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Reference

Most of the slides are taken from the second chapter of the online
book by Michael Nielson:

* neuralnetworksanddeeplearning.com



Introduction

 First discovered in 1970.
* First influential paper in 1986:

Rumelhart, Hinton and Williams, Learning representations by back-
propagating errors, Nature, 1986.



Perceptron (Reminder)
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Sigmoid neuron (Reminder)
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* A sigmoid neuron can take real numbers (x4, X, x3) within 0 to 1 and
returns a number within 0 to 1. The weights (w, w,, w3) and the bias
term b are real numbers.
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Matrix equations for neural networks

layer 1 layer 2 layer 3

“-’fm is the weight from the &*" neuron

in the (I —1)** layer to the j*" neuron
in the [*" layer

* Theindices j and k seem a little counter-intuitive!
* Notations are used in this manner to enable matrix
multiplications.



Layer to layer relationship

layer 1 layer 2 layer 3 Examples:
3 _ 3 3 _ 3
a} = a(zjl) a; =0(z7),a; = 0(z3)
— 3 _ 3 2 3
Zjl = z leka]l( 1 + b]l Zj = z ijak + b] ) € {1,2}
k k=1to 4

I — [ -1 [
4G =9 (Z Wik~ T bj) zj = z wiiai + b, j € {1,..,4}
ke

k=1to 4

« b} is the bias term in the j; neuron in the I, layer.

—

* q; is the activation in the j;;, neuron in the [, layer.

~ .

* zj is the weighted input to the j;;, neuron in the Iy, layer.



Cost function from the network
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Backpropagation and stochastic gradient
descent

* The goal of the backpropagatlon algorithm is to compute the
gradients 9¢ and %% of the cost function C with respect to each and

ow db
every weight and bias parameters. Note that backpropagation is only

used to compute the gradients.

0——Zm 2)|?

 Stochastic gradient descent is the training algorithm.



Assumptions on the cost function

1. We assume that the cost function can be written as the average over

the cost functions from individual training samples: C = %Zx C,.The
cost function for the individual training sample is given by C,, =

~|y(x) — at ()2,

- why do we need this assumption? Backpropagation will only

allow us to compute the gradients with respect to a single training

. aC acC ac acC .
sample as given by a—M’f and a_bx' We then recover P and P by averaging

the gradients from the different training samples.



Assumptions on the cost function (continued)

2. We assume that the cost function can be written as a function of the
output from the neural network. We assume that the input x and its
associated correct labeling y(x) are fixed and treated as constants.
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Hadamard product

* Let s and t are two vectors. The Hadamard product is given by:

st

(s ©1); = sit;
BRI

Such elementwise multiplication is also referred to as schur product.

E.g.

Lot




Backpropagation

, . L ac ac
* Our goal is to compute the partial derivatives ——and —.
awjk ab]-

 We compute some intermediate quantities while doing so:
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Four equations of the BP (backpropagation)

Summary: the equations of backpropagation (L is the total number of layers)

ac aa

L _
D O =55t BP1
2) 8; =Y (wit'6¢ o' (2)) BP2
3) > =5 BP3
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aC  _ 1-1¢l
4) _aw]l.k_ak 6]- BP4



Chain Rule in differentiation

* In order to differentiate a function z = f(g(x)) w.r.t x, we can do the
following:

dz dz dy

lety =g(x), z=f(), L=, X4



Chain Rule in differentiation (computation
graph)
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Chain Rule in differentiation (vector case)

Let x € R™,y € R", g maps from R™ to R™, and f maps from R" to
R.Ify = g(x) and z = f(y), then

0z 0z Jvyy
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a_xi_ ka)’kaxi O O
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BP1 C = =3 y(z) — a*(@)?

L
To Show:| sL — a_Cai
7 Oaj oz; Variable association for

applying vector chain rule

Here L is the last layer. We get this result by applying chain rule
once.

L
sL = 9¢ _ oc daj

] L— Lag,L"
az] aa] az]



Examples for BP1
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Derivates of Sigmoid activation function

do(z)
dz

=0'(z2) = (DA +e?)7*(-1)e”*
B e % B e f+1-1
1+ e 22 (14 e?)?

B 1 ! 1
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Derivates of quadratic objective function

Iy at ((y1 al)’ + (y, — a%) + - +(Yn_an))
aC
aaL (y] a])

(Y1 —aq)]
aC (YZTQZ)

dar

O — an)]



BP2

6f = Z(wiy '8 e’ ()

Proof:

ac 6zl+1

1 _ dz; l+1
5] - Zk azl+1 Zk aZ

l+1 Z Wl+1a + bk — Z Wl+10.(Zl) + bk

By differentiating we have:

Vectorized notation: §' = (W*H)T§*1 © o'(2))

Variable association for
applying vector chain rule



BP2 Example

0
— 4 3
C 52=6_C= ac azk 253%
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Variable association for 3
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BP3
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j Variable association for
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z3 =w3a? + b3

BP3 Example

Variable association for
applying vector chain rule

0C ., ~o0C a7 9C 0z
opd Tt £ 0z} 0bf 0z 0b7
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BP4

aC

— 4141 (A
an — ak 5] w Z
Jk Variable association for
Proof: applying vector chain rule
ac ) ac dzh,
aw}k m 0z,ln aw}k
oC az]l- az]l- _
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BP4 Example

0C _ 5
3~ — U201
anZ Variable association for
Proof' applying vector chain rule
0C ~O 0C 0z OC 0z 3a(zkwfza§+bf)_53 ]
aWS o 623 aW3 T aZ3 aWB 1 aW — 1a2
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The backpropagation algorithm

1. Input z: Set the corresponding activation a' for the input

layer.

2. Feedforward: Foreach! = 2,3,..., L compute

zl =wla! +b' and a! = ().

L
3. Output error §°: Compute SL = a_Cai

7 daj 0z}

4. Backpropagate the error: Foreachi=L — 1,L — 2,...,2

compute '
P 5 = > it o' (7))
k

o1

Output: The gradient of the cost function is given by

The word “backpropagation” comes from the fact that we compute the error vectors 5]-1 in the backward
direction.



Gradients using finite differences

0C  C(w+ eej) — C(w)

— |

awj €

Here € is a small positive number and g; is the unit vector in the jth direction.
Conceptually very easy to implement.
In order to compute this derivative w.r.t one parameter, we need to do one forward pass
— for millions of variables we will have to do millions of forward passes.

- Backpropagation can get all the gradients in just one forward and backward
pass — forward and backward passes are roughly equivalent in computations.

The derivatives using finite differences would be a million times slower!!



BP mterpretatmn
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Backpropagation — the big picture

AC ~ Z 8C  dak, Oay ! “‘&léﬂ 3%
dal, Bar~' day?  dal !

mnp. . .q w gk

Aw;k
* To compute the total change in C we need to consider all possible paths from the

weight to the cost.

_ _ l

oC 5 8C 98ak, 0al'  dalt 9a;
I L L1 q9,L-2 """ l l
8wjk_ da;, Oay ~ Oa, 8aj awjk

mnp. . .q
* We are computing the rate of change of C w.r.t a weight w.

* Every edge between two neurons in the network is associated with a rate factor that is
just the ratio of partial derivatives of one neurons activation with respect to another
neurons activation.

* The rate factor for a path is just the product of the rate factors of the edges in the path.

* The total change is the sum of the rate factors of all the paths from the weight to the
cost.



Thank You



DERIVATIVE RULES

d ;. . d . . d .
dx[ﬁ: )znx ! E{mnx}zcﬂsx E(cnsx}z—smx
d, . . d d 3
dx(a- )zlna-ﬂ E(tanx]zse-:lx (cotx)=—ecsc” x
i{f(*{]- (x))=f(x)-g'(x)+ g(x)- f'(x) E{sraﬁ: x)=secxtanx i(csc x)=—cscxcotx
a8 ety A A d "
d [f{xJJ:g(x)-f{xj—fix}g(x} 4 (arosinr) = (arctanx) =L,
dx| g(x) (g(x)) dx 1— 2 dx l+x
i{f (g(x))=f"(g(x)-g'(x) i(arc secx) = J
dx , , dx ‘ xx.l'xz—l
d | d ., . d :
E{lnx)—; E{smhx)—cnshx E{cc—shx}-smhx

Source: http://math.arizona.edu/~calc/Rules.pdf
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INTEGRAL RULES

Isinx:itz—cﬂsx+c
Icasxﬁix —sinx+c

i |
Isec“ xdx=tanx+4c¢

Isinh xdx =coshx+e¢

.
Icsc“ xdx=—cotx+c¢
Ise-::xtan xadx =secx+c
Icsc xcotxdr=—cscx+e

Icosh xadx=smhx+e¢

Source: http://math.arizona.edu/~calc/Rules.pdf



