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Reference

Most of the slides are taken from the first chapter of the online book by
Michael Nielson:

* neuralnetworksanddeeplearning.com



Introduction

* Deep learning allows computational models
that are composed of multiple layers to learn
representations of data.

e Significantly improved state-of-the-art results ..
in speech recognition, visual object
recognition, object detection, drug discovery
and genomics.

“deep” comes from having
multiple layers of non-linearity

[Source: Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Deep Learning, Nature 2015]



Introduction

* “neural” is used because it is loosely inspired by neuroscience.

* The goal is generally to approximate some function f*, e.g., consider
a classifier y = f*(x):
We define a mapping y = f (6, x) and learn the value of the parameters 6
that result in the best function approximation.

* Feedforward network is a specific type of deep neural network where
information flows through the function being evaluated from input x
through the intermediate computations used to define f, and finally
to the output y.



Perceptron
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* A perceptron takes several Boolean inputs (x4, x,, Xx3) and returns a
Boolean output.

0 if ) . w;z; < threshold
output =
1 if ), ;wjz; > threshold

* The weights (wy, w,, w3) and the threshold are real numbers.



Simplification (Threshold -> Bias)
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NAND gate using a perceptron

NAND is equivalent to NOT AND



It’s an old paradigm

# The first learning machine:
the Perceptron

» Built at Cornell in 1960

# The Perceptron was a linear classifier on top of
a simple feature extractor

‘ 1010e41X] 94Nn1e94 ‘

# The vast majority of practical applications of
ML today use glorified linear classifiers or
glorified template matching.

# Designing a feature extractor requires
considerable efforts by experts.




Design the weights and thresholds for the
following truth table

When all the three Boolean variables are 1s, we output 1, \/\
otherwise we output 0. ., L outpul

When all the three Boolean variables are Os, we output 1, =3
otherwise we output O.

When two of the three Boolean variables are 1s, we output 1,
otherwise we output O.



NAND is universal for computation

* XOR gate and AND gate
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OR gate using perceptrons?



Sigmoid neuron
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* A sigmoid neuron can take real numbers (x4, X, x3) within 0 to 1 and
returns a number within 0 to 1. The weights (w, w,, w3) and the bias
term b are real numbers.

1
1l +e =

Sigmoid function o (2)



Sigmoid neuron

\/\ 1

9 g | » output

/\j 1 + exp(— ijj:cj —b)

* A sigmoid neuron can take real numbers (x4, X, x3) within 0 to 1 and
returns a number within 0 to 1. The weights (w, w,, w3) and the bias
term b are real numbers.




Sigmoid function
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Sigmoid function can be seen as smoothed
step function

sigmoid function o
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Reference for function approximation
Many of the slides are prepared using the following resources:

* http://neuralnetworksanddeeplearning.com/chap4.html



A simple function with one input and one
output

Goal: Sfllow that such functions can be approximated using sigmoid units in a deep neural
network.

The slides show a constructive argument to simulate any function.



Approximating a step function using Sigmoid
unit

1 ue Output from top hidden neuron
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w =38

* Small weight and bias terms — coarse approximation of a step
function



Approximating a step function using Sigmoid
unit

b —-40

W = l(}() ’

-b/w = 0.40

* Larger weight and bias terms — better approximation of a step
function



Approximating a step function using Sigmoid

s = 0.40

* Assume that a very large weight is used for all neurons. In that case,

. : b
we can change the bias term to get different values for s = — =~ the
point where the step function starts.



Approximating a bump function

A _\ Weighted output from hidden layer
8, = 0.40
-url =8
a | _ 0 — >
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* You can simulate a simple bump function using two neurons with different “s” values to indicate

the start and end points for the bump function.

* The weights are designed such a manner that w; = —w,, depending on whether the bump

ou.,”n

function is above or below “x” axis.



Approximating two bumps

5 Weighted output from hidden layer

0.40
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h=4.3

* The first bump is from s=0.4 to 0.6 and the second bump is from
s=0.7 to 0.9.



Approximating multiple bumps

5 ‘ Weighted output from hidden layer
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Functions with multiple inputs

‘Neight:ad output from hidden layer

Tz Tower function
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* |tis not hard to see that the entire approach can be extended for cases with
multiple inputs.



Other Activation functions

One activation unit in \l/ h
an intermediate layer ’
VRN
1. Rectifier Linear Unit (ReLU): h! = max {0, thl_l + bi}
/ N
Inactive Active (>0)
2. Maxout:

hi = max {W;'h"1 + b} ', .. WE'R!™ + bE}

In both cases, the DNN is a piecewise linear function.



Background — Piecewise linear functions

* Networks that use activation functions such as ReLU or maxout are piece-
wise linear functions.

76

VA

X B . S A = .

Piece-wise linear functions in 1D — We have Piece-wise linear function in 2D — the depths can be
linear functions for small pieces or regions obtained from different linear functions for different

triangles (Carolinska institute, Sweden)

* The # of linear regions < Expressiveness or representability of piece-wise
linear networks. 26




Notation for deep neural network (DNN)
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Activation functions

One activation unit in \l/ h
an intermediate layer ’
VRN
1. Rectifier Linear Unit (ReLU): h! = max {0, thl_l + bi}
/ N
Inactive Active (>0)
2. Maxout:

hi = max {W;'h"1 + b} ', .. WE'R!™ + bE}

In both cases, the DNN is a piecewise linear function.



The number of regions in one layer using
RelUs

V4 hy =0 hi =0
. hﬁ = 0 is nothing but a hyperplane

* 3 hyperplanes partition the 2D space
into 7 regions

29



Activation Patterns and Linear Regions

For RelLUs
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we characterize these regions using the

’

concept of activation patterns (vontufar, 2017):

* For a given input x
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Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the
concept of activation patterns (vontufar, 2017):

* For a given input x

* There is an activation set ' € {1,2, ..., n!}
for each layer | such thati € S'iff hl > 0

s1=1{1,3,4)
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Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the

concept of activation patterns (montufar, 2017): g
* For a given input x st =1{134
* There is an activation set S' < {1,2, ..., n!} ,
for each layer | such that i € S'iff h! > 0 =Y
» The activation pattern of xis § = (§1, ..., S} s3 = (5)
A linear region is the set of all points () s* =(3,4,5)

with a same activation pattern

32



Linear regions in the case of multiple layers

x1 xz
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A simple network
with 3 hidden layers

b
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Linear regions ir tha race of multiple layers
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A simple network
with 3 hidden layers
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regions of previous layers
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Linear regions ir tha race of multiple layers

A simple network
with 3 hidden layers
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Hyperplanes partitioning the
regions of previous layers
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Linear regions ir tha race of multiple layers

A simple network
with 3 hidden layers

“/
.
,
34 .,
*

|||||
0 1 2 3 4

Hyperplanes partitioning the
regions of previous layers
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Linear regions in the case of multiple layers
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original input space

X1

37



Small changes in parameters produce small
changes in output for sigmoid neurons

(small change in

parameters)
dout ut / 30111: 1}<
P | P Ab

Aoutput ~ Z 5
w;

J
(small change in
output)

(partial derivatives)

* Aoutput is approx. a linear function in small changes in weights and bias terms.
* Not for perceptrons!
 The outputs flip from 0 to 1 or vice versa for small change in inputs.



The architecture of neural networks




MNIST data

* Each grayscale image is of size 28x28.
* 60,000 training images and 10,000 test images
* 10 possible labels (0,1,2,3,4,5,6,7,8,9)



Digit recognition using 3 layers
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{rn = 15 neurons)

output layer

1 Example outputs:
y 3 6 ->
[0000001000Y)
input laver 4
(784 neurons) ) 3 5
Input normalized to 'z X
a value between 0 i

and 1.



Compute the weights and biases for the last
layer

ocld output layer
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Cost function

- ..'-/
e
A
P #,{;é
= . - ol
T £l

1 AL e
Clw,b) = - lly(z) —al?

# of input N\
parameters \
samples
to compute

input -> X vector output -> a

* We assume that the network approximates a function y(x) and outputs a.
* We use a quadratic cost function, i.e., mean squared error or MSE.



Cost function

e Can the cost function be negative in the above example?
* What does it mean when the cost is approximately equal to zero?



Gradient Descent

oC oC

Small changes in parameters to
AC ~ —Av, + Av, leads to small changes in output
81:1 3‘1?2

Gradient vector!

ac ac\?!
VO =
(8@1’8%"2)

Av = —nVC

Change the parameter using learning rate
(positive) and gradient vector!

v—v =v-nVC Update rule!

* Let us consider a cost function C (v, v,) that depends on two variables.

* The goal is to change the two variables to minimize the cost function.



Cost function from the network
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What are the challenges in gradient descent when you have a large number of

training samples?

Gradient from a set of trainin
Ve =1 vC &
n ZT’ ¥ samples.



Stochastic gradient descent

* The idea is to compute the gradient using a small set of randomly
chosen training data.

* We assume that the average gradient obtained from the small set is
close to the gradient obtained from the entire set.



Stochastic gradient descent
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* Let us consider a mini-batch with m randomly chosen samples.

* Provided that the sample size is large enough, we expect the
average gradient from the m samples is approximately equal to
the average gradient from all the n samples.



Thank You



DERIVATIVE RULES
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Source: http://math.arizona.edu/~calc/Rules.pdf
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INTEGRAL RULES

Isinx:itz—cﬂsx+c
Icasxﬁix —sinx+c

i |
Isec“ xdx=tanx+4c¢

Isinh xdx =coshx+e¢

.
Icsc“ xdx=—cotx+c¢
Ise-::xtan xadx =secx+c
Icsc xcotxdr=—cscx+e

Icosh xadx=smhx+e¢

Source: http://math.arizona.edu/~calc/Rules.pdf



