Using neural nets to recognize hand-written digits

Srikumar Ramalingam
School of Computing
University of Utah

Reference

Most of the slides are taken from the first chapter of the online book by Michael Nielson:

- neuralnetworksanddeeplearning.com

Introduction

- Deep learning allows computational models that are composed of multiple layers to learn representations of data.
- Significantly improved state-of-the-art results in speech recognition, visual object recognition, object detection, drug discovery and genomics.

"deep" comes from having multiple layers of non-linearity

Introduction

- "neural" is used because it is loosely inspired by neuroscience.
- The goal is generally to approximate some function f^{*}, e.g., consider a classifier $y=f^{*}(x)$:

We define a mapping $y=f(\theta, x)$ and learn the value of the parameters θ that result in the best function approximation.

- Feedforward network is a specific type of deep neural network where information flows through the function being evaluated from input x through the intermediate computations used to define f, and finally to the output y.

Perceptron

- A perceptron takes several Boolean inputs $\left(x_{1}, x_{2}, x_{3}\right)$ and returns a Boolean output.

$$
\text { output }= \begin{cases}0 & \text { if } \sum_{j} w_{j} x_{j} \leq \text { threshold } \\ 1 & \text { if } \sum_{j} w_{j} x_{j}>\text { threshold }\end{cases}
$$

- The weights $\left(w_{1}, w_{2}, w_{3}\right)$ and the threshold are real numbers.

Simplification (Threshold -> Bias)

$$
\text { output }= \begin{cases}0 & \text { if } w \cdot x+b \leq 0 \\ 1 & \text { if } w \cdot x+b>0\end{cases}
$$

NAND gate using a perceptron

- \quad NAND is equivalent to NOT AND

It's an old paradigm

the first learning machine: the Perceptron

- Built at Cornell in 1960

The Perceptron was a linear classifier on top of a simple feature extractor

The vast majority of practical applications of ML today use glorified linear classifiers or glorified template matching.
Designing a feature extractor requires considerable efforts by experts.

$$
y=\operatorname{sign}\left(\sum_{=1}^{N} W_{i} F_{i}(X)+b\right)
$$

Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

Design the weights and thresholds for the following truth table

When all the three Boolean variables are 1 s , we output 1, otherwise we output 0 .

When all the three Boolean variables are 0s, we output 1,
 otherwise we output 0 .

When two of the three Boolean variables are 1 s , we output 1, otherwise we output 0 .

NAND is universal for computation

- XOR gate and AND gate

OR gate using perceptrons?

Sigmoid neuron

- A sigmoid neuron can take real numbers $\left(x_{1}, x_{2}, x_{3}\right)$ within 0 to 1 and returns a number within 0 to 1 . The weights $\left(w_{1}, w_{2}, w_{3}\right)$ and the bias term b are real numbers.

Sigmoid function $\quad \sigma(z) \equiv \frac{1}{1+e^{-z}}$

Sigmoid neuron

- A sigmoid neuron can take real numbers $\left(x_{1}, x_{2}, x_{3}\right)$ within 0 to 1 and returns a number within 0 to 1 . The weights (w_{1}, w_{2}, w_{3}) and the bias term b are real numbers.

Sigmoid function

sigmoid function

Sigmoid function can be seen as smoothed step function

Reference for function approximation

Many of the slides are prepared using the following resources:

- http://neuralnetworksanddeeplearning.com/chap4.html

A simple function with one input and one output

Goal: Show that such functions can be approximated using sigmoid units in a deep neural network.
The slides show a constructive argument to simulate any function.

Approximating a step function using Sigmoid

 unit

- Small weight and bias terms - coarse approximation of a step function

Approximating a step function using Sigmoid unit

- Larger weight and bias terms - better approximation of a step function

Approximating a step function using Sigmoid

 unit

- Assume that a very large weight is used for all neurons. In that case, we can change the bias term to get different values for $s=-\frac{b}{w}$, the point where the step function starts.

Approximating a bump function

- You can simulate a simple bump function using two neurons with different " s " values to indicate the start and end points for the bump function.
- The weights are designed such a manner that $w_{1}=-w_{2}$, depending on whether the bump function is above or below " x " axis.

Approximating two bumps

- The first bump is from $s=0.4$ to 0.6 and the second bump is from $\mathrm{s}=0.7$ to 0.9 .

Approximating multiple bumps

Functions with multiple inputs

- It is not hard to see that the entire approach can be extended for cases with multiple inputs.

Other Activation functions

One activation unit in an intermediate layer

1. Rectifier Linear Unit (ReLU):

$$
h_{i}^{l}=\max \left\{0, \frac{\left.W_{i}^{l} h^{l-1}+b_{i}^{l}\right\}}{\text { Inactive }}\right. \text { Active (>0) }
$$

2. Maxout:

$$
h_{i}^{l}=\max \left\{W_{i}^{1 l} h^{l-1}+b_{i}^{1 l}, \ldots, W_{i}^{k l} h^{l-1}+b_{i}^{k l}\right\}
$$

In both cases, the DNN is a piecewise linear function.

Background - Piecewise linear functions

- Networks that use activation functions such as ReLU or maxout are piecewise linear functions.

Piece-wise linear functions in 1D-We have linear functions for small pieces or regions

Piece-wise linear function in 2D - the depths can be obtained from different linear functions for different triangles (Carolinska institute, Sweden)

- The \# of linear regions \leftrightarrow Expressiveness or representability of piece-wise linear networks.

Notation for deep neural network (DNN)

Notation:

- Input:
- Output:
- Number of layers:
- Width of layer l :
- Output of layer l :
\boldsymbol{x}
y
L
n_{l}
$\boldsymbol{h}^{l} \in \mathbb{R}^{n_{l}}$

Activation functions

One activation unit in an intermediate layer

1. Rectifier Linear Unit (ReLU):

$$
h_{i}^{l}=\max \left\{0, \frac{\left.W_{i}^{l} h^{l-1}+b_{i}^{l}\right\}}{\text { Inactive }}\right. \text { Active (>0) }
$$

2. Maxout:

$$
h_{i}^{l}=\max \left\{W_{i}^{1 l} h^{l-1}+b_{i}^{1 l}, \ldots, W_{i}^{k l} h^{l-1}+b_{i}^{k l}\right\}
$$

In both cases, the DNN is a piecewise linear function.

The number of regions in one layer using ReLUs

- $h_{i}^{l}=0$ is nothing but a hyperplane
- 3 hyperplanes partition the 2D space into 7 regions

Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the concept of activation patterns (Montuar, 2017):

- For a given input x

Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the concept of activation patterns (Montuar, 2017):

- For a given input x
- There is an activation set $S^{l} \subseteq\left\{1,2, \ldots, n^{l}\right\}$ for each layer I such that $\boldsymbol{i} \in S^{l}$ iff $\mathbf{h}_{\mathbf{i}}^{1}>\mathbf{0}$

Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the concept of activation patterns (Monturar, 2017):

- For a given input x

Linear regions in the case of multiple layers

A simple network with 3 hidden layers

Linear regions in tho race of multiple layers

A simple network with 3 hidden layers

Hyperplanes partitioning the regions of previous layers

A simple network with 3 hidden layers

Hyperplanes partitioning the regions of previous layers

Linear regions $\operatorname{in}_{x_{2}, \ldots y y}$ the race of multiple layers with 3 hidden layers

Hyperplanes partitioning the regions of previous layers

Linear regions in the case of multiple layers

A simple network with 3 hidden layers

Hyperplanes partitioning the regions of previous layers

Linear regions on the original input space

Small changes in parameters produce small changes in output for sigmoid neurons

(small change in
parameters)

- doutput is approx. a linear function in small changes in weights and bias terms.
- Not for perceptrons!
- The outputs flip from 0 to 1 or vice versa for small change in inputs.

The architecture of neural networks

MNIST data

- Each grayscale image is of size 28×28.
- 60,000 training images and 10,000 test images
- 10 possible labels ($0,1,2,3,4,5,6,7,8,9$)

Digit recognition using 3 layers

Example outputs:
$6->$
$[000$
0

Compute the weights and biases for the last layer

Cost function

$$
C(w, b) \equiv \frac{1}{2 n} \sum_{x}\|y(x)-a\|^{2}
$$

- We assume that the network approximates a function $y(x)$ and outputs a.
- We use a quadratic cost function, i.e., mean squared error or MSE.

Cost function

- Can the cost function be negative in the above example?
- What does it mean when the cost is approximately equal to zero?

Gradient Descent

$$
\begin{aligned}
& \Delta C \approx \frac{\partial C}{\partial v_{1}} \Delta v_{1}+\frac{\partial C}{\partial v_{2}} \Delta v_{2} \quad \begin{array}{l}
\text { Small changes in parameters to } \\
\text { leads to small changes in output }
\end{array} \\
& \nabla C \equiv\left(\frac{\partial C}{\partial v_{1}}, \frac{\partial C}{\partial v_{2}}\right)^{T} \quad \text { Gradient vector! } \\
& \Delta v=-\eta \nabla C \quad \begin{array}{ll}
\text { Change the parameter using learning rate } \\
\text { (positive) and gradient vector! }
\end{array} \\
& v \rightarrow v^{\prime}=v-\eta \nabla C \quad \text { Update rule! }
\end{aligned}
$$

- Let us consider a cost function $C\left(v_{1}, v_{2}\right)$ that depends on two variables.
- The goal is to change the two variables to minimize the cost function.

Cost function from the network

$$
C(w, b) \equiv \frac{1}{2 n} \sum_{x}\|y(x)-a\|^{2}
$$

$$
\begin{aligned}
w_{k} & \rightarrow w_{k}^{\prime}=w_{k}-\eta \frac{\partial C}{\partial w_{k}} \\
b_{l} & \rightarrow b_{l}^{\prime}=b_{l}-\eta \frac{\partial C}{\partial b_{l}}
\end{aligned}
$$

What are the challenges in gradient descent when you have a large number of training samples?

$$
\nabla C=\frac{1}{n} \sum_{x} \nabla C_{x} \quad \begin{aligned}
& \text { Gradient from a set of training } \\
& \text { samples. }
\end{aligned}
$$

Stochastic gradient descent

- The idea is to compute the gradient using a small set of randomly chosen training data.
- We assume that the average gradient obtained from the small set is close to the gradient obtained from the entire set.

Stochastic gradient descent

$$
\frac{\sum_{j=1}^{m} \nabla C_{X_{j}}}{m} \approx \frac{\sum_{x} \nabla C_{x}}{n}=\nabla C
$$

- Let us consider a mini-batch with m randomly chosen samples.
- Provided that the sample size is large enough, we expect the average gradient from the m samples is approximately equal to the average gradient from all the n samples.

Thank You

DERIVATIVE RULES

$$
\begin{array}{lll}
\frac{d}{d x}\left(x^{n}\right)=n x^{n-1} & \frac{d}{d x}(\sin x)=\cos x & \frac{d}{d x}(\cos x)=-\sin x \\
\frac{d}{d x}\left(a^{x}\right)=\ln a \cdot a^{x} & \frac{d}{d x}(\tan x)=\sec ^{2} x & \frac{d}{d x}(\cot x)=-\csc ^{2} x \\
\frac{d}{d x}(f(x) \cdot g(x))=f(x) \cdot g^{\prime}(x)+g(x) \cdot f^{\prime}(x) & \frac{d}{d x}(\sec x)=\sec x \tan x & \frac{d}{d x}(\csc x)=-\csc x \cot x \\
\frac{d}{d x}\left(\frac{f(x)}{g(x)}\right)=\frac{g(x) \cdot f^{\prime}(x)-f(x) \cdot g^{\prime}(x)}{(g(x))^{2}} & \frac{d}{d x}(\arcsin x)=\frac{1}{\sqrt{1-x^{2}}} & \frac{d}{d x}(\arctan x)=\frac{1}{1+x^{2}} \\
\frac{d}{d x}(f(g(x)))=f^{\prime}(g(x)) \cdot g^{\prime}(x) & \frac{d}{d x}(\operatorname{arcsec} x)=\frac{1}{x \sqrt{x^{2}-1}} & \\
\frac{d}{d x}(\ln x)=\frac{1}{x} & \frac{d}{d x}(\sinh x)=\cosh x & \frac{d}{d x}(\cosh x)=\sinh x
\end{array}
$$

INTEGRAL RULES

$$
\begin{array}{lll}
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+c, n \neq-1 & \int \sin x d x=-\cos x+c & \int \csc ^{2} x d x=-\cot x+c \\
\int a^{x} d x=\frac{1}{\ln a} a^{x}+c & \int \cos x d x=\sin x+c & \int \sec x \tan x d x=\sec x+c \\
\int \frac{1}{x} d x=\ln |x|+c & \int \sec ^{2} x d x=\tan x+c & \int \csc x \cot x d x=-\csc x+c \\
\int \frac{d x}{\sqrt{1-x^{2}}}=\arcsin x+c & \int \sinh x d x=\cosh x+c & \int \cosh x d x=\sinh x+c \\
\int \frac{d x}{1+x^{2}}=\arctan x+c & \\
\int \frac{d x}{x \sqrt{x^{2}-1}}=\operatorname{arcsec} x+c &
\end{array}
$$

