Human detection using histogram of oriented gradients

Srikumar Ramalingam

School of Computing

University of Utah

Navneet Dalal and Bill Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005.

https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf

Descriptor Processing Chain

Gamma correction

- Each pixel has a brightness value or luminance that varies from 0 to 1.
- Different cameras do not capture the correct values for luminance, and there is usually a non-linear mapping.

$$I_{out} = I_{in}^{\gamma}$$

Gradient computation

$$G_{\chi} = \begin{pmatrix} -1 & 0 & 1 \\ G_{\chi} = \begin{pmatrix} -1 \\ 0 \\ 1 \end{pmatrix}$$

Important: No smoothing with a Gaussian filter is used prior to the computation of gradients.

 $\theta = \tan^{-1} \frac{I_y}{I_x}$ $magnitute = \sqrt{I_x^2 + I_y^2}$

Image I

 $I_{\chi} = G_{\chi} \odot I$

Cells and Blocks in building the feature vector

- The feature vector for human detection is built using cells and blocks.
- Each cell is a matrix of 8x8 pixels.
- Every block is a matrix of 2x2 cells, but the blocks are accumulated by overlapping with blocks from previous locations.
- We consider an image patch of size 64 x128 for detecting humans.

Histogram of orientations in every cell

orientations varying from 0 to 180 degrees.

- We collect the magnitude and gradient angles for each pixel inside a cell to form the histogram with 9 bins (20 degree width for every bin for angles varying from 0 to 180 degrees).
- To avoid aliasing, votes are interpolated bilinearly from both sides based on the bin center.

Block Normalization

- Let v denote a 36 × 1 vector corresponding to a block aggregating the histograms from 4 cells.
- While using L2 normalization we have the following: $v = \frac{v}{\sqrt{|v|_2^2 + \epsilon}}$
- Total length of the feature vector for an image patch of size $64 \ge 128 = 7 \ge 15 \ge 36 = 3780$

Overlapping blocks : 7 x 15 for image patch of size 64 x 128

Support vector machines for pedestrian detection

 $\min_{w}(|w| + C\sum_{i} \zeta_{i}$ s.t. $(w^{T}x_{j} + b)y_{j} \ge 1 - \zeta_{i}$

- We are given samples as follows (x_i, y_i) , where x_i is a 3760 \times 1 dimensional feature vector, and y_i denotes the labels (+1 for positives, and -1 for negatives)
- For positives, we take image patches of dimensions 64x128 containing humans, and for negatives we take random image patches without any human in the images.
- We can use a linear SVM with C = 0.01.

SVM weight coefficients

• The most important cells are the ones that typically contain major human contours (especially the head and shoulders and the feet).

Threshold for Human detection

- For a given feature vector x_j , we check if $w^T x_j + b > T$
- *T*=0 is the natural threshold for SVM, but we use a slightly higher threshold, say 0.4, to avoid false positives.

Multi-scale detection

- The feature vectors are always computed from image windows of dimensions 64 x 128, but we scale the image to detect humans who are closer and further from the camera.
- We move the detection window using some fixed strides, say stride = 1 cell, toward the right and down directions.
- We decrease the scale of the image from scale, say s =1.0, to a small value, say s =0.1 or so, where the entire image becomes smaller than 64 x 128.
- At a smaller scale, say s = 0.2, we are looking for humans who appear large in the original image as they are close to the camera.

Multi-scale detections

 Non-maxima suppression (NMS) – one possibility is to use greedy NMS. We select the best scoring window and discard other windows that have a significant overlap with this one. We repeat this.

After dense multi-scale scan of detection window

Final detections

Overall Architecture

Slide courtesy : Navneet Dalal

Descriptor Cues: Motorbikes

Average gradients

Input window Detection Examples

Weighted pos wts

Dominant pos orientations

Weighted neg wts

Dominant neg orientations

Slide courtesy : Navneet Dalal

Key Descriptor Parameters

Class	Window Size	Avg. Size	# of Orient- ation Bins	Orientat- ion Range	Gamma Compre- ssion	Normal- isation Method
Person	64×128	Height 96	9	0°-180°	√RGB	L2-Hys
Car	104×56	Height 48	18	0°-360°	√RGB	L1-Sqrt
Bus	120×80	Height 64	18	0°-360°	√RGB	L1-Sqrt
Motorbike	120×80	Width 112	18	0°-360°	√RGB	L1-Sqrt
Bicycle	104×64	Width 96	18	0°-360°	√RGB	L2-Hys
Cow	128×80	Width 56	18	0°-360°	√RGB	L2-Hys
Sheep	104×60	Height 56	18	0°-360°	√RGB	L2-Hys
Horse	128×80	Width 96	9	0°-180°	RGB	L1-Sqrt
Cat	96×56	Height 56	9	0°-180°	RGB	L1-Sqrt
Dog	96×56	Height 56	9	0°-180°	RGB	L1-Sqrt

Slide courtesy : Navneet Dalal