
Introduction to Graphical 
Models
Srikumar Ramalingam

School of Computing

University of Utah



Reference

• Christopher M. Bishop, Pattern Recognition and Machine Learning,

• Jonathan S. Yedidia, William T. Freeman, and Yair Weiss, 
Understanding Belief Propagation and its Generalizations, 2001.

http://www.merl.com/publications/docs/TR2001-22.pdf

• Jonathan S. Yedidia, Message-passing Algorithms for Inference and 
Optimization: “Belief Propagation” and “Divide and Concur”

http://people.csail.mit.edu/andyd/CIOG_papers/yedidia_jsp_preprint_
princeton.pdf

http://www.merl.com/publications/docs/TR2001-22.pdf
http://people.csail.mit.edu/andyd/CIOG_papers/yedidia_jsp_preprint_princeton.pdf


Inference problems and Belief Propagation

• Inference problems arise in statistical physics, computer vision, error-
correcting coding theory, and AI. 

• BP is an efficient way to solve inference problems based on passing 
local messages.



Bayesian networks

• Probably the most popular type of graphical model

• Used in many application domains: medical diagnosis, map learning, 
language understanding, heuristics search, etc.



Probability (Reminder)

• Sample space is the set of all possible outcomes.
Example: S = {1,2,3,4,5,6}

• Power set of the sample space is obtained by considering 
all different collections of outcomes.

Example Power set = {{},{1},{2},…,{1,2},…,{1,2,3,4,5,6}}

• An event is an element of Power set.
Example E = {1,2,3} 

Source: Wikipedia.org



Probability (Reminder)

• Assigns every event E a number in [0,1] in the following manner:

𝑝 𝐴 =
𝐴

𝑆

• For example, let A = {2,4,6} denote the event of getting an even 
number while rolling a dice once:

𝑝 𝐴 =
2,4,6

1,2,3,4,5,6
=
3

6
=
1

2



Conditional Probability (Reminder)

• If A is the event of interest and we know that the event B has already 
occurred then the conditional probability of A given B:

𝑝 𝐴 𝐵 =
𝑝 𝐴 ∩ 𝐵

𝑝 𝐵
• The basic idea is that the outcomes are restricted to only B then this 

serves as the new sample space.

• Two events A and B are statistically independent if 
𝑝 𝐴 ∩ 𝐵 = 𝑝 𝐴 𝑝 𝐵

• Two events A and B are mutually independent if 
𝑝 𝐴 ∩ 𝐵 = 0



Bayes Theorem (Reminder)

• Let A and B be two events and 𝑝 𝐵 ≠ 0.

𝑝 𝐴 𝐵 =
𝑝 𝐴 𝑝 𝐵 𝐴

𝑝 𝐵



Reminder 

Source: Wikipedia.org
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P(Culprit = Cook | Weapon = Pistol) = 
P(Culprit = Cook, Weapon = Pistol)/P(Weapon = Pistol) = 0.04/0.20 = 0.20

P(Culprit = Butler | Weapon = Pistol) = 
P(Culprit = Butler, Weapon = Pistol)/P(Weapon = Pistol) = 0.16/0.20 = 0.80







Medical diagnosis problem

• We will have (possibly incomplete) information such as symptoms 
and test results.

• We would like the probability that a given disease or a set of diseases 
is causing the symptoms.



Fictional Asia example (Lauritzen and 
Spiegelhalter 1988)
• A recent trip to Asia (A) increases the 

chance of Tuberculosis (T).

• Smoking is a risk factor for both lung 
cancer (L) and Bronchitis (B).

• The presence of either (E) tuberculosis 
or lung cancer can be treated by an X-
ray result (X), but the X-ray alone 
cannot distinguish between them. 

• Dyspnea (D) (shortness of breath) may 
be caused by bronchitis (B), or either 
(E) tuberculosis or lung cancer.

Each node represents a random 
variable
Arrows indicate cause-effect 
relationship



Bayesian networks 

• Let 𝑥𝑖 denote the different possible states of the node 𝑖.

• Associated with each arrow, there is a conditional probability.

• 𝑝 𝑥𝐿 𝑥𝑆 denote the conditional probability that a patient has lung 
cancer given he does or does not smoke. 



Bayesian networks 

• 𝑝 𝑥𝐿 𝑥𝑆 denote the conditional probability that a patient has lung 
cancer given he does or does not smoke. 

• Here we say that “S” node is the parent of the “L” node.



Bayesian networks 

• Some nodes like D might have more than one parent.

• We can write the conditional probability as follows
𝑝(𝑥𝐷|𝑥𝐸 , 𝑥𝐵)

• Bayesian networks and other graphical models are most useful if the 
graph structure is sparse.



Joint probability in Bayesian networks 

• The joint probability that the patient has some combination of the 
symptoms, test results, and diseases is given below:

𝑝 𝒙 = 𝑝( 𝑥𝐴, 𝑥𝑆, 𝑥𝑇 , 𝑥𝐿 , 𝑥𝐵 , 𝑥𝐸 , 𝑥𝑋, 𝑥𝐷 )



Joint probability in Bayesian networks 

𝑝 𝒙 = 𝑝( 𝑥𝐴, 𝑥𝑆, 𝑥𝑇 , 𝑥𝐿, 𝑥𝐵, 𝑥𝐸 , 𝑥𝑋, 𝑥𝐷 )

= 𝑝 𝑥𝐴 𝑝 𝑥𝑆 𝑝 𝑥𝑇 𝑥𝐴 𝑝 𝑥𝐿 𝑥𝑆 𝑝 𝑥𝐵 𝑥𝑆 𝑝 𝑥𝐸 𝑥𝑇 , 𝑥𝐿 𝑝 𝑥𝑋 𝑥𝐸 𝑝(𝑥𝐷|𝑥𝐸 , 𝑥𝐵)



Joint probability in Bayesian networks 

In general, Bayesian network is an acyclic directed graph with N 
random variables 𝑥𝑖 that defines a joint probability function:

𝑝 𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁 = Π 𝑖=1
𝑁

𝑝(𝑥𝑖|𝑃𝑎𝑟 𝑥𝑖 )



Marginal Probabilities

• Probability that a patient has a certain disease:

𝑝 𝑥𝑁 = σ𝑥1
σ𝑥2…σ𝑥 𝑁−1

𝑝(𝑥1, 𝑥2, … , 𝑥𝑁)

• Marginal probabilities are defined in terms of sums of all possible 
states of all other nodes. 

• We refer to approximate marginal probabilities computed at a node 
𝑥𝑖 as beliefs and denote it as follows:

𝑏 𝑥𝑖
• The virtue of BP is that it can compute the beliefs (at least 

approximately) in graphs that can have a large number of nodes 
efficiently.



Pairwise Markov Random Fields

• Attractive theoretical model for many computer vision tasks (Geman 
1984).

• Many computer vision problems such as segmentation, recognition, 
stereo reconstruction are solved.



Pairwise Markov Random Fields

• In a simple depth estimation problem on an image of size 1000 x 
1000, every node can have states from 1 to D denoting different 
distances from the camera center.

Observed variables 𝑦𝑖

Unknown state 𝑥𝑖



Pairwise Markov Random Fields

• Let us observe certain quantities about the image 𝑦𝑖 and we are 
interested in computing other entities about the underlying scene 𝑥𝑖 .

• The indices 𝑖 denote certain pixel locations. 

• Assume that there is some statistical dependency between 𝑥𝑖 and 𝑦𝑖
and let us denote it by some compatibility function 𝜙𝑖 𝑥𝑖 , 𝑦𝑖 , also 
referred to as the evidence.

𝑦𝑖
𝑥𝑖



Pairwise Markov Random Fields

• To be able to infer anything about the scene, there should be some 
kind of structure on 𝑥𝑖 .

• In a 2D grid, 𝑥𝑖 should be compatible with nearby scene elements 𝑥𝑗 .

• Let us consider a  compatibility function 𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗 where the 
function connects only nearby pixel elements.

𝑦𝑖
𝑥𝑖



Pairwise Markov Random Fields

𝑝 𝒙 , 𝒚 =
1

Z
Π 𝑖𝑗 𝜓𝑖𝑗 𝑥𝑖 , 𝑥𝑗 Π𝑖𝜙𝑖(𝑥𝑖 , 𝑦𝑖)

• Here 𝑍 is the normalization constant.

• The Markov Random fields is pairwise because the compatibility 
function depends only on pairs of adjacent pixels. 

• There is no parent-child relationship in MRFs and we don’t have 
directional dependencies. 

𝑦𝑖
𝑥𝑖



Potts Model

• Potts model comes from statistical mechanics, where the Potts model 
consists of spins that are placed on a lattice. Each spin can take
several discrete states, and there is interaction between nearby spins.

• In the MRF, the interaction 𝐽𝑖𝑗 𝑥𝑖 , 𝑥𝑗 between two neighboring nodes 
is given by 

𝐽𝑖𝑗 𝑥𝑖 , 𝑥𝑗 = ln𝜓𝑖𝑗(𝑥𝑖 , 𝑥𝑗) 

• The field ℎ𝑖 𝑥𝑖 at each node is given by 
ℎ𝑖 𝑥𝑖 = ln𝜙𝑖(𝑥𝑖 , 𝑦𝑖)



Potts Model

• The Potts model energy is defined as below:

𝐸 𝑥𝑖 = −

𝑖𝑗

𝐽𝑖𝑗 𝑥𝑖 , 𝑥𝑗 −

𝑖

ℎ 𝑥𝑖



Boltzmann’s law from statistical mechanics

• The pairwise MRF exactly corresponds to the Potts model energy at 
temperature T = 1.

𝑝 𝑥𝑖 =
1

𝑍
𝑒−

𝐸 𝑥𝑖
𝑇

• The normalization constant Z is called the partition function. 



ISING model

• If the number of states is just 2 then the model is called an ising 
model. 

• The problem of computing beliefs can be seen as computing local 
magnetizations in Ising model. 

• The spin glass energy function is written below using two-state spin 
variables 𝑠𝑖 = +1,−1 :

𝐸 𝑠𝑖 = −

𝑖𝑗

𝐽𝑖𝑗 𝑠𝑖 , 𝑠𝑗 −

𝑖

ℎ 𝑠𝑖



Tanner Graphs and Factor Graphs

• Error-correcting codes: We try to decode the information transmitted 
through noisy channel. 

• The first parity check code forces the sum of bits from #1, #2, and #4 
to be even. 

We have transmitted N = 
6 bits with k = 3 parity 
check constraints. 



Tanner Graphs and Factor Graphs

• Let 𝑦𝑖be the received bit and the transmitted bit be given by 𝑥𝑖 .

• Joint probability can be written as follows:

• 𝑝 𝑥, 𝑦 =
1

Z
𝜓124 𝑥1, 𝑥2, 𝑥4 𝜓135 𝑥1, 𝑥3, 𝑥5 𝜓236 𝑥2, 𝑥3, 𝑥6 Π𝑖𝑝(𝑦𝑖|𝑥𝑖)

We have transmitted N = 
6 bits with k = 3 parity 
check constraints. 



Tanner Graphs and Factor Graphs

• The parity check functions have values 1 when the bits satisfy the 
constraint and 0 if they don’t.

• A decoding algorithm typically tries to minimize the number of bits 
that are decoded incorrectly. 

We have transmitted N = 
6 bits with k = 3 parity 
check constraints. 



Factor Graphs (Using Energy or Cost 
functions)

• Factor graphs are bipartite graphs containing two types of 
nodes: variable nodes (circles) and factor nodes (squares).

Toy factor graph with one observed variable, 3 hidden variables, 
and 3 factor nodes



Factor Graphs (Using Energy or Cost 
functions)

• 𝐶 𝑥1, 𝑥2, 𝑥3, 𝑥4 = 𝐶𝑎 𝑥1, 𝑥2, 𝑥3 + 𝐶𝑏 𝑥2, 𝑥4 + 𝐶𝑐(𝑥3, 𝑥4)

Toy factor graph with one observed variable, 3 hidden variables, 
and 3 factor nodes



Factor Graphs (Using Energy or Cost 
functions)



Lowest Energy Configurations

• 𝐶 𝑥1, 𝑥2, 𝑥3, 𝑥4 = 𝐶𝑎 𝑥1, 𝑥2, 𝑥3 + 𝐶𝑏 𝑥2, 𝑥4 + 𝐶𝑐(𝑥3, 𝑥4)

• Finding the lowest energy state and computing the corresponding 
variable assignments is a hard problem

• In most general cases, the problem is NP-hard. 



Factor Graphs for Error Correction

A factor graph for (N=7,k=3) Hamming code, which has 7 codeword bits, of the 
left-most four are information bits and the last 3 are parity bits.



Factor graph for the 
medical expert system

• Here the variables are given by 
Asia (A) , Tuberculosis (T), Lung 
cancer (L), Smoker (S), Bronchitis 
(B), Either (E), X-ray (X), and D. 



Stereo reconstruction in Computer Vision



Set up the Factor graphs

• Point matching between 2 images given the Fundamental matrix.

• Point correspondences between 2 sets of 3D points.


