
How the backpropagation
algorithm works

Srikumar Ramalingam

School of Computing

University of Utah

Reference

Most of the slides are taken from the second chapter of the online
book by Michael Nielson:

• neuralnetworksanddeeplearning.com

Introduction

• First discovered in 1970.

• First influential paper in 1986:

Rumelhart, Hinton and Williams, Learning representations by back-
propagating errors, Nature, 1986.

Perceptron (Reminder)

Sigmoid neuron (Reminder)

• A sigmoid neuron can take real numbers (𝑥1, 𝑥2, 𝑥3) within 0 to 1 and
returns a number within 0 to 1. The weights (𝑤1, 𝑤2, 𝑤3) and the bias
term 𝑏 are real numbers.

Sigmoid function

𝜎 0 = 0.5,
𝜎 −∞ = 0,
𝜎 ∞ = 1

Matrix equations for neural networks

• The indices 𝑗 and 𝑘 seem a little counter-intuitive!
• Notations are used in this manner to enable matrix

multiplications.

Layer to layer relationship

• 𝑏𝑗
𝑙 is the bias term in the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer.

• 𝑎𝑗
𝑙 is the activation in the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer.

• 𝑧𝑗
𝑙 is the weighted input to the 𝑗𝑡ℎ neuron in the 𝑙𝑡ℎ layer.

𝑎𝑗
𝑙 = 𝜎(𝑧𝑗

𝑙)

𝑧𝑗
𝑙 =෍

𝑘

𝑤𝑗𝑘
𝑙 𝑎𝑘

𝑙−1 + 𝑏𝑗
𝑙

Examples:

𝑎1
3 = 𝜎 𝑧1

3 , 𝑎2
3 = 𝜎 𝑧2

3

𝑧𝑗
3 = ෍

𝑘=1 𝑡𝑜 4

𝑤𝑗𝑘
3 𝑎𝑘

2 + 𝑏𝑗
3 , 𝑗 ∈ {1,2}

𝑧𝑗
2 = ෍

𝑘=1 𝑡𝑜 4

𝑤𝑗𝑘
2 𝑎𝑘

1 + 𝑏𝑗
2, 𝑗 ∈ {1, . . , 4}

Cost function from the network

of input
samples

for each input
sample

Output activation vector for a specific
training sample 𝑥.

Groundtruth for
each input

Input
vector x

Backpropagation and stochastic gradient
descent
• The goal of the backpropagation algorithm is to compute the

gradients
𝜕𝐶

𝜕𝑤
and

𝜕𝐶

𝜕𝑏
of the cost function C with respect to each and

every weight and bias parameters. Note that backpropagation is only
used to compute the gradients.

• Stochastic gradient descent is the training algorithm.

Assumptions on the cost function

1. We assume that the cost function can be written as the average over

the cost functions from individual training samples: 𝐶 =
1

𝑛
σ𝑥 𝐶𝑥. The

cost function for the individual training sample is given by 𝐶𝑥 =
1

2
𝑦 𝑥 − 𝑎𝐿 𝑥 2.

- why do we need this assumption? Backpropagation will only
allow us to compute the gradients with respect to a single training

sample as given by
𝜕𝐶𝑥

𝜕𝑤
and

𝜕𝐶𝑥

𝜕𝑏
. We then recover

𝜕𝐶

𝜕𝑤
and

𝜕𝐶

𝜕𝑏
by averaging

the gradients from the different training samples.

Assumptions on the cost function (continued)

2. We assume that the cost function can be written as a function of the
output from the neural network. We assume that the input 𝑥 and its
associated correct labeling 𝑦 𝑥 are fixed and treated as constants.

Hadamard product
• Let 𝑠 and 𝑡 are two vectors. The Hadamard product is given by:

Such elementwise multiplication is also referred to as schur product.

𝐸. 𝑔. ,
1
2
3

⊙
2
2
2

=
2
4
6

Backpropagation

• Our goal is to compute the partial derivatives
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 and

𝜕𝐶

𝜕𝑏𝑗
𝑙 .

• We compute some intermediate quantities while doing so:

𝛿𝑗
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙

Four equations of the BP (backpropagation)

Summary: the equations of backpropagation (𝐿 is the total number of layers)

1) 𝛿𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿 𝐵𝑃1

2) 𝛿𝑗
𝑙 = σ𝑘(𝑤𝑘𝑗

𝑙+1𝛿𝑘
𝑙+1)𝜎′ 𝑧𝑗

𝑙 𝐵𝑃2

3)
𝜕𝐶

𝜕𝑏𝑗
𝑙 = 𝛿𝑗

𝑙 𝐵𝑃3

4)
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = 𝑎𝑘

𝑙−1𝛿𝑗
𝑙 𝐵𝑃4

Chain Rule in differentiation

• In order to differentiate a function z = 𝑓 𝑔 𝑥 w.r.t 𝑥, we can do the
following:

Let y = 𝑔 𝑥 , 𝑧 = 𝑓 𝑦 ,
𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦
×

𝑑𝑦

𝑑𝑥

Chain Rule in differentiation (computation
graph)

𝜕𝑧

𝜕𝑥
= ෍

𝑗:𝑥∈𝑃𝑎𝑟𝑒𝑛𝑡 𝑦𝑗 ,

𝑦𝑗∈𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟 (𝑧)

𝜕𝑧

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑥
𝑥 𝑧

𝑦1

𝑦2

𝑦3

Chain Rule in differentiation (vector case)

Let 𝑥 ∈ ℝ𝑚, 𝑦 ∈ ℝ𝑛, g maps from ℝ𝑚 to ℝ𝑛, and 𝑓 maps from ℝ𝑛 to
ℝ. If 𝑦 = 𝑔 𝑥 and 𝑧 = 𝑓 𝑦 , then

𝜕𝑧

𝜕𝑥𝑖
=෍

𝑘

𝜕𝑧

𝜕𝑦𝑘

𝜕𝑦𝑘
𝜕𝑥𝑖

𝑥𝑖 𝑧

𝑦1

𝑦𝑘

𝑦𝑛𝑥𝑚

𝑥1

BP1

Here L is the last layer. We get this result by applying chain rule
once.

𝛿𝑗
𝐿 =

𝜕𝐶

𝜕𝑧𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿 .

To Show:

𝑧𝑗
𝐿 𝑎𝑗

𝐿 𝐶

𝛿𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿 Variable association for

applying vector chain rule

Examples for BP1

𝑧3
3 𝑎3

3

𝐶

𝛿1
3 =

𝜕𝐶

𝜕𝑧1
3 =

𝜕𝐶

𝜕𝑎1
3

𝜕𝑎1
3

𝜕𝑧1
3,

𝛿2
3 =

𝜕𝐶

𝜕𝑧2
3 =

𝜕𝐶

𝜕𝑎2
3

𝜕𝑎2
3

𝜕𝑧2
3,

𝛿3
3 =

𝜕𝐶

𝜕𝑧3
3 =

𝜕𝐶

𝜕𝑎3
3

𝜕𝑎3
3

𝜕𝑧3
3,

𝑧2
3 𝑎2

3

𝑧1
3 𝑎1

3

𝛿3 =
𝜕𝐶

𝜕𝑎3
⊙

𝜕𝑎3

𝜕𝑧3
=

𝜕𝐶

𝜕𝑎3
⊙𝜎′ 𝑧3 ,

𝛿𝐿 =
𝜕𝐶

𝜕𝑎𝐿
⊙𝜎′(𝑧𝐿)

Derivates of Sigmoid activation function

𝜎 𝑧 =
1

1 + 𝑒−𝑧

𝑑𝜎 𝑧

𝑑𝑧
= 𝜎′(𝑧) = −1 1 + 𝑒−𝑧 −2 −1 𝑒−𝑧

=
𝑒−𝑧

1 + 𝑒−𝑧 2 =
𝑒−𝑧 + 1 − 1

1 + 𝑒𝑧 2

=
1

1 + 𝑒−𝑧
1 −

1

1 + 𝑒−𝑧

= 𝜎(𝑧)(1 − 𝜎 𝑧)

Derivates of quadratic objective function

𝐶 =
1

2
𝑦 − 𝑎𝐿 2 =

1

2
y1 − a1

L 2
+ y2 − a2

L
2
+⋯+ yn − an

L 2

𝜕𝐶

𝜕𝑎𝑗
𝐿 = 𝑦𝑗 − 𝑎𝑗

𝜕𝐶

𝜕𝑎𝐿
=

(𝑦1 − 𝑎1)
(𝑦2 − 𝑎2).

.
(𝑦𝑛 − 𝑎𝑛)

BP2

𝛿𝑗
𝑙 = σ𝑘(𝑤𝑘𝑗

𝑙+1𝛿𝑘
𝑙+1)𝜎′ 𝑧𝑗

𝑙

Proof:

𝛿𝑗
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙 = σ𝑘

𝜕𝐶

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑗
𝑙 = σ𝑘

𝜕𝑧𝑘
𝑙+1

𝜕𝑧𝑗
𝑙 𝛿𝑘

𝑙+1

𝑧𝑘
𝑙+1 = σ𝑗𝑤𝑘𝑗

𝑙+1𝑎𝑗
𝑙 + 𝑏𝑘

𝑙 = σ𝑗𝑤𝑘𝑗
𝑙+1𝜎 𝑧𝑗

𝑙 + 𝑏𝑘
𝑙

By differentiating we have:
𝜕𝑧𝑘

𝑙+1

𝜕𝑧𝑗
𝑙 = 𝑤𝑘𝑗

𝑙+1𝜎′ 𝑧𝑗
𝑙

𝛿𝑗
𝑙 = σ𝑘(𝑤𝑘𝑗

𝑙+1𝛿𝑘
𝑙+1)𝜎′ 𝑧𝑗

𝑙

Vectorized notation: 𝛿𝑙 = (𝑤𝑙+1)𝑇𝛿𝑙+1 ⊙𝜎′(𝑧𝑙)

𝑧𝑙 𝑧𝑙+1

𝐶

Variable association for
applying vector chain rule

BP2 Example

𝑧2 𝑧3

𝐶 𝛿1
2 =

𝜕𝐶

𝜕𝑧1
2 = ෍

𝑘=1

4
𝜕𝐶

𝜕𝑧𝑘
3

𝜕𝑧𝑘
3

𝜕𝑧1
2 =෍

𝑘=1

4

𝛿𝑘
3 𝜕𝑧𝑘

3

𝜕𝑧1
2

𝑧𝑘
3 =෍

𝑗=1

3

𝑤𝑘𝑗
3 𝜎(𝑧𝑗

2) + 𝑏𝑘
3 ,

𝜕𝑧𝑘
3

𝜕𝑧1
2 = 𝑤𝑘1

3 𝜎′ 𝑧1
2

𝛿1
2 = ෍

𝑘=1

4

𝛿𝑘
3 𝜕𝑧𝑘

3

𝜕𝑧1
2 =෍

𝑘=1

4

𝛿𝑘
3𝑤𝑘1

3 𝜎′ 𝑧1
2 = (𝛿1

3𝑤11
3 + 𝛿2

3𝑤21
3 + 𝛿3

3𝑤31
3 + 𝛿4

3𝑤41
3) 𝜎′ 𝑧1

2

𝛿2
2 = ෍

𝑘=1

4

𝛿𝑘
3𝑤𝑘1

3 𝜎′ 𝑧2
2 = (𝛿1

3𝑤12
3 + 𝛿2

3𝑤22
3 + 𝛿3

3𝑤32
3 + 𝛿4

3𝑤42
3) 𝜎′ 𝑧2

2

Variable association for
applying vector chain rule

BP3

𝜕𝐶

𝜕𝑏𝑗
𝑙
= 𝛿𝑗

𝑙

Proof:
𝜕𝐶

𝜕𝑏𝑗
𝑙 = σ𝑘

𝜕𝐶

𝜕𝑧𝑘
𝑙

𝜕𝑧𝑘
𝑙

𝜕𝑏𝑗
𝑙 =

𝜕𝐶

𝜕𝑧𝑗
𝑙

𝜕𝑧𝑗
𝑙

𝜕𝑏𝑗
𝑙 , the other terms

𝜕𝑧𝑘
𝑙

𝜕𝑏𝑗
𝑙 vanish when 𝑗 ≠ 𝑘.

= 𝛿𝑗
𝑙
𝜕 σ𝑘𝑤𝑗𝑘𝑎𝑘

𝑙−1 + 𝑏𝑗
𝑙

𝜕𝑏𝑗

= 𝛿𝑗
𝑙

𝑏𝑙 𝑧𝑙

𝐶

Variable association for
applying vector chain rule

BP3 Example
𝑧3 = 𝑤3𝑎2 + 𝑏3

𝜕𝐶

𝜕𝑏1
3 = 𝛿1

3 = ෍

𝑘=1

3
𝜕𝐶

𝜕𝑧𝑘
3

𝜕𝑧𝑘
3

𝜕𝑏1
3 =

𝜕𝐶

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑏1
3

= 𝛿1
𝑙 𝜕(σ𝑘=1

3 𝑤1𝑘
3 𝑎𝑘

2+𝑏1
3)

𝜕𝑏1
3 = 𝛿1

𝑙 𝜕𝐶

𝜕𝑏3
= 𝛿𝑙

𝑏3 𝑧3

𝐶

Variable association for
applying vector chain rule

BP4

𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙
= 𝑎𝑘

𝑙−1𝛿𝑗
𝑙

Proof:
𝜕𝐶

𝜕𝑤𝑗𝑘
𝑙 = σ𝑚

𝜕𝐶

𝜕𝑧𝑚
𝑙

𝜕𝑧𝑚
𝑙

𝜕𝑤𝑗𝑘
𝑙

=
𝜕𝐶

𝜕𝑧𝑗
𝑙

𝜕𝑧𝑗
𝑙

𝜕𝑤𝑗𝑘
and the other terms

𝜕𝑧𝑗
𝑙

𝜕𝑤𝑗𝑘
when 𝑚 ≠ 𝑗.

= 𝛿𝑗
𝑙
𝜕 σ𝑘𝑤𝑗𝑘

𝑙 𝑎𝑘
𝑙−1 + 𝑏𝑗

𝑙

𝜕𝑤𝑗𝑘

= 𝛿𝑗
𝑙 𝑎𝑘

𝑙−1

𝑤𝑙 𝑧𝑙

𝐶

Variable association for
applying vector chain rule

BP4 Example

𝜕𝐶

𝜕𝑤12
3 = 𝑎2

2𝛿1
3

Proof:

𝜕𝐶

𝜕𝑤12
3 =෍

𝑚

𝜕𝐶

𝜕𝑧𝑚
3

𝜕𝑧𝑚
3

𝜕𝑤12
3 =

𝜕𝐶

𝜕𝑧1
3

𝜕𝑧1
3

𝜕𝑤12
3 = 𝛿1

3
𝜕 σ𝑘𝑤12

3 𝑎2
2 + 𝑏1

3

𝜕𝑤12
= 𝛿1

3𝑎2
2

𝑤3 𝑧3

𝐶

Variable association for
applying vector chain rule

The backpropagation algorithm

The word “backpropagation” comes from the fact that we compute the error vectors 𝛿𝑗
𝑙 in the backward

direction.

𝛿𝑗
𝐿 =

𝜕𝐶

𝜕𝑎𝑗
𝐿

𝜕𝑎𝑗
𝐿

𝜕𝑧𝑗
𝐿 .

𝛿𝑗
𝑙 =෍

𝑘

(𝑤𝑘𝑗
𝑙+1𝛿𝑘

𝑙+1)𝜎′ 𝑧𝑗
𝑙

Gradients using finite differences

Here 𝜖 is a small positive number and 𝑒𝑗 is the unit vector in the jth direction.

Conceptually very easy to implement.
In order to compute this derivative w.r.t one parameter, we need to do one forward pass
– for millions of variables we will have to do millions of forward passes.

- Backpropagation can get all the gradients in just one forward and backward
pass – forward and backward passes are roughly equivalent in computations.

The derivatives using finite differences would be a million times slower!!

BP interpretation

𝜕𝐶

𝜕𝑥𝑖
=

𝜕𝑦1
𝜕𝑥𝑖

𝜕𝐶

𝜕𝑦1
+
𝜕𝑦2
𝜕𝑥𝑖

𝜕𝐶

𝜕𝑦2
,

𝑥2
𝐶

𝑦1

𝑦2

𝑥1

𝑡

𝑥3

𝜕𝐶

𝜕𝑡
= (

𝜕𝑥1

𝜕𝑡

𝜕𝐶

𝜕𝑥1
+

𝜕𝑥2

𝜕𝑡

𝜕𝐶

𝜕𝑥2
+
𝜕𝑥3

𝜕𝑡

𝜕𝐶

𝜕𝑥3
)

𝜕𝐶

𝜕𝑡
= (

𝜕𝑥1

𝜕𝑡

𝜕𝑦1

𝜕𝑥1

𝜕𝐶

𝜕𝑦1
+

𝜕𝑦2

𝜕𝑥1

𝜕𝐶

𝜕𝑦2
+

𝜕𝑥2

𝜕𝑡

𝜕𝑦1

𝜕𝑥2

𝜕𝐶

𝜕𝑦1
+

𝜕𝑦2

𝜕𝑥2

𝜕𝐶

𝜕𝑦2
+
𝜕𝑥3

𝜕𝑡

𝜕𝑦1

𝜕𝑥3

𝜕𝐶

𝜕𝑦1
+

𝜕𝑦2

𝜕𝑥3

𝜕𝐶

𝜕𝑦2
) =

𝜕𝑥1

𝜕𝑡

𝜕𝑦1

𝜕𝑥1

𝜕𝐶

𝜕𝑦1
+
𝜕𝑥1

𝜕𝑡

𝜕𝑦2

𝜕𝑥1

𝜕𝐶

𝜕𝑦2
+

𝜕𝑥2

𝜕𝑡

𝜕𝑦1

𝜕𝑥2

𝜕𝐶

𝜕𝑦1
+

𝜕𝑥2

𝜕𝑡

𝜕𝑦2

𝜕𝑥2

𝜕𝐶

𝜕𝑦2
+

𝜕𝑥3

𝜕𝑡

𝜕𝑦1

𝜕𝑥3

𝜕𝐶

𝜕𝑦1
+

𝜕𝑥3

𝜕𝑡

𝜕𝑦2

𝜕𝑥3

𝜕𝐶

𝜕𝑦2

Backpropagation – the big picture

• To compute the total change in C we need to consider all possible paths from the
weight to the cost.

• We are computing the rate of change of C w.r.t a weight w.

• Every edge between two neurons in the network is associated with a rate factor that is
just the ratio of partial derivatives of one neurons activation with respect to another
neurons activation.

• The rate factor for a path is just the product of the rate factors of the edges in the path.

• The total change is the sum of the rate factors of all the paths from the weight to the
cost.

Thank You

Source: http://math.arizona.edu/~calc/Rules.pdf

Source: http://math.arizona.edu/~calc/Rules.pdf

