How the backpropagation
algorithm works

Srikumar Ramalingam

School of Computing
University of Utah

Reference

Most of the slides are taken from the second chapter of the online
book by Michael Nielson:

* neuralnetworksanddeeplearning.com

Introduction

 First discovered in 1970.
* First influential paper in 1986:

Rumelhart, Hinton and Williams, Learning representations by back-
propagating errors, Nature, 1986.

Perceptron (Reminder)

0
1

w,

output = <

£

ifw:x-

-6 <0

ifw-x -

b > 0

9 >/>7 output

£3

Sigmoid neuron (Reminder)

T . . » Ot put

* A sigmoid neuron can take real numbers (x4, X, x3) within 0 to 1 and
returns a number within 0 to 1. The weights (w, w,, w3) and the bias
term b are real numbers.

1 o(0) = 0.5,
", o(—o0) = 0,
]' —|_ e - O'(OO) = 1

Sigmoid function o (2)

Matrix equations for neural networks

layer 1 layer 2 layer 3

“-’fm is the weight from the &*" neuron

in the (I —1)** layer to the j*" neuron
in the [*" layer

* Theindices j and k seem a little counter-intuitive!
* Notations are used in this manner to enable matrix
multiplications.

Layer to layer relationship

layer 1 layer 2 layer 3 Examples:
3 _ 3 3 _ 3
a} = a(zjl) a; =0(z7),a; = 0(z3)
— 3 _ 3 2 3
Zjl = z leka]l(1 + b]l Zj = z ijak + b]) € {1,2}
k k=1to 4

I — [-1 [
4G =9 (Z Wik~ T bj) zj = z wiiai + b, j € {1,..,4}
ke

k=1to 4

« b} is the bias term in the j; neuron in the I, layer.

—

* q; is the activation in the j;;, neuron in the [, layer.

~ .

* zj is the weighted input to the j;;, neuron in the Iy, layer.

Cost function from the network

Groundtruth for

, Output activation vector for a specific
each input

training sample x.
[/
0——Zm ()|
of input /

samples

for each input

sample
Input

vector x

Backpropagation and stochastic gradient
descent

* The goal of the backpropagatlon algorithm is to compute the
gradients 9¢ and %% of the cost function C with respect to each and

ow db
every weight and bias parameters. Note that backpropagation is only

used to compute the gradients.

0——Zm 2)|?

 Stochastic gradient descent is the training algorithm.

Assumptions on the cost function

1. We assume that the cost function can be written as the average over

the cost functions from individual training samples: C = %Zx C,.The
cost function for the individual training sample is given by C,, =

~|y(x) — at ()2,

- why do we need this assumption? Backpropagation will only

allow us to compute the gradients with respect to a single training

. aC acC ac acC .
sample as given by a—M’f and a_bx' We then recover P and P by averaging

the gradients from the different training samples.

Assumptions on the cost function (continued)

2. We assume that the cost function can be written as a function of the
output from the neural network. We assume that the input x and its
associated correct labeling y(x) are fixed and treated as constants.

SN
T

ol cost C' = C(al)

e

Hadamard product

* Let s and t are two vectors. The Hadamard product is given by:

st

(s ©1); = sit;
BRI

Such elementwise multiplication is also referred to as schur product.

E.g.

Lot

Backpropagation

, . L ac ac
* Our goal is to compute the partial derivatives ——and —.
awjk ab]-

 We compute some intermediate quantities while doing so:

. oC
% = 3,
J

Four equations of the BP (backpropagation)

Summary: the equations of backpropagation (L is the total number of layers)

ac aa

L _
D O =55t BP1
2) 8; =Y (wit'6¢ o' (2)) BP2
3) > =5 BP3
J

aC _ 1-1¢l
4) _aw]l.k_ak 6]- BP4

Chain Rule in differentiation

* In order to differentiate a function z = f(g(x)) w.r.t x, we can do the
following:

dz dz dy

lety =g(x), z=f(), L=, X4

Chain Rule in differentiation (computation
graph)

V1
0z dz 0y; O
ox z dy; 0x /;.y\‘$
x\‘Vv “

jix€Parent(y;),
yj€EAncestor (z)

Chain Rule in differentiation (vector case)

Let x € R™,y € R", g maps from R™ to R™, and f maps from R" to
R.Ify = g(x) and z = f(y), then

0z 0z Jvyy

X1

a_xi_ ka)’kaxi O O

V1

n 9
Xi ./ Z

Yn

BP1 C = =3 y(z) — a*(@)?

L
To Show:| sL — a_Cai
7 Oaj oz; Variable association for

applying vector chain rule

Here L is the last layer. We get this result by applying chain rule
once.

L
sL = 9¢ _ oc daj

] L— Lag,L"
az] aa] az]

Examples for BP1

3 3
z; a
.1 1 53 = 9C _ oc da}
17 023 9a3az¥
o—
3 ;3 53=ac=acaa§
2 "2 c 27 9z3 dad azd
o—o 6§,=ac=acaa§
3 3 37
Z?? ag 0z3 da3 0z3
aC _da®> aC
§° =505 =7500'(%,
da’> d0z> da®
aC

5]“ = W @ O"(ZL)

Derivates of Sigmoid activation function

do(z)
dz

=0'(z2) = (DA +e?)7*(-1)e”*
B e % B e f+1-1
1+ e 22 (14 e?)?

B 1 ! 1
14 e 1+e 2

=0(2)(1 - 0(2))

Derivates of quadratic objective function

Iy at ((y1 al)’ + (y, — a%) + - +(Yn_an))
aC
aaL (y] a])

(Y1 —aq)]
aC (YZTQZ)

dar

O — an)]

BP2

6f = Z(wiy '8 e’ ()

Proof:

ac 6zl+1

1 _ dz; l+1
5] - Zk azl+1 Zk aZ

l+1 Z Wl+1a + bk — Z Wl+10.(Zl) + bk

By differentiating we have:

Vectorized notation: §' = (W*H)T§*1 © o'(2))

Variable association for
applying vector chain rule

BP2 Example

0
— 4 3
C 52=6_C= ac azk 253%
b 922 i 023 022 : 022
22 ;3
Variable association for 3
applying vector chain rule 0zj
Zwkja(z) + b 5,2 = Wir0 (z%
Z1

4 4
az;
= Z 367k = Z iWi10'(2f) = (87wi; + 83w3; + 83w3; + 85wiy) o' (2f)
k=1 L k=
4

5ka1U (z5) = (6{wiy + 83w3, + 83w3, + Swiy) o' (25)

BP3

ac

— =

abl J

j Variable association for
Proof: applying vector chain rule
l [

a0C aC 6z,lc ac 0z; 0z}, : :
— = —— | = ——=, the other terms — vanish when j # k.
ob! Lk (az,l{ ab}> oz} ob! ob! J

51 0(Zk wikay " +bj)

J db;

_ <l
= 5]

z3 =w3a? + b3

BP3 Example

Variable association for
applying vector chain rule

0C ., ~o0C a7 9C 0z
opd Tt £ 0z} 0bf 0z 0b7

_ 5! 0(Zf=1 Wikak+h3)_ 5L 0C _ sl
1 ab3 1 ab3

BP4

aC

— 4141 (A
an — ak 5] w Z
Jk Variable association for
Proof: applying vector chain rule
ac) ac dzh,
aw}k m 0z,ln aw}k
oC az]l- az]l- _
= — and the other terms when m +# j.
0z; ow ik oW jik

_ 51 90@kwiai” + bj)
J aW]k

ool -1
—SJa

BP4 Example

0C _ 5
3~ — U201
anZ Variable association for
Proof' applying vector chain rule
0C ~O 0C 0z OC 0z 3a(zkwfza§+bf)_53]
aWS o 623 aW3 T aZ3 aWB 1 aW — 1a2
12 m 12 1 12 12

m

The backpropagation algorithm

1. Input z: Set the corresponding activation a' for the input

layer.

2. Feedforward: Foreach! = 2,3,..., L compute

zl =wla! +b' and a! = ().

L
3. Output error §°: Compute SL = a_Cai

7 daj 0z}

4. Backpropagate the error: Foreachi=L — 1,L — 2,...,2

compute '
P 5 = > it o' (7))
k

o1

Output: The gradient of the cost function is given by

The word “backpropagation” comes from the fact that we compute the error vectors 5]-1 in the backward
direction.

Gradients using finite differences

0C C(w+ eej) — C(w)

— |

awj €

Here € is a small positive number and g; is the unit vector in the jth direction.
Conceptually very easy to implement.
In order to compute this derivative w.r.t one parameter, we need to do one forward pass
— for millions of variables we will have to do millions of forward passes.

- Backpropagation can get all the gradients in just one forward and backward
pass — forward and backward passes are roughly equivalent in computations.

The derivatives using finite differences would be a million times slower!!

BP mterpretatmn

° —
643 'y>o
\‘ /"3’2

0x; ’ ot ot 0xq ot 0x, Ot 0x3

dx; 0y, 0x; 0y,
6_C _(dy, 0C n dy, 0C n dx, {0y, OC n dy, 0C + dx3 {0y, OC n dy, 0C _
at dxq 0y, 0xq10Yy, ot \dx, dy; 0x, 0y, dt \dx3 dy; O0x30Yy, -

ot
Bxl ayl aCc | 6x1 ayz aC + axz ayl dC axz ayz dC + 6x3 ayl acC 6x3 ayz acC

ot Bxl ale ot 6x1 ayz ot axz ayl ot axz ayz ot aX3 ayl ot 6x3 ayz

Backpropagation — the big picture

AC ~ Z 8C dak, Oay ! “‘&léﬂ 3%
dal, Bar~' day? dal !

mnp. . .q w gk

Aw;k
* To compute the total change in C we need to consider all possible paths from the

weight to the cost.

_ _ l

oC 5 8C 98ak, 0al' dalt 9a;
I L L1 q9,L-2 """ l l
8wjk_ da;, Oay ~ Oa, 8aj awjk

mnp. . .q
* We are computing the rate of change of C w.r.t a weight w.

* Every edge between two neurons in the network is associated with a rate factor that is
just the ratio of partial derivatives of one neurons activation with respect to another
neurons activation.

* The rate factor for a path is just the product of the rate factors of the edges in the path.

* The total change is the sum of the rate factors of all the paths from the weight to the
cost.

Thank You

DERIVATIVE RULES

d ;. . d . . d .
dx[ﬁ:)znx ! E{mnx}zcﬂsx E(cnsx}z—smx
d, . . d d 3
dx(a-)zlna-ﬂ E(tanx]zse-:lx (cotx)=—ecsc” x
i{f(*{]- (x))=f(x)-g'(x)+ g(x)- f'(x) E{sraﬁ: x)=secxtanx i(csc x)=—cscxcotx
a8 ety A A d "
d [f{xJJ:g(x)-f{xj—fix}g(x} 4 (arosinr) = (arctanx) =L,
dx| g(x) (g(x)) dx 1— 2 dx l+x
i{f (g(x))=f"(g(x)-g'(x) i(arc secx) = J
dx , , dx ‘ xx.l'xz—l
d | d ., . d :
E{lnx)—; E{smhx)—cnshx E{cc—shx}-smhx

Source: http://math.arizona.edu/~calc/Rules.pdf

j‘x"deLx”'l +e, n#x-—1
n+1

X 1 X
a - +
I dx a C
Ina

ji{fr: 111|:1:|+c
X

—arcsinx4c

dx
2
-X

by

dx
j ——arctanx+c
1+x°

—arcsecx—+c

ji
xw,f'x?‘ —1

INTEGRAL RULES

Isinx:itz—cﬂsx+c
Icasxﬁix —sinx+c

i |
Isec“ xdx=tanx+4c¢

Isinh xdx =coshx+e¢

.
Icsc“ xdx=—cotx+c¢
Ise-::xtan xadx =secx+c
Icsc xcotxdr=—cscx+e

Icosh xadx=smhx+e¢

Source: http://math.arizona.edu/~calc/Rules.pdf

