& \frac{\partial \text { Distsq } \gamma}{\partial \lambda_{1}}=2\left(\lambda_{1}-100\right)+L_{1}\left(\lambda_{1}-\lambda_{2}\right)=0 \\
& \Rightarrow \lambda_{1}-100+2 \lambda_{1}-2 \lambda_{2}=0 \\
& \frac{\partial D_{1} \text { msg }}{\partial \lambda_{2}}=L_{1}\left(\lambda_{1}-\lambda_{2}\right) \quad \frac{3 \lambda_{1}-2 \lambda_{1}}{(-1)=0} \\
& \begin{array}{l}
\lambda_{1}=\lambda_{2} \\
=\left(\begin{array}{ll}
1 & 0 \\
1 & 0 \\
10 & 0 \\
1 & 0
\end{array}\right)^{3}
\end{array} \\
& \lambda_{1}=100 \\
& \varphi=\left(\frac{\varphi_{1}+\varphi_{2}}{2}\right)
\end{aligned}
$$

4. Vocabulary tree: We are given three images I_{1}, I_{2} and I_{3}. Each of these images have two 2D descriptors as given below.

$$
I 1:\{(1.5,0.5),(-1.5,-1.5)\}, \quad I 2:\{(1.5,1.5),(1.5,-1.5)\}, \quad I 3:\{(1.5,0.5),(1.5,-0.5)\}
$$

In Figure ??, we show a vocabulary tree with branch factor 4 . Using this vocabulary tree find the best image match among the 3 possible pairs $\left\{\left(I_{1}, I_{2}\right),\left(I_{1}, I_{3}\right),\left(I_{2}, I_{3}\right)\right\}$. Assume that the nodes in the tree has the same weight $w_{i}=1$. Show the normalized difference in each of the three pairs. [20 points]

Figure 2:

$$
\begin{aligned}
& q_{1}=[2,1,0,1,0,0,100 \cdots 010000] \\
& q_{2}=[2,1,1,0,0,0,0,01,000000] \\
& q_{3}=[2,1,1,0,0,01001000000000] \\
& \text { NormDiff }\left(q, q_{2}\right)=\frac{q_{1}}{2}-\frac{q_{2}}{2}=\frac{6}{2}=3 \\
& \text { NoomD.D.ff }\left(q_{1}, q_{3}\right)=\frac{q_{1}}{2}-\frac{q_{2}}{2}=\frac{4}{2}=2 \\
& \text { Norm-D.ff }\left(q_{2}, q_{3}\right)=\frac{q_{2}}{2}-q_{3 / 2}=4 / 2=2
\end{aligned}
$$

5. Belief Propagation: You have 2 Boolean variables $\left(x_{1}, x_{2} \in\{0,1\}\right)$ and 3 equations as shown below:

$$
\begin{aligned}
x_{1}+4 x_{2} & =5 \\
-x_{1}+2 x_{2} & =1 \\
-3 x_{1}+2 x_{2} & =-1.2
\end{aligned}
$$

Show the factor graph and use Belief propagation to solve the equations. Please show the messages in each iteration till the algorithm terminates. [20 points]

(a)

$x_{1} \frac{x_{2}}{\frac{1.2 \mid 3.2}{|1.8| 0.24}}+$

The tables are Constructed using absolute values for the difference.
Step 1 All zero mes ages $m_{1 \rightarrow a}=0, m_{2 \rightarrow a}=0, m_{1 \rightarrow t}=0, m_{2 \rightarrow b^{\prime}}=0$,

$$
m_{1 \rightarrow c}=0, m_{2 \rightarrow c}=0
$$

Step 2

$$
m_{b \rightarrow 1}=\min _{x_{2}}\left[\sum_{2 \rightarrow b}\left(x_{2 \rightarrow b}\left(x_{2}\right)+C_{b}\left(0, x_{2}\right)\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]\right.
$$

Similarly $m_{t \rightarrow 2}=\binom{1}{0} m_{c \rightarrow 1}=\binom{1.2}{0.2} \quad m_{c \rightarrow 2}=\binom{1.2}{0.2}$
Step 3 $b_{1}=\binom{3.2}{0.2} \quad G_{2}=\binom{6.2}{0.2}$
Step 4

$$
x_{1} \longleftarrow 1, \quad x_{2} \leftarrow 1
$$

$$
\begin{aligned}
& x \\
& m_{a \rightarrow 1}=\min _{x_{2}}\left[\begin{array}{l}
m_{2 \rightarrow a}\left(x_{2}\right)+c_{a}\left(0, x_{2}\right) \\
m_{2 \rightarrow a}\left(x_{2}\right)+c_{a}\left(1, x_{2}\right)
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& m_{a \rightarrow 2}=\min _{m_{1}}\left[\begin{array}{l}
m_{1 \rightarrow a}\left(x_{1}\right)+c_{a}\left(x_{1}, 0\right) \\
m_{1 \rightarrow a}\left(x_{1}\right)+c_{a}\left(x_{1}, 1\right)
\end{array}\right]=\left[\begin{array}{l}
4 \\
b
\end{array}\right]
\end{aligned}
$$

Step $5:$
$m_{1 \rightarrow a}=\binom{2.2}{0.2} m_{2 \rightarrow a}=\binom{2.2}{0.2}$

$$
m_{1 \rightarrow b}=\binom{2.2}{6.2} m_{2 \rightarrow b}=\binom{5.2}{0.2}
$$

m

$$
1 \rightarrow c=\binom{2}{0} \quad m_{2 \rightarrow c}=\binom{5}{0}
$$

Step 6:

$$
\begin{aligned}
m_{a \rightarrow 1} & =\min _{x_{2}}\left[\begin{array}{l}
m_{2 \rightarrow a}\left(x_{2}\right)+c_{b}\left(0, x_{2}\right) \\
m_{2 \rightarrow a}\left(x_{2}\right)+c_{f}\left(1, x_{2}\right)
\end{array}\right] \\
& =(1.2
\end{aligned}
$$

$$
=\binom{1.2}{0.2}
$$

$$
\begin{aligned}
m_{a \rightarrow 2} & \left.=\min _{x_{1}\left[m_{1 \rightarrow a}\left(x_{1}\right)+C_{b}\left(x_{1}, 0\right)\right.} m_{1 \rightarrow a}\left(x_{1}\right)+C_{k}\left(x_{1}, 1\right)\right] \\
& =\binom{4.2}{0.2}
\end{aligned}
$$

m

$$
\min _{x_{2}}\left[\begin{array}{l}
m_{2 \rightarrow t}\left(x_{2}\right)+C_{b}\left(0, x_{2}\right) \\
m_{2+t}\left(x_{2}\right)+C_{b}\left(1, x_{2}\right)
\end{array}\right]
$$

$$
=\binom{1.2}{0.2}
$$

Step 7:

$$
\begin{aligned}
m_{t \rightarrow 2} & =\min _{x_{1}}\left[m_{1 \rightarrow f}\left(x_{1}\right)+c_{b}\left(x_{1}, 0\right)\right] \\
& =\binom{1.2}{0.2} m_{c \rightarrow 2}=\binom{1.8}{0.2}
\end{aligned}
$$

Step 8: $\quad b_{1}=\binom{5.6}{0.6} \quad b_{2}=\binom{8.2}{0.6}$
$x_{1} \longleftarrow 1, x_{2} \longleftarrow 1$, TERMINATE

