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The cross-entropy cost function

• Simple scenario with a neuron: take an input 1 and return 0.

• Goal: Learn the weight and the bias term:



Two different initialization settings

Initial settings: 𝑤 = 0.6, 𝑏 = 0.9, 𝜂 = 0.15,
Takes 300 epochs to converge, final output is still 
0.09 and not 0. 

Initial settings: 𝑤 = 1, 𝑏 = 1, 𝜂 = 0.15,
In the first 150 epochs, the weights don’t change 
much. After 300 epochs, final output is still 0.20 and 
not 0. 



Learning behavior

• Humans often learn fastest when we're badly wrong about 
something. 

• The artificial neuron has a lot of difficulty learning when it's badly 
wrong.



Why is learning so slow? And can we find a way of 
avoiding this slowdown?

• Learning is slow is same as saying that the “partial derivatives” are small. 
• Consider the cost function and partial derivatives:

𝐶 =
𝑦−𝑎 2

2
, 𝑎 = 𝜎 𝑧 , 𝑧 = 𝑤𝑥 + 𝑏

𝜕𝐶

𝜕𝑤
= 𝑎 − 𝑦 𝜎′ 𝑧 𝑥,

𝜕𝐶

𝜕𝑏
= 𝑎 − 𝑦 𝜎′ 𝑧

Substituting 𝑥 = 1 and 𝑦 = 0, we have:

𝜕𝐶

𝜕𝑤
= 𝑎𝜎′ 𝑧 ,

𝜕𝐶

𝜕𝑏
= 𝑎𝜎′ 𝑧



Why is learning so slow? And can we find a way of 
avoiding this slowdown?

• Learning is slow is same as saying that the “partial derivatives” are 

small: 
𝜕𝐶

𝜕𝑤
= 𝑎𝜎′ 𝑧 ,

𝜕𝐶

𝜕𝑏
= 𝑎𝜎′ 𝑧

• When the neuron’s output is close to 1, then the 
learning becomes very slow. 

• For the same reason, learning slowdown also occurs 
in larger networks and not just the toy scenario. 



Cross-entropy loss function

• 𝐶 = −
1

𝑛
σ𝑥[𝑦𝑙𝑛𝑎 + 1 − 𝑦 ln 1 − 𝑎 ]

• 𝑛 is the total number of items of training data 

• 𝑥 is the input

• 𝑦 is the required output and 𝑎 is the output from the neuron



Cross-entropy loss function
𝐶 = −

1

𝑛


𝑥

[𝑦𝑙𝑛𝑎 + 1 − 𝑦 ln 1 − 𝑎 ]

• 𝑛 is the total number of items of training data 

• 𝑥 is the input

• 𝑦 is the required output and 𝑎 is the output from 
the neuron

• The cost function is non-negative, i.e., ln 𝑎 is negative whenever 0 ≤ 𝑎 ≤ 1.
• If the neuron’s actual output is close to the desired output, then the cost function is close to 0.



Does cross-entropy avoid learning slowdown?
𝐶 = −

1

𝑛


𝑥

[𝑦𝑙𝑛𝑎 + 1 − 𝑦 ln 1 − 𝑎 ]

• 𝑛 is the total number of items of training data 

• 𝑥 is the input

• 𝑦 is the required output and 𝑎 is the output from 
the neuron

𝜕𝐶

𝜕𝑤𝑗
= −

1

𝑛


𝑥

𝑦

𝜎 𝑧
−

1 − 𝑦

1 − 𝜎 𝑧

𝜕𝜎 𝑧

𝜕𝑤𝑗
= −

1

𝑛


𝑥

𝑦

𝜎 𝑧
−

1 − 𝑦

1 − 𝜎 𝑧
𝜎′ 𝑧 𝑥𝑗

𝜕𝐶

𝜕𝑤𝑗
=

1

𝑛


𝑥

𝜎′ 𝑧 𝑥𝑗

𝜎 𝑧 1 − 𝜎 𝑧
𝜎 𝑧 − 𝑦 =

1

𝑛


𝑥

𝜎 𝑧 − 𝑦 𝑥𝑗

Thus we observe that the rate of learning is dependent on 𝜎 𝑧 − 𝑦 , i.e., the error of the output.
It avoids the learning slowdown caused by 𝜎′ 𝑧 in the quadratic cost function.



Does cross-entropy avoid learning slowdown?
𝐶 = −

1

𝑛


𝑥

[𝑦𝑙𝑛𝑎 + 1 − 𝑦 ln 1 − 𝑎 ]

• 𝑛 is the total number of items of training data 

• 𝑥 is the input

• 𝑦 is the required output and 𝑎 is the output from 
the neuron

𝜕𝐶

𝜕𝑏
= −

1

𝑛


𝑥

𝑦
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−

1 − 𝑦

1 − 𝜎 𝑧

𝜕𝜎 𝑧

𝜕𝑏
= −

1

𝑛


𝑥

𝑦

𝜎 𝑧
−

1 − 𝑦

1 − 𝜎 𝑧
𝜎′ 𝑧

𝜕𝐶

𝜕𝑏
=

1

𝑛


𝑥

𝜎′ 𝑧

𝜎 𝑧 1 − 𝜎 𝑧
𝜎 𝑧 − 𝑦 =

1

𝑛


𝑥

𝜎 𝑧 − 𝑦

Thus we observe that the rate of learning is dependent on 𝜎 𝑧 − 𝑦 , i.e., the error of the output.
It avoids the learning slowdown caused by 𝜎′ 𝑧 in the quadratic cost function.



Initial settings: 𝑤 = 0.6, 𝑏 = 0.9, 𝜂 = 0.005,
Takes 300 epochs to converge, final output is still 0.04. 

Initial settings: 𝑤 = 1, 𝑏 = 1, 𝜂 = 0.005,
After 300 epochs, final output is 0.05. 

Cross-entropy loss



Cross-entropy loss for multiple neurons

• 𝐶 = −
1

𝑛
σ𝑥 σ𝑗[𝑦𝑗 ln 𝑎𝑗

𝐿 + 1 − 𝑦𝑗 ln(1 − 𝑎𝑗
𝐿)]

• The desired values of the output neurons are given by 𝑦1, 𝑦2, …

• The actual output values are given by 𝑎1
𝐿 , 𝑎2

𝐿 , …



SoftMax layer

• New kind of output layer 

𝑎𝑗
𝐿 =

𝑒𝑧𝑗
𝐿

σ𝑘 𝑒𝑧𝑘
𝐿

• The output activations are guaranteed to sum to 1. Could be 
interpreted as probabilities. 

• To prove: Show that a sigmoid output layers don’t always sum to 1.



Monotonicity of SoftMax layer

• Show that 
𝜕𝑎𝑗

𝐿

𝜕𝑧𝑘
𝐿 is positive if 𝑗 = 𝑘, and negative otherwise.



Overfitting and regularization

• Instead of 60000 training images, we use only 1000 training images 
and check the performance on the test data. 



Use of more data avoids overfitting – not 
always feasible

On using the full training data, we have the following:



L2 regularization or weight decay

𝐶 = −
1

𝑛


𝑥𝑗

[𝑦𝑗 ln 𝑎𝑗
𝐿 + 1 − 𝑦𝑖 ln 1 − 𝑎𝑗

𝐿 ] +
𝜆

2𝑛


𝑤

𝑤2

• The first term is just the usual expression for cross-entropy.

• Here 𝜆 is the regularization parameter and 𝑛 is the size of our training 
set. 

• Note that the regularization does not include the bias terms. 

• It is also possible to regularize other cost functions such as the 
quadratic one:

𝐶 =
1

2𝑛
σ𝑥 𝑦 − 𝑎𝐿 2 +

𝜆

2𝑛
σ𝑤 𝑤2



L2 regularization or weight decay

𝐶 = 𝐶0 +
𝜆

2𝑛


𝑤

𝑤2

• The first term is the original cost function (cross-entropy, quadratic, 
etc.)

• The partial derivatives are given by:
𝜕𝐶

𝜕𝑤
=

𝜕𝐶0

𝜕𝑤
+

𝜆

𝑛
𝑤,

𝜕𝐶

𝜕𝑏
=

𝜕𝐶0

𝜕𝑏

• The learning rule for weights and bias terms:

𝑏 → 𝑏 − 𝜂
𝜕𝐶0

𝜕𝑏
, 𝑤 → 𝑤 −

𝜂𝜕𝐶0

𝜕𝑤
−

𝜂𝜆

𝑛
𝑤



Benefits of regularization

• Using 1000 training samples, we see some improvement with the regularization:



Benefits of regularization

• With all the training samples:

Before After



Why regularization reduces overfitting?



L1 regularization

𝐶 = 𝐶𝑜 +
𝜆

𝑛


𝑤

|𝑤|

Intuitively it is same as L2 and tries to penalize large weights.

𝜕𝐶

𝜕𝑤
=

𝜕𝐶0

𝜕𝑤
+

𝜆

𝑛
𝑠𝑔𝑛(𝑤)

Update rule:

𝑤 → 𝑤 −
𝜂𝜕𝐶0

𝜕𝑤
−

𝜂𝜆

𝑛
𝑠𝑔𝑛(𝑤)



Difference between L1 and L2 regularization

• In L1 case, the weights shrink by a constant amount towards 0.

• In L2 case, the weights shrink by an amount that is proportional to 𝑤.

• When the weight has a large magnitude 𝑤 , then the L1 
regularization shrinks less than the L2.

• When the weight has a small magnitude 𝑤 , then the L1 
regularization shrinks more than the L2.

• The net result is that the L1 regularization focuses on the weights of a 
few important connections and the rest are driven to zero. 



Corner case in computation of partial 
derivatives

•
𝜕𝐶

𝜕𝑤
is not defined when 𝑤 = 0. In such scenarios when 𝑤 = 0, we use 

unregularized rule for stochastic gradient descent.



Dropout

• We modify the network itself in dropout.

• We start by randomly (and temporarily) deleting half the 
hidden neurons in the network, while leaving the input 
and output neurons untouched. 

• Note that the dropout neurons, i.e., the neurons which 
have been temporarily deleted, are still ghosted in.

• By repeating this process over and over, our network will 
learn a set of weights and biases. 

• Of course, those weights and biases will have been learnt 
under conditions in which half the hidden neurons were 
dropped out. 

• When we actually run the full network that means that 
twice as many hidden neurons will be active. To 
compensate for that, we halve the weights outgoing from 
the hidden neurons.



Dropout

• This dropout procedure may seem strange and ad hoc. 

• Imagine we train several different neural networks, all using the same training data. 

• Of course, the networks may not start out identical, and as a result after training they 
may sometimes give different results. 

• When that happens we could use some kind of averaging or voting scheme to decide 
which output to accept. 

• For instance, if we have trained five networks, and three of them are classifying a digit as 
a "3", then it probably really is a "3". The other two networks are probably just making a 
mistake. 

• This kind of averaging scheme is often found to be a powerful (though expensive) way of 
reducing overfitting. 

• The reason is that the different networks may overfit in different ways, and averaging 
may help eliminate that kind of overfitting.



Dropout

ImageNet Classification with Deep Convolutional Neural Networks, by 
Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton (2012).

• This technique reduces complex co-adaptations of neurons, since a neuron cannot rely on the 
presence of particular other neurons. 

• It is, therefore, forced to learn more robust features that are useful in conjunction with many 
different random subsets of the other neurons.

• In other words, if we think of our network as a model which is making predictions, then we can 
think of dropout as a way of making sure that the model is robust to the loss of any individual 
piece of evidence. 

• In this, it's somewhat similar to L1 and L2 regularization, which tend to reduce weights, and thus 
make the network more robust to losing any individual connection in the network.

https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf


True success of dropout

• It has shown improvement in a wide variety of problems. 



Training data size

• More training data helps to improve the performance.

• However, it is not always a feasible solution.



Artificial training data

• We can expand our training data by making many small rotations of 
all the MNIST training images, and then using the expanded training 
data to improve our network's performance.

• This idea is very powerful and has been widely used.

Rotate the image by 15 
degrees



Artificial training data

• A feedforward network with 800 hidden neurons and using the cross-
entropy cost function. 

• Running the network with the standard MNIST training data they achieved a 
classification accuracy of 98.4 percent on their test set. But then they 
expanded the training data, using not just rotations, as I described above, 
but also translating and skewing the images. By training on the expanded 
data set they increased their network's accuracy to 98.9 percent. 

• They also experimented with what they called "elastic distortions", a special 
type of image distortion intended to emulate the random oscillations found 
in hand muscles. 

• By using the elastic distortions to expand the data they achieved an even 
higher accuracy, 99.3 percent. Effectively, they were broadening the 
experience of their network by exposing it to the sort of variations that are 
found in real handwriting.

Best Practices for Convolutional Neural Networks Applied to Visual Document 
Analysis, by Patrice Simard, Dave Steinkraus, and John Platt (2003).

http://dx.doi.org/10.1109/ICDAR.2003.1227801


Question

• As discussed above, one way of expanding the MNIST training data is 
to use small rotations of training images. What's a problem that might 
occur if we allow arbitrarily large rotations of training images?



SVM

• Increasing the training data also improves the performance in SVM.



Dataset

• Suppose we're trying to solve a problem using two machine learning 
algorithms, algorithm A and algorithm B. 

• It sometimes happens that algorithm A will outperform algorithm B 
with one set of training data, while algorithm B will outperform 
algorithm A with a different set of training data. 

• Scaling to very very large corpora for natural language 
disambiguation, by Michele Banko and Eric Brill (2001).

• The correct response to the question "Is algorithm A better than 
algorithm B?" is really: "What training data set are you using?"

http://dx.doi.org/10.3115/1073012.1073017


Weight initialization

• One way to do it is choose both the weights and biases using independent 
Gaussian random variables, normalized to have mean 0 and standard 
deviation 1. 

• Is this a good approach?



Weight initialization
• Let us assume that there are 1000 input neurons.

• Normalized Gaussians to initialize the weights connecting to 
the first hidden layer.  

• For simplicity, assume that half the input neurons are 1s and 
the remaining 0s.

• Consider the weighted sum of the input neurons σ 𝑤𝑗𝑥𝑗 + 𝑏 .
500 terms will vanish.

• 𝑧 is the sum over 501 normalized Gaussian variables 
accounting for 500 weight terms and 1 additional bias.

• 𝑧 is itself a Gaussian distribution with zero mean and standard 
deviation 501 ≈ 22.



Weight initialization

• 𝑧 will be large, i.e., 𝑧 ≫ 1, or 𝑧 ≪ −1 . Thus 𝜎 𝑧 will be very close to 0 or 
1. In other words, the hidden neuron is saturated.

• Making small changes in the weights will make absolutely miniscule 
changes in the activation of our hidden neuron.

• Output neurons are saturated on the wrong value causes learning to slow 
down. This can be addressed using cross-entropy loss compared to the 
quadratic one.

• Although it helped saturated output neurons, it does nothing at all for the 
problem with saturated hidden neurons.



Alternative initialization

• Suppose we have a neuron with 𝑛𝑖𝑛 input weights. Let us initialize these weights 
with Gaussian variables with zero mean and standard deviation 

1

𝑛𝑖𝑛
.

• Let the bias be a Gaussian with zero mean and standard deviation 1.

• The weighted sum will again be a Gaussian random variable with zero mean and 
standard deviation 3/2. The variance of a sum of independent random 
variables is the sum of the variances of the individual random variables



Initialization approaches



Initialization approaches

• The final classification accuracy is almost exactly the same in the two 
cases. 

• The new initialization technique brings us there much, much faster. At 
the end of the first epoch of training the old approach to weight 
initialization has a classification accuracy under 87 percent, while the 
new approach is already almost 93 percent. 

• What appears to be going on is that our new approach to weight 
initialization starts us off in a much better regime, which lets us get 
good results much more quickly.



How to choose neural network 
hyperparameters?
• Learning rate η

• Procedure: Find the largest learning rate for which the cost decreases 
during the first few iterations and use this as threshold.

• To remain stable, we use a learning rate that is smaller than the threshold, 
i.e., a factor of 2 compared to the normal threshold.



Early Stopping to avoid overfitting

• Early stopping means that at the end of each epoch we should 
compute the classification accuracy on the validation data. When that 
stops improving, terminate. 

• For robustness, we modify the criteria to do early stopping if the 
classification accuracy hasn't improved during the last n epochs.



Learning rate schedule

• The idea is to hold the learning rate constant until the validation 
accuracy starts to get worse. 

• Then decrease the learning rate by some amount, say a factor of two 
or ten. 

• We repeat this many times, until, say, the learning rate is a factor of 
1,024 (or 1,000) times lower than the initial value. Then we 
terminate.



Regularization parameter

• Start with no regularization 𝜆 = 0 and find the learning rate 𝜂.

• Using the identified learning rate, initialize 𝜆 = 1.

• Increase or decrease the regularization parameter by factors of 10 to 
see improvement in the validation set.

• Then finetune the regularization parameter.

• Then go back and reoptimize the learning rate again.



Minibatch size

• Online learning: Use mini-batch of size 1.

• Use mini-batch of size 100.

• There are good matrix libraries for efficient computation. If mini-batch size is too 
small, you are not utilizing the advantage from matrix libraries. If too large, you 
are not updating enough.

• Try different mini-batch sizes and choose the one that decreases the cost function 
efficiently.



Training or validation set?

• Learning rate

• Regularization parameter

• Early stopping

• Mini-batch size



Variants of stochastic gradient descent

• Hessian technique

Using Taylor’s theorem:
Hessian matrix

Hessian optimization refers to the process of minimizing the cost 
function using Hessian and this tends to be more accurate than 
simple gradient, but very inefficient.



Momentum-based gradient descent

• The momentum technique modifies gradient descent in two ways 
that make it more similar to the physical picture of a ball rolling down 
a terrain.

• First, it introduces a notion of "velocity" for the parameters we're 
trying to optimize. The gradient acts to change the velocity, not 
(directly) the "position", in much the same way as physical forces 
change the velocity, and only indirectly affect position. 

• Second, the momentum method introduces a kind of friction term, 
which tends to gradually reduce the velocity.



Momentum-based gradient descent

• Let us introduce velocity variables for each of the weight parameter, i.e. 
𝑣 = 𝑣1, 𝑣2, … , for each of the corresponding 𝑤𝑗 variable.

• Here the hyperparameter 𝜇 controls the amount of damping and friction in 
the system. It is referred to as the momentum co-efficient and it a bad 
name since it does not really refer to the actual momentum, but rather 
refers to the friction.

• What happens when the hyperparameter is greater than 1, or less than 0?



Hyperbolic tangent



Rectified linear neuron

• By contrast, increasing the weighted input to a rectified linear unit will never 
cause it to saturate, and so there is no corresponding learning slowdown. On the 
other hand, when the weighted input to a rectified linear unit is negative, the 
gradient vanishes, and so the neuron stops learning entirely. 

• Preferred choice for many computer vision problems.



Thank You


