
Using neural nets to
recognize hand-written digits

Srikumar Ramalingam

School of Computing

University of Utah

Reference

Most of the slides are taken from the first chapter of the online book by
Michael Nielson:

• neuralnetworksanddeeplearning.com

Introduction

• Deep learning allows computational models
that are composed of multiple layers to learn
representations of data.

• Significantly improved state-of-the-art results
in speech recognition, visual object
recognition, object detection, drug discovery
and genomics.

[Source: Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Deep Learning, Nature 2015]

“deep” comes from having
multiple layers of non-linearity

Introduction

• “neural” is used because it is loosely inspired by neuroscience.

• The goal is generally to approximate some function 𝑓∗, e.g., consider
a classifier 𝑦 = 𝑓∗ 𝑥 :

We define a mapping 𝑦 = 𝑓 𝜃, 𝑥 and learn the value of the parameters 𝜃
that result in the best function approximation.

• Feedforward network is a specific type of deep neural network where
information flows through the function being evaluated from input 𝑥
through the intermediate computations used to define 𝑓, and finally
to the output 𝑦.

Perceptron

• A perceptron takes several Boolean inputs (𝑥1, 𝑥2, 𝑥3) and returns a
Boolean output.

• The weights (𝑤1, 𝑤2, 𝑤3) and the threshold are real numbers.

Simplification (Threshold -> Bias)

𝑏

NAND gate using a perceptron

- NAND is equivalent to NOT AND

The first learning machine:
the Perceptron

Built at Cornell in 1960

The Perceptron was a linear classifier on top of
a simple feature extractor

The vast majority of practical applications of
ML today use glorified linear classifiers or
glorified template matching.

Designing a feature extractor requires
considerable efforts by experts.

y=sign(∑
i=1

N

W i F i (X)+b)

A

Featu
re Extracto

r Wi

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

It’s an old paradigm

Design the weights and thresholds for the
following truth table

When all the three Boolean variables are 1s, we output 1,
otherwise we output 0.

When all the three Boolean variables are 0s, we output 1,
otherwise we output 0.

When two of the three Boolean variables are 1s, we output 1,
otherwise we output 0.

NAND is universal for computation

• XOR gate and AND gate

OR gate using perceptrons?

Sigmoid neuron

• A sigmoid neuron can take real numbers (𝑥1, 𝑥2, 𝑥3) within 0 to 1 and
returns a number within 0 to 1. The weights (𝑤1, 𝑤2, 𝑤3) and the bias
term 𝑏 are real numbers.

Sigmoid function

Sigmoid neuron

• A sigmoid neuron can take real numbers (𝑥1, 𝑥2, 𝑥3) within 0 to 1 and
returns a number within 0 to 1. The weights (𝑤1, 𝑤2, 𝑤3) and the bias
term 𝑏 are real numbers.

Sigmoid function

Sigmoid function can be seen as smoothed
step function

Reference for function approximation

Many of the slides are prepared using the following resources:

• http://neuralnetworksanddeeplearning.com/chap4.html

A simple function with one input and one
output

Goal: Show that such functions can be approximated using sigmoid units in a deep neural
network.

The slides show a constructive argument to simulate any function.

Approximating a step function using Sigmoid
unit

• Small weight and bias terms – coarse approximation of a step
function

Approximating a step function using Sigmoid
unit

• Larger weight and bias terms – better approximation of a step
function

Approximating a step function using Sigmoid
unit

• Assume that a very large weight is used for all neurons. In that case,

we can change the bias term to get different values for s = −
𝑏

𝑤
, the

point where the step function starts.

𝑠 = 0.4

Approximating a bump function

• You can simulate a simple bump function using two neurons with different “s” values to indicate
the start and end points for the bump function.

• The weights are designed such a manner that 𝑤1 = −𝑤2, depending on whether the bump
function is above or below “x” axis.

0.4 0.6 𝑥

Approximating two bumps

• The first bump is from s=0.4 to 0.6 and the second bump is from
s=0.7 to 0.9.

Approximating multiple bumps

Functions with multiple inputs

• It is not hard to see that the entire approach can be extended for cases with
multiple inputs.

Other Activation functions

25

Inactive Active (>0)

𝒉𝒊
𝒍 = 𝒎𝒂𝒙 { 𝟎, 𝑾𝒊

𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒍 }1. Rectifier Linear Unit (ReLU):

2. Maxout:
𝒉𝒊
𝒍 = 𝒎𝒂𝒙 {𝑾𝒊

𝟏 𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝟏 𝒍, … ,𝑾𝒊

𝒌 𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒌 𝒍 }

In both cases, the DNN is a piecewise linear function.

One activation unit in
an intermediate layer

𝒉𝒍−𝟏

Background – Piecewise linear functions
• Networks that use activation functions such as ReLU or maxout are piece-

wise linear functions.

26

Piece-wise linear functions in 1D – We have
linear functions for small pieces or regions

• The # of linear regions ↔ Expressiveness or representability of piece-wise
linear networks.

Piece-wise linear function in 2D – the depths can be
obtained from different linear functions for different

triangles (Carolinska institute, Sweden)

Notation for deep neural network (DNN)

Notation:

• Input: 𝒙

• Output: 𝒚

• Number of layers: 𝑳

• Width of layer 𝒍 : 𝒏𝒍

• Output of layer 𝒍 : 𝒉𝒍 ∈ ℝ𝒏𝒍

𝒙 𝒉𝟎 − 𝑰𝒏𝒑𝒖𝒕

𝒚 𝒉𝑳 −𝑶𝒖𝒕𝒑𝒖𝒕

𝒉𝟏

𝒉𝑳−𝟏

27

Activation functions

28

Inactive Active (>0)

𝒉𝒊
𝒍 = 𝒎𝒂𝒙 { 𝟎, 𝑾𝒊

𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒍 }1. Rectifier Linear Unit (ReLU):

2. Maxout:
𝒉𝒊
𝒍 = 𝒎𝒂𝒙 {𝑾𝒊

𝟏 𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝟏 𝒍, … ,𝑾𝒊

𝒌 𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒌 𝒍 }

In both cases, the DNN is a piecewise linear function.

One activation unit in
an intermediate layer

𝒉𝒍−𝟏

The number of regions in one layer using
ReLUs

29

𝑥

𝑦

𝑅1 𝑅2

𝑅3

𝑅4

𝑅5

𝑅6

𝑅7
𝒉𝟏
𝒍 = 𝟎

𝒉𝟐
𝒍 = 𝟎 𝒉𝟑

𝒍 = 𝟎

• ℎ𝑖
𝑙 = 0 𝑖𝑠 𝑛𝑜𝑡ℎ𝑖𝑛𝑔 𝑏𝑢𝑡 𝑎 ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒

• 3 ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒𝑠 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑡ℎ𝑒 2𝐷 𝑠𝑝𝑎𝑐𝑒
𝑖𝑛𝑡𝑜 7 𝑟𝑒𝑔𝑖𝑜𝑛𝑠

Activation Patterns and Linear Regions
For ReLUs, we characterize these regions using the
concept of activation patterns (Montufar, 2017):

• For a given input 𝒙

30

𝒙𝒙

Activation Patterns and Linear Regions
For ReLUs, we characterize these regions using the
concept of activation patterns (Montufar, 2017):

• For a given input 𝒙

• There is an activation set 𝑺𝒍 ⊆ {𝟏, 𝟐, … , 𝒏𝒍}
for each layer l such that 𝒊 ∈ 𝑺𝒍 iff 𝐡𝐢

𝐥 > 𝟎

𝑺𝟏 = {𝟏, 𝟑, 𝟒}

31

𝒙

Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the
concept of activation patterns (Montufar, 2017):

• For a given input 𝒙

• There is an activation set 𝑺𝒍 ⊆ {𝟏, 𝟐, … , 𝒏𝒍}
for each layer l such that 𝒊 ∈ 𝑺𝒍 iff 𝐡𝐢

𝐥 > 𝟎

• The activation pattern of 𝒙 is 𝓢 = (𝑺𝟏, … , 𝑺𝒍)

A linear region is the set of all points
with a same activation pattern

𝑺𝟏 = {𝟏, 𝟑, 𝟒}

𝑺𝟐 = {𝟐, 𝟒}

𝑺𝟑 = {𝟓}

𝑺𝟒 = {𝟑, 𝟒, 𝟓}

32

𝒙

Linear regions in the case of multiple layers

33

A simple network
with 3 hidden layers

Linear regions in the case of multiple layers

34

A simple network
with 3 hidden layers Hyperplanes partitioning the

regions of previous layers

Linear regions in the case of multiple layers

35

A simple network
with 3 hidden layers Hyperplanes partitioning the

regions of previous layers

Linear regions in the case of multiple layers

36

A simple network
with 3 hidden layers Hyperplanes partitioning the

regions of previous layers

Linear regions in the case of multiple layers

37

A simple network
with 3 hidden layers Hyperplanes partitioning the

regions of previous layers

Linear regions on the
original input space

𝑏 𝑎

𝑓
𝑒

𝑐
𝑑

𝑥1

𝑥2

{𝑎, 𝑏, 𝑒, 𝑓}

Small changes in parameters produce small
changes in output for sigmoid neurons

• Δ𝑜𝑢𝑡𝑝𝑢𝑡 is approx. a linear function in small changes in weights and bias terms.
• Not for perceptrons!

• The outputs flip from 0 to 1 or vice versa for small change in inputs.

(small change in
output)

(small change in
parameters)

(partial derivatives)

The architecture of neural networks

MNIST data

• Each grayscale image is of size 28x28.

• 60,000 training images and 10,000 test images

• 10 possible labels (0,1,2,3,4,5,6,7,8,9)

Digit recognition using 3 layers

Input normalized to
a value between 0
and 1.

Example outputs:

6 ->
[0 0 0 0 0 0 1 0 0 0]’

Compute the weights and biases for the last
layer

Cost function

• We assume that the network approximates a function 𝑦 𝑥 and outputs 𝑎.

• We use a quadratic cost function, i.e., mean squared error or MSE.

input -> x vector output -> a

parameters
to compute

of input
samples

Cost function

• Can the cost function be negative in the above example?

• What does it mean when the cost is approximately equal to zero?

Gradient Descent

• Let us consider a cost function 𝐶 𝑣1, 𝑣2 that depends on two variables.

• The goal is to change the two variables to minimize the cost function.

Small changes in parameters to
leads to small changes in output

Gradient vector!

Change the parameter using learning rate
(positive) and gradient vector!

Update rule!

Cost function from the network

parameters
to compute

of input
samples

What are the challenges in gradient descent when you have a large number of
training samples?

Gradient from a set of training
samples.

Stochastic gradient descent

• The idea is to compute the gradient using a small set of randomly
chosen training data.

• We assume that the average gradient obtained from the small set is
close to the gradient obtained from the entire set.

Stochastic gradient descent

• Let us consider a mini-batch with m randomly chosen samples.

• Provided that the sample size is large enough, we expect the
average gradient from the m samples is approximately equal to
the average gradient from all the n samples.

Thank You

Source: http://math.arizona.edu/~calc/Rules.pdf

Source: http://math.arizona.edu/~calc/Rules.pdf

