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Reference

Most of the slides are taken from the second chapter of the online 
book by Michael Nielson:

• neuralnetworksanddeeplearning.com



Introduction

• First discovered in 1970.

• First influential paper in 1986:

Rumelhart, Hinton and Williams, Learning representations by back-
propagating errors, Nature, 1986.



Perceptron (Reminder)



Sigmoid neuron (Reminder)

• A sigmoid neuron can take real numbers (𝑥1, 𝑥2, 𝑥3) within 0 to 1 and 
returns a number within 0 to 1. The weights (𝑤1, 𝑤2, 𝑤3) and the bias 
term 𝑏 are real numbers. 

Sigmoid function

𝜎 0 = 0.5,
𝜎 −∞ = 0,
𝜎 ∞ = 1



Matrix equations for neural networks

• The indices 𝑗 and 𝑘 seem a little counter-intuitive! 
• Notations are used in this manner to enable matrix 

multiplications. 



Layer to layer relationship

• 𝑏𝑗
𝑙 is the bias term in the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer. 

• 𝑎𝑗
𝑙 is the activation in the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer.

• 𝑧𝑗
𝑙 is the weighted input to the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer. 

𝑎𝑗
𝑙 = 𝜎(𝑧𝑗

𝑙)

𝑧𝑗
𝑙 =෍

𝑘

𝑤𝑗𝑘
𝑙 𝑎𝑘

𝑙−1 + 𝑏𝑗
𝑙

Examples:

𝑎1
3 = 𝜎 𝑧1

3 , 𝑎2
3 = 𝜎 𝑧2

3

𝑧𝑗
3 = ෍

𝑘=1 𝑡𝑜 4

𝑤𝑗𝑘
3 𝑎𝑘

2 + 𝑏𝑗
3 , 𝑗 ∈ {1,2}

𝑧𝑗
2 = ෍

𝑘=1 𝑡𝑜 4

𝑤𝑗𝑘
2 𝑎𝑘

1 + 𝑏𝑗
2, 𝑗 ∈ {1, . . , 4}



Cost function from the network

# of input 
samples

for each input 
sample

Output activation vector for a specific 
training sample 𝑥.

Groundtruth for 
each input

Input 
vector x



Backpropagation and stochastic gradient 
descent
• The goal of the backpropagation algorithm is to compute the 

gradients 
𝜕𝐶

𝜕𝑤
and 

𝜕𝐶

𝜕𝑏
of the cost function C with respect to each and 

every weight and bias parameters. Note that backpropagation is only 
used to compute the gradients.

• Stochastic gradient descent is the training algorithm.



Assumptions on the cost function

1. We assume that the cost function can be written as the average over 

the cost functions from individual training samples: 𝐶 =
1

𝑛
σ𝑥 𝐶𝑥. The 

cost function for the individual training sample is given by 𝐶𝑥 =
1

2
𝑦 𝑥 − 𝑎𝐿 𝑥 2.

- why do we need this assumption? Backpropagation will only 
allow us to compute the gradients with respect to a single training 

sample as given by 
𝜕𝐶𝑥

𝜕𝑤
and 

𝜕𝐶𝑥

𝜕𝑏
. We then recover 

𝜕𝐶

𝜕𝑤
and 

𝜕𝐶

𝜕𝑏
by averaging 

the gradients from the different training samples. 



Assumptions on the cost function (continued)

2. We assume that the cost function can be written as a function of the 
output from the neural network. We assume that the input 𝑥 and its 
associated correct labeling 𝑦 𝑥 are fixed and treated as constants. 



Hadamard product
• Let 𝑠 and 𝑡 are two vectors. The Hadamard product is given by:

Such elementwise multiplication is also referred to as schur product. 

𝐸. 𝑔. ,
1
2
3

⊙
2
2
2

=
2
4
6



Backpropagation

• Our goal is to compute the partial derivatives 
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 and 

𝜕𝐶

𝜕𝑏𝑗
𝑙 .

• We compute some intermediate quantities while doing so:

𝛿𝑗
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙



Four equations of the BP (backpropagation)

Summary: the equations of backpropagation (𝐿 is the total number of layers)

1) 𝛿𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿 𝐵𝑃1

2) 𝛿𝑗
𝑙 = σ𝑘(𝑤𝑘𝑗

𝑙+1𝛿𝑘
𝑙+1)𝜎′ 𝑧𝑗

𝑙 𝐵𝑃2

3)
𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙 𝐵𝑃3

4)
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝑎𝑘

𝑙−1𝛿𝑗
𝑙 𝐵𝑃4



Chain Rule in differentiation

• In order to differentiate a function z = 𝑓 𝑔 𝑥 w.r.t 𝑥, we can do the 
following:

Let y = 𝑔 𝑥 , 𝑧 = 𝑓 𝑦 ,
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦
×

𝑑𝑦

𝑑𝑥



Chain Rule in differentiation (computation 
graph)

𝜕𝑧

𝜕𝑥
= ෍

𝑗:𝑥∈𝑃𝑎𝑟𝑒𝑛𝑡 𝑦𝑗 ,

𝑦𝑗∈𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝑧)

𝜕𝑧

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑥
𝑥 𝑧

𝑦1

𝑦2

𝑦3



Chain Rule in differentiation (vector case)

Let 𝑥 ∈ ℝ𝑚, 𝑦 ∈ ℝ𝑛, g maps from ℝ𝑚 to ℝ𝑛, and 𝑓 maps from ℝ𝑛 to 
ℝ. If 𝑦 = 𝑔 𝑥 and 𝑧 = 𝑓 𝑦 , then 

𝜕𝑧

𝜕𝑥𝑖
=෍

𝑘

𝜕𝑧

𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝑥𝑖

𝑥𝑖 𝑧

𝑦1

𝑦𝑘

𝑦𝑛𝑥𝑚

𝑥1



BP1 

Here L is the last layer. We get this result by applying chain rule 
once. 

𝛿𝑗
𝐿 =

𝜕𝐶

𝜕𝑧𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿 .

To Show:

𝑧𝑗
𝐿 𝑎𝑗

𝐿 𝐶

𝛿𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿 Variable association for 

applying vector chain rule



Examples for BP1

𝑧3
3 𝑎3

3

𝐶

𝛿1
3 =

𝜕𝐶

𝜕𝑧1
3 =

𝜕𝐶

𝜕𝑎1
3

𝜕𝑎1
3

𝜕𝑧1
3, 

𝛿2
3 =

𝜕𝐶

𝜕𝑧2
3 =

𝜕𝐶

𝜕𝑎2
3

𝜕𝑎2
3

𝜕𝑧2
3, 

𝛿3
3 =

𝜕𝐶

𝜕𝑧3
3 =

𝜕𝐶

𝜕𝑎3
3

𝜕𝑎3
3

𝜕𝑧3
3, 

𝑧2
3 𝑎2

3

𝑧1
3 𝑎1

3

𝛿3 =
𝜕𝐶

𝜕𝑎3
⊙

𝜕𝑎3

𝜕𝑧3
=

𝜕𝐶

𝜕𝑎3
⊙𝜎′ 𝑧3 ,

𝛿𝐿 =
𝜕𝐶

𝜕𝑎𝐿
⊙𝜎′(𝑧𝐿)



Derivates of Sigmoid activation function

𝜎 𝑧 =
1

1 + 𝑒−𝑧

𝑑𝜎 𝑧

𝑑𝑧
= 𝜎′(𝑧) = −1 1 + 𝑒−𝑧 −2 −1 𝑒−𝑧

=
𝑒−𝑧

1 + 𝑒−𝑧 2 =
𝑒−𝑧 + 1 − 1

1 + 𝑒𝑧 2

=
1

1 + 𝑒−𝑧
1 −

1

1 + 𝑒−𝑧

= 𝜎(𝑧)(1 − 𝜎 𝑧 )



Derivates of quadratic objective function

𝐶 =
1

2
𝑦 − 𝑎𝐿 2 =

1

2
y1 − a1

L 2
+ y2 − a2

L
2
+⋯+ yn − an

L 2

𝜕𝐶

𝜕𝑎𝑗
𝐿 = 𝑦𝑗 − 𝑎𝑗

𝜕𝐶

𝜕𝑎𝐿
=

(𝑦1 − 𝑎1)
(𝑦2 − 𝑎2).

.
(𝑦𝑛 − 𝑎𝑛)



BP2

𝛿𝑗
𝑙 = σ𝑘(𝑤𝑘𝑗

𝑙+1𝛿𝑘
𝑙+1)𝜎′ 𝑧𝑗

𝑙

Proof:

𝛿𝑗
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙 = σ𝑘

𝜕𝐶

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑗
𝑙 = σ𝑘

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑗
𝑙 𝛿𝑘

𝑙+1

𝑧𝑘
𝑙+1 = σ𝑗𝑤𝑘𝑗

𝑙+1𝑎𝑗
𝑙 + 𝑏𝑘

𝑙 = σ𝑗𝑤𝑘𝑗
𝑙+1𝜎 𝑧𝑗

𝑙 + 𝑏𝑘
𝑙

By differentiating we have:
𝜕𝑧𝑘

𝑙+1

𝜕𝑧𝑗
𝑙 = 𝑤𝑘𝑗

𝑙+1𝜎′ 𝑧𝑗
𝑙

𝛿𝑗
𝑙 = σ𝑘(𝑤𝑘𝑗

𝑙+1𝛿𝑘
𝑙+1)𝜎′ 𝑧𝑗

𝑙

Vectorized notation: 𝛿𝑙 = (𝑤𝑙+1)𝑇𝛿𝑙+1 ⊙𝜎′(𝑧𝑙)

𝑧𝑙 𝑧𝑙+1

𝐶

Variable association for 
applying vector chain rule



BP2 Example

𝑧2 𝑧3

𝐶 𝛿1
2 =

𝜕𝐶

𝜕𝑧1
2 = ෍

𝑘=1

4
𝜕𝐶

𝜕𝑧𝑘
3

𝜕𝑧𝑘
3

𝜕𝑧1
2 =෍

𝑘=1

4

𝛿𝑘
3 𝜕𝑧𝑘

3

𝜕𝑧1
2

𝑧𝑘
3 =෍

𝑗=1

3

𝑤𝑘𝑗
3 𝜎(𝑧𝑗

2) + 𝑏𝑘
3 ,

𝜕𝑧𝑘
3

𝜕𝑧1
2 = 𝑤𝑘1

3 𝜎′ 𝑧1
2

𝛿1
2 = ෍

𝑘=1

4

𝛿𝑘
3 𝜕𝑧𝑘

3

𝜕𝑧1
2 =෍

𝑘=1

4

𝛿𝑘
3𝑤𝑘1

3 𝜎′ 𝑧1
2 = (𝛿1

3𝑤11
3 + 𝛿2

3𝑤21
3 + 𝛿3

3𝑤31
3 + 𝛿4

3𝑤41
3 ) 𝜎′ 𝑧1

2

𝛿2
2 = ෍

𝑘=1

4

𝛿𝑘
3𝑤𝑘1

3 𝜎′ 𝑧2
2 = (𝛿1

3𝑤12
3 + 𝛿2

3𝑤22
3 + 𝛿3

3𝑤32
3 + 𝛿4

3𝑤42
3 ) 𝜎′ 𝑧2

2

Variable association for 
applying vector chain rule



BP3

𝜕𝐶

𝜕𝑏𝑗
𝑙
= 𝛿𝑗

𝑙

Proof:
𝜕𝐶

𝜕𝑏𝑗
𝑙 = σ𝑘

𝜕𝐶

𝜕𝑧𝑘
𝑙

𝜕𝑧𝑘
𝑙

𝜕𝑏𝑗
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙

𝜕𝑧𝑗
𝑙

𝜕𝑏𝑗
𝑙 , the other terms 

𝜕𝑧𝑘
𝑙

𝜕𝑏𝑗
𝑙 vanish when 𝑗 ≠ 𝑘.

= 𝛿𝑗
𝑙
𝜕 σ𝑘𝑤𝑗𝑘𝑎𝑘

𝑙−1 + 𝑏𝑗
𝑙

𝜕𝑏𝑗

= 𝛿𝑗
𝑙

𝑏𝑙 𝑧𝑙

𝐶

Variable association for 
applying vector chain rule



BP3 Example
𝑧3 = 𝑤3𝑎2 + 𝑏3

𝜕𝐶

𝜕𝑏1
3 = 𝛿1

3 = ෍

𝑘=1

3
𝜕𝐶

𝜕𝑧𝑘
3

𝜕𝑧𝑘
3

𝜕𝑏1
3 =

𝜕𝐶

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑏1
3

= 𝛿1
𝑙 𝜕(σ𝑘=1

3 𝑤1𝑘
3 𝑎𝑘

2+𝑏1
3)

𝜕𝑏1
3 = 𝛿1

𝑙 𝜕𝐶

𝜕𝑏3
= 𝛿𝑙

𝑏3 𝑧3

𝐶

Variable association for 
applying vector chain rule



BP4

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙
= 𝑎𝑘

𝑙−1𝛿𝑗
𝑙

Proof: 
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = σ𝑚

𝜕𝐶

𝜕𝑧𝑚
𝑙

𝜕𝑧𝑚
𝑙

𝜕𝑤𝑗𝑘
𝑙

=
𝜕𝐶

𝜕𝑧𝑗
𝑙

𝜕𝑧𝑗
𝑙

𝜕𝑤𝑗𝑘
and the other terms  

𝜕𝑧𝑗
𝑙

𝜕𝑤𝑗𝑘
when 𝑚 ≠ 𝑗.

= 𝛿𝑗
𝑙
𝜕 σ𝑘𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙

𝜕𝑤𝑗𝑘

= 𝛿𝑗
𝑙 𝑎𝑘

𝑙−1

𝑤𝑙 𝑧𝑙

𝐶

Variable association for 
applying vector chain rule



BP4 Example

𝜕𝐶

𝜕𝑤12
3 = 𝑎2

2𝛿1
3

Proof: 

𝜕𝐶

𝜕𝑤12
3 =෍

𝑚

𝜕𝐶

𝜕𝑧𝑚
3

𝜕𝑧𝑚
3

𝜕𝑤12
3 =

𝜕𝐶

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑤12
3 = 𝛿1

3
𝜕 σ𝑘𝑤12

3 𝑎2
2 + 𝑏1

3

𝜕𝑤12
= 𝛿1

3𝑎2
2

𝑤3 𝑧3

𝐶

Variable association for 
applying vector chain rule



The backpropagation algorithm

The word “backpropagation” comes from the fact that we compute the error vectors 𝛿𝑗
𝑙 in the backward 

direction.

𝛿𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿 .

𝛿𝑗
𝑙 =෍

𝑘

(𝑤𝑘𝑗
𝑙+1𝛿𝑘

𝑙+1)𝜎′ 𝑧𝑗
𝑙



Gradients using finite differences

Here 𝜖 is a small positive number and 𝑒𝑗 is the unit vector in the jth direction.

Conceptually very easy to implement.
In order to compute this derivative w.r.t one parameter, we need to do one forward pass 
– for millions of variables we will have to do millions of forward passes.

- Backpropagation can get all the gradients in just one forward and backward 
pass – forward and backward passes are roughly equivalent in computations. 

The derivatives using finite differences would be a million times slower!!



BP interpretation

𝜕𝐶

𝜕𝑥𝑖
=

𝜕𝑦1
𝜕𝑥𝑖

𝜕𝐶

𝜕𝑦1
+
𝜕𝑦2
𝜕𝑥𝑖

𝜕𝐶

𝜕𝑦2
,

𝑥2
𝐶

𝑦1

𝑦2

𝑥1

𝑡

𝑥3

𝜕𝐶

𝜕𝑡
= (

𝜕𝑥1

𝜕𝑡

𝜕𝐶

𝜕𝑥1
+

𝜕𝑥2

𝜕𝑡

𝜕𝐶

𝜕𝑥2
+ 
𝜕𝑥3

𝜕𝑡

𝜕𝐶

𝜕𝑥3
)

𝜕𝐶

𝜕𝑡
= (

𝜕𝑥1

𝜕𝑡

𝜕𝑦1

𝜕𝑥1

𝜕𝐶

𝜕𝑦1
+

𝜕𝑦2

𝜕𝑥1

𝜕𝐶

𝜕𝑦2
+

𝜕𝑥2

𝜕𝑡

𝜕𝑦1

𝜕𝑥2

𝜕𝐶

𝜕𝑦1
+

𝜕𝑦2

𝜕𝑥2

𝜕𝐶

𝜕𝑦2
+ 
𝜕𝑥3

𝜕𝑡

𝜕𝑦1

𝜕𝑥3

𝜕𝐶

𝜕𝑦1
+

𝜕𝑦2

𝜕𝑥3

𝜕𝐶

𝜕𝑦2
) =

𝜕𝑥1

𝜕𝑡

𝜕𝑦1

𝜕𝑥1

𝜕𝐶

𝜕𝑦1
+
𝜕𝑥1

𝜕𝑡

𝜕𝑦2

𝜕𝑥1

𝜕𝐶

𝜕𝑦2
+

𝜕𝑥2

𝜕𝑡

𝜕𝑦1

𝜕𝑥2

𝜕𝐶

𝜕𝑦1
+

𝜕𝑥2

𝜕𝑡

𝜕𝑦2

𝜕𝑥2

𝜕𝐶

𝜕𝑦2
+

𝜕𝑥3

𝜕𝑡

𝜕𝑦1

𝜕𝑥3

𝜕𝐶

𝜕𝑦1
+

𝜕𝑥3

𝜕𝑡

𝜕𝑦2

𝜕𝑥3

𝜕𝐶

𝜕𝑦2



Backpropagation – the big picture

• To compute the total change in C we need to consider all possible paths from the 
weight to the cost. 

• We are computing the rate of change of C w.r.t a weight w. 

• Every edge between two neurons in the network is associated with a rate factor that is 
just the ratio of partial derivatives of one neurons activation with respect to another 
neurons activation.

• The rate factor for a path is just the product of the rate factors of the edges in the path.

• The total change is the sum of the rate factors of all the paths from the weight to the 
cost.



Thank You



Source: http://math.arizona.edu/~calc/Rules.pdf



Source: http://math.arizona.edu/~calc/Rules.pdf


