Motion Estimation

Srikumar Ramalingam

Review

Epipolar constraint

Fundamenta Matrix

Motion Estimation

Srikumar Ramalingam

School of Computing University of Utah

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Presentation Outline

Review

1 Review

2 Epipolar constraint

۱ Es	Motion timation
Revi	ew

◆□ → ◆□ → ◆三 → ◆三 → ◆○ ◆

Motion Estimation

Srikumar Ramalingam

Review

Epipolar constraint

Fundamenta Matrix We use keypoint and descriptor matching algorithms, e.g., SIFT, BRIEF, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Motion Estimation

Srikumar Ramalingam

Review

Epipolar constraint

Fundamenta Matrix We use keypoint and descriptor matching algorithms, e.g., SIFT, BRIEF, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

What kind of constraints exist on the point correspondences in two images?

Motion Estimation

Srikumar Ramalingam

Review

Epipolar constraint

Fundamenta Matrix We use keypoint and descriptor matching algorithms, e.g., SIFT, BRIEF, etc.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- What kind of constraints exist on the point correspondences in two images?
 - Epipolar constraint

Presentation Outline

Srikumar Ramalingar

Review

Epipolar constraint

Fundamenta Matrix

Review

2 Epipolar constraint

3 Fundamental Matrix

・ロン・雪・・雪と・雪・・白、 ひょう

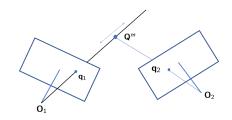
Motion Estimation

Srikumar Ramalingan

Review

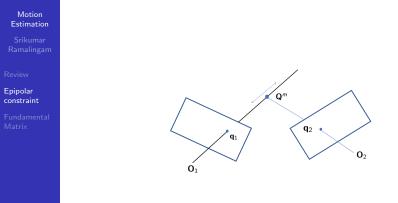
Epipolar constraint

Fundamenta Matrix



 Assume that we are given the calibration, rotation, and translation parameters for the two cameras.

- We are given a single pixel \mathbf{q}_1 in the left image.
- Let q₂ be the unknown pixel in the second image corresponding to q₁.
- Given \mathbf{q}_1 can we find the location of \mathbf{q}_2 ?
 - NO!



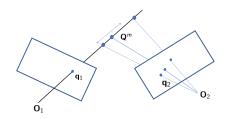
■ For simplicity, we don't show the optical axis.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

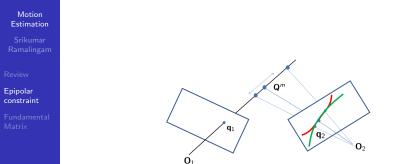
Srikumar Ramalingar

Review

Epipolar constraint



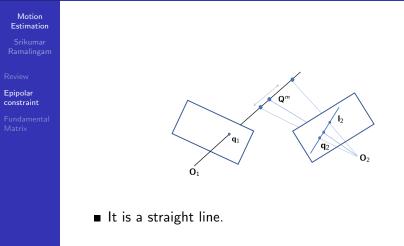
- We consider different 3D points Q^m on the backprojection of q₁.
- We look at the forward projections of these 3D points on the right image.
- The different projections are the different possibilities for **q**₂ given the position of **q**₁.

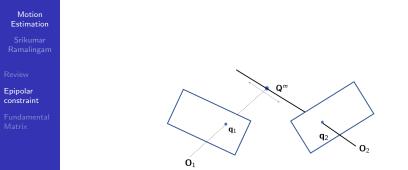


■ What is the parametric curve that passes through different possible locations of **q**₂?

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

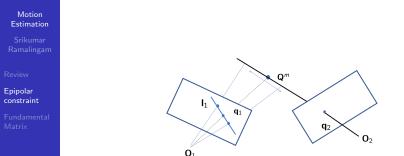
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ





What can you say if q₂ is given and we are interested in finding the location of q₁.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@



- Yes, it is also a straight line.
- Given a pixel in one image, the corresponding pixel in the other image is constrained to lie on a straight line.

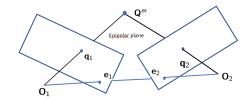
▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Epipolar Plane and Epipoles

Srikumar Ramalingar

Review

Epipolar constraint



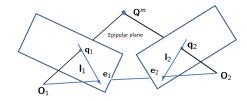
- **Epipolar plane** is the plane formed by the two camera centers (**O**₁, **O**₂) and a 3D point **Q**^{*m*}.
- The line joining the two camera centers intersect the image planes at points that we refer to as **epipoles**.
- The epipole in the first image is denoted by **e**₁. The epipole in the second image is denoted by **e**₂.

Epipolar Lines

Srikumar Ramalingan

Review

Epipolar constraint



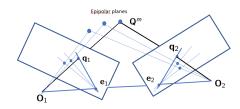
- Given a pixel q₁, the corresponding pixel q₂ lies on a line in the right image that we refer to as epipolar line l₂. Note that this line passes through the epipole e₂.
- The epipolar line in the first image is denoted by l₁ and it joins q₁ and e₁.
- Note that the epipoles depend only on rotation, translation, and calibration parameters of the two cameras.

Family of epipolar planes

Srikumar Ramalingar

Review

Epipolar constraint



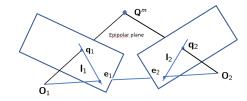
- For every pair of matching pixels, we can think of an epipolar plane formed by the optical centers and the 3D point.
- All the epipolar planes pass through the epipoles. Thus the epipolar lines can be seen as family of lines passing through a single point.

Srikumar Ramalingar

Review

Epipolar constraint

Fundamenta Matrix



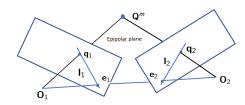
- Given a pixel **q**₁, the corresponding pixel **q**₂ lies on epipolar line **l**₂.
- The epipolar line l₂ in the right image is the line joining the e₂ and q₂ on the right image.

• Let the forward projections be given by: $\mathbf{q}_1 \sim \mathsf{K}_1\mathsf{R}_1(\mathsf{I} \mid -\mathbf{t}_1)\mathbf{Q}^m$. $\mathbf{q}_2 \sim \mathsf{K}_2\mathsf{R}_2(\mathsf{I} \mid -\mathbf{t}_2)\mathbf{Q}^m$.

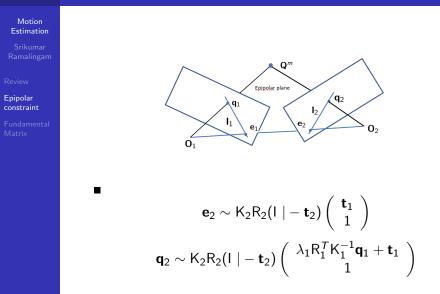
Srikumar Ramalingan

Review

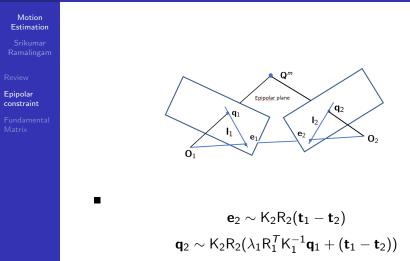
Epipolar constraint



- The epipole e₂ is the projection of the left camera center on the right image. The left camera center is given by t₁.
- A 3D point on the back-projected ray of q₁ is given by λ₁R₁^TK₁⁻¹q₁ + t₁. We obtain q₂ by projecting this point on the right image.



◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへ⊙

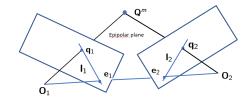


◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Srikumar Ramalingar

Review

Epipolar constraint



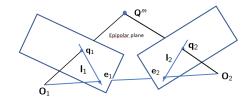
- The epipolar line **I**₂ can by obtained from the cross-product of **e**₂ and **q**₂.
- Note that $M\mathbf{x} \times M\mathbf{y} \sim M^{-T}(\mathbf{x} \times \mathbf{y})$.
- Thus we have:

$$\begin{aligned} \mathbf{I}_2 &\sim & \mathbf{e}_2 \times \mathbf{q}_2 \\ &\sim & \mathsf{K}_2\mathsf{R}_2(\mathbf{t}_1 - \mathbf{t}_2) \times \mathsf{K}_2\mathsf{R}_2(\lambda_1\mathsf{R}_1^\mathsf{T}\mathsf{K}_1^{-1}\mathbf{q}_1 + (\mathbf{t}_1 - \mathbf{t}_2)) \end{aligned}$$

Review

Epipolar constraint

Fundamental Matrix

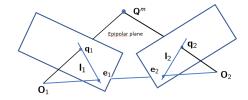


Srikumar Ramalingan

Review

Epipolar constraint

Fundamenta Matrix



$$\mathbf{I}_2 \sim (\mathsf{K}_2 \mathsf{R}_2)^{-\,\mathcal{T}}((\mathbf{t}_1 - \mathbf{t}_2) \times \mathsf{R}_1^{\mathcal{T}} \mathsf{K}_1^{-1} \mathbf{q}_1)$$

■ Skew-symmetrix matrix of any 3 × 1 vector **a** is given below:

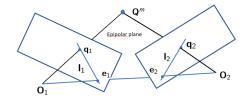
$$[\mathbf{a}]_{\times} = \begin{pmatrix} 0 & -a_3 & a_2 \\ a_3 & 0 & -a_1 \\ -a_2 & a_1 & 0 \end{pmatrix}$$

Srikumar Ramalingan

Review

Epipolar constraint

Fundamenta Matrix

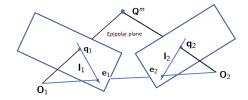


$$\mathbf{I}_2 \sim (\mathsf{K}_2 \mathsf{R}_2)^{-\mathcal{T}} ((\mathbf{t}_1 - \mathbf{t}_2) \times \mathsf{R}_1^{\mathcal{T}} \mathsf{K}_1^{-1} \mathbf{q}_1)$$

We know that the cross-product of two 3 × 1 vectors a and b can be written as follows:

$$\mathbf{a}\times\mathbf{b}=[\mathbf{a}]_{\times}\mathbf{b}$$

$$\mathbf{I}_2 \sim (\mathbf{K}_2 \mathbf{R}_2)^{-T} ([\mathbf{t}_1 - \mathbf{t}_2]_{\times} \mathbf{R}_1^T \mathbf{K}_1^{-1} \mathbf{q}_1)$$



$$\begin{split} & \textbf{I}_2 \sim (\textbf{K}_2 \textbf{R}_2)^{-\,\mathcal{T}} ([\textbf{t}_1 - \textbf{t}_2]_{\times} \textbf{R}_1^{\mathcal{T}} \textbf{K}_1^{-1} \textbf{q}_1) \\ & \textbf{I}_2 \sim (\textbf{K}_2 \textbf{R}_2)^{-\,\mathcal{T}} [\textbf{t}_1 - \textbf{t}_2]_{\times} (\textbf{R}_1^{\mathcal{T}} \textbf{K}_1^{-1}) \textbf{q}_1 \end{split}$$

■ Here we can see the transformation of a point q₁ in the left image to a line l₂ in the right image using a 3 × 3 matrix (K₂R₂)^{-T}[t₁ - t₂]_×(R₁^TK₁⁻¹).

Presentation Outline

Srikumar Ramalingan

Review

Epipolar constraint

Fundamental Matrix

Revie

2 Epipolar constraint

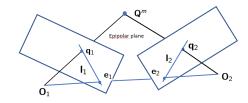
Fundamental Matrix

Srikumar Ramalingar

Review

Epipolar constraint

Fundamental Matrix



- The 3 × 3 matrix is the celebrated fundamental matrix: $F_{12} = (K_2 R_2)^{-T} [\mathbf{t}_1 - \mathbf{t}_2]_{\times} (R_1^T K_1^{-1})$
- This matrix encodes the epipolar geometry.
- We know that $\mathbf{q}_2^T \mathbf{I}_2 = 0$. Thus we have the following:

$$\mathbf{q}_2^T \mathsf{F}_{12} \mathbf{q}_1 = \mathbf{0}$$

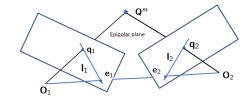
Fundamental Matrix

Srikumar Ramalingan

Review

Epipolar constraint

Fundamental Matrix



We can have the following equation based on the epipolar line l₁

$$\mathbf{q}_1^T \mathsf{F}_{21} \mathbf{q}_2 = \mathbf{0}$$

• For simplicity we will only consider the following equation:

$$\mathbf{q}_2^T \mathsf{F} \mathbf{q}_1 = 0$$

э

■ This constraint is the so-called **epipolar constraint**.

Computation of Fundamental matrix

Motion Estimation

Srikumar Ramalingam

Review

Epipolar constraint

Fundamental Matrix Calibration matrices:

$$\mathsf{K}_1 = \mathsf{K}_2 = \left(\begin{array}{rrr} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{array}\right)$$

- Rotation matrices: $R_1 = R_2 = I$.
- Translation matrices: $\mathbf{t}_1 = \mathbf{0}, \mathbf{t}_2 = (100, 0, 0)^T$.
- Correspondences: $\mathbf{q_1} = (520, 440, 1)^T, \mathbf{q_2} = (500, 440, 1)^T$

- Compute the fundamental matrix F and show that $\mathbf{q}_2^T F \mathbf{q}_1 = 0$.
- Find the two epipoles and epipolar lines.

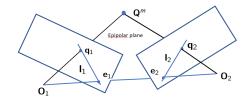
Computation of the fundamental matrix

Srikumar Ramalingar

Review

Epipolar constraint

Fundamental Matrix



- Epipolar constraint: $\mathbf{q}_2^T \mathbf{F} \mathbf{q}_1 = \mathbf{0}$
- Using n point correspondences we can rewrite the above equation of the following form:

 $A\mathbf{f} = 0$

Here **A** is a $n \times 9$ matrix consisting of only the coordinates of the point correspondences that are known. The 9×1 vector f consists of 9 unknowns from the 3×3 fundamental matrix F.

Computation of the fundamental matrix

Motion Estimation

Srikumar Ramalingam

Review

Epipolar constraint

Fundamental Matrix Using n point correspondences, we can have the following equation:

$$A_{n \times 9} \mathbf{f} = 0$$

Show the $n \times 9$ matrix using the point correspondences $\{\mathbf{q}_1, \mathbf{q}_2\} = \{(u_{1i}, v_{1i}), (u_{2i}, v_{2i})\}, i = \{1 \cdots n\}.$

Motion Estimation

Srikumar Ramalingam

Review

Epipolar constraint

Fundamental Matrix ■ To find the solution of the equation A**f** = **0**, we first compute SVD of A, i.e., [U, S, V] = *SVD*(A) and then the solution of *f* is given by the last column of V.

The rank of A should be 8 if we use 8 point correspondences.

Acknowledgments

Motion Estimation

Srikumar Ramalingam

Review

Epipolar constraint

Fundamental Matrix Some presentation slides are adapted from the following materials:

 Peter Sturm, Some lecture notes on geometric computer vision (available online).