Using neural nets to
recognize hand-written digits

Srikumar Ramalingam

School of Computing
University of Utah

Reference

Most of the slides are taken from the first chapter of the online book by
Michael Nielson:

* neuralnetworksanddeeplearning.com

Introduction

* Deep learning allows computational models
that are composed of multiple layers to learn
representations of data.

e Significantly improved state-of-the-art results ..
in speech recognition, visual object
recognition, object detection, drug discovery
and genomics.

“deep” comes from having
multiple layers of non-linearity

[Source: Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Deep Learning, Nature 2015]

Introduction

* “neural” is used because it is loosely inspired by neuroscience.

* The goal is generally to approximate some function f*, e.g., consider
a classifier y = f*(x):
We define a mapping y = f (6, x) and learn the value of the parameters 6
that result in the best function approximation.

* Feedforward network is a specific type of deep neural network where
information flows through the function being evaluated from input x
through the intermediate computations used to define f, and finally
to the output y.

Perceptron

T , | » ontput
/\-“f/

* A perceptron takes several Boolean inputs (x4, x,, Xx3) and returns a
Boolean output.

0 if) . w;z; < threshold
output =
1 if), ;wjz; > threshold

* The weights (wy, w,, w3) and the threshold are real numbers.

Simplification (Threshold -> Bias)

(0 ifw-z+b<0

output = < '
1 ifw-z+b>0

w,

£
T XDJ » output

£3

NAND gate using a perceptron

NAND is equivalent to NOT AND

It’s an old paradigm

The first learning machine:
the Perceptron

» Built at Cornell in 1960

The Perceptron was a linear classifier on top of
a simple feature extractor

‘ 1010e41X] 94Nn1e94 ‘

The vast majority of practical applications of
ML today use glorified linear classifiers or
glorified template matching.

Designing a feature extractor requires
considerable efforts by experts.

Design the weights and thresholds for the
following truth table

When all the three Boolean variables are 1s, we output 1, \/\
otherwise we output 0. ., L outpul

When all the three Boolean variables are Os, we output 1, =3
otherwise we output O.

When two of the three Boolean variables are 1s, we output 1,
otherwise we output O.

NAND is universal for computation

* XOR gate and AND gate

L1 —e

&ry —e

} SUIm: Iy 9 Io

-

1

>37 carry bit: xix2

~

——— SuIn: I 9 Io

% » carry bit: a9

OR gate using perceptrons?

Sigmoid neuron

1o g | » output

/\,/ o(w -z + b)

* A sigmoid neuron can take real numbers (x4, X, x3) within 0 to 1 and
returns a number within 0 to 1. The weights (w, w,, w3) and the bias
term b are real numbers.

1
1l +e =

Sigmoid function o (2)

Sigmoid neuron

\/\ 1

9 g | » output

/\j 1 + exp(— ijj:cj —b)

* A sigmoid neuron can take real numbers (x4, X, x3) within 0 to 1 and
returns a number within 0 to 1. The weights (w, w,, w3) and the bias
term b are real numbers.

Sigmoid function

o(z) =

14+ e *

1.0 -

0.8 -

0.6 -

0.4 -

0.2 -

0.0

sigmoid function

Sigmoid function can be seen as smoothed
step function

sigmoid function o
1.0 J— step function

0.8

0.6

IIIIIIIIIIIIIIIIIII

Reference for function approximation
Many of the slides are prepared using the following resources:

* http://neuralnetworksanddeeplearning.com/chap4.html

A simple function with one input and one
output

Goal: Sfllow that such functions can be approximated using sigmoid units in a deep neural
network.

The slides show a constructive argument to simulate any function.

Approximating a step function using Sigmoid
unit

1 ue Output from top hidden neuron

b

|
|
W

w =38

* Small weight and bias terms — coarse approximation of a step
function

Approximating a step function using Sigmoid
unit

b —-40

W = l(}() ’

-b/w = 0.40

* Larger weight and bias terms — better approximation of a step
function

Approximating a step function using Sigmoid

s = 0.40

* Assume that a very large weight is used for all neurons. In that case,

. : b
we can change the bias term to get different values for s = — =~ the
point where the step function starts.

Approximating a bump function

A _\ Weighted output from hidden layer
8, = 0.40
-url =8
a | _ 0 — >
i -'+ 0.4 0.6
8, = 0.60 - X
w, =-0.8

a_n
S

* You can simulate a simple bump function using two neurons with different “s” values to indicate

the start and end points for the bump function.

* The weights are designed such a manner that w; = —w,, depending on whether the bump

ou.,”n

function is above or below “x” axis.

Approximating two bumps

5 Weighted output from hidden layer

0.40

(0.60, “=-1.2

h=4.3

* The first bump is from s=0.4 to 0.6 and the second bump is from
s=0.7 to 0.9.

Approximating multiple bumps

5 ‘ Weighted output from hidden layer

> h=1.2
(0.2) 1

(0.2)

~ \\h=-0.6 z
(04
7N h=-1.0
(0.4 .

.;_"IU.ts";.
(0.6)
$ h=1.2

(0.8)

> h=1.0
(1.0)

Functions with multiple inputs

‘Neight:ad output from hidden layer

Tz Tower function

e TN\030
- 0160 \\\\
| 030
-
y - ///.f
» -030 /,/

-0.30

070

* |tis not hard to see that the entire approach can be extended for cases with
multiple inputs.

Other Activation functions

One activation unit in \l/ h
an intermediate layer ’
VRN
1. Rectifier Linear Unit (ReLU): h! = max {0, thl_l + bi}
/ N
Inactive Active (>0)
2. Maxout:

hi = max {W;'h"1 + b} ', .. WE'R!™ + bE}

In both cases, the DNN is a piecewise linear function.

Background — Piecewise linear functions

* Networks that use activation functions such as ReLU or maxout are piece-
wise linear functions.

76

VA

X B . S A = .

Piece-wise linear functions in 1D — We have Piece-wise linear function in 2D — the depths can be
linear functions for small pieces or regions obtained from different linear functions for different

triangles (Carolinska institute, Sweden)

* The # of linear regions < Expressiveness or representability of piece-wise
linear networks. 26

Notation for deep neural network (DNN)

y (ht) — Output

% ~
o =~ v
5 0 =
-_— >~ (0
5 & O
.. .. «» = O
(- ._LEO._L
o o 2 O <)
+ + T +
8 & >3 5 £ S
o £ 0 =z = O
N... o]

27

Activation functions

One activation unit in \l/ h
an intermediate layer ’
VRN
1. Rectifier Linear Unit (ReLU): h! = max {0, thl_l + bi}
/ N
Inactive Active (>0)
2. Maxout:

hi = max {W;'h"1 + b} ', .. WE'R!™ + bE}

In both cases, the DNN is a piecewise linear function.

The number of regions in one layer using
RelUs

V4 hy =0 hi =0
. hﬁ = 0 is nothing but a hyperplane

* 3 hyperplanes partition the 2D space
into 7 regions

29

Activation Patterns and Linear Regions

For RelLUs

-0
KR S S
WY WY AN

N
N \3%
VNN

V%
I..x..
0\

we characterize these regions using the

’

concept of activation patterns (vontufar, 2017):

* For a given input x

30

Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the
concept of activation patterns (vontufar, 2017):

* For a given input x

* There is an activation set ' € {1,2, ..., n!}
for each layer | such thati € S'iff hl > 0

s1=1{1,3,4)

31

Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the

concept of activation patterns (montufar, 2017): g
* For a given input x st =1{134
* There is an activation set S' < {1,2, ..., n!} ,
for each layer | such that i € S'iff h! > 0 =Y
» The activation pattern of xis § = (§1, ..., S} s3 = (5)
A linear region is the set of all points () s* =(3,4,5)

with a same activation pattern

32

Linear regions in the case of multiple layers

x1 xz

X
X
XD

A simple network
with 3 hidden layers

b

33

Linear regions ir tha race of multiple layers

X1 X2

<1

ao. <b

l)ﬁ

od

e cl>><f:l:r f

A simple network
with 3 hidden layers

|||||
0 1 2 3 4

Hyperplanes partitioning the

regions of previous layers

34

Linear regions ir tha race of multiple layers

A simple network
with 3 hidden layers

‘-/
.
,
34 .,
*

|||||
0 1 2 3 4

Hyperplanes partitioning the
regions of previous layers

35

Linear regions ir tha race of multiple layers

A simple network
with 3 hidden layers

“/
.
,
34 .,
*

|||||
0 1 2 3 4

Hyperplanes partitioning the
regions of previous layers

36

Linear regions in the case of multiple layers

e
i

A simple network

with 3 hidden layers

Xy . b a
4 ".“/
0 | xl
b i
"1, a
dﬁ ;

Hyperplanes partitioning the
regions of previous layers

.
Ry
.

.0 *
.‘0 .0
* *
b f" "
* *
*
{a,b,e, f}.. C ™3
*
*
*
*
*

»

Linear regions on the
original input space

X1

37

Small changes in parameters produce small
changes in output for sigmoid neurons

(small change in

parameters)
dout ut / 30111: 1}<
P | P Ab

Aoutput ~ Z 5
w;

J
(small change in
output)

(partial derivatives)

* Aoutput is approx. a linear function in small changes in weights and bias terms.
* Not for perceptrons!
 The outputs flip from 0 to 1 or vice versa for small change in inputs.

The architecture of neural networks

MNIST data

* Each grayscale image is of size 28x28.
* 60,000 training images and 10,000 test images
* 10 possible labels (0,1,2,3,4,5,6,7,8,9)

Digit recognition using 3 layers

IL]. L]. \'.J {8 W) 1?]_"-' L=

{rn = 15 neurons)

output layer

1 Example outputs:
y 3 6 ->
[0000001000Y)
input laver 4
(784 neurons)) 3 5
Input normalized to 'z X
a value between 0 i

and 1.

Compute the weights and biases for the last
layer

ocld output layer

hid den Inyver

\

1

S50 SN\
A AN
2 Q0 N SN
input leyer - < ;
* ¥

(TEd newrons

Cost function

- ..'-/
e
A
P #,{;é
= . - ol
T £l

1 AL e
Clw,b) = - lly(z) —al?

of input N\
parameters \
samples
to compute

input -> X vector output -> a

* We assume that the network approximates a function y(x) and outputs a.
* We use a quadratic cost function, i.e., mean squared error or MSE.

Cost function

e Can the cost function be negative in the above example?
* What does it mean when the cost is approximately equal to zero?

Gradient Descent

oC oC

Small changes in parameters to
AC ~ —Av, + Av, leads to small changes in output
81:1 3‘1?2

Gradient vector!

ac ac\?!
VO =
(8@1’8%"2)

Av = —nVC

Change the parameter using learning rate
(positive) and gradient vector!

v—v =v-nVC Update rule!

* Let us consider a cost function C (v, v,) that depends on two variables.

* The goal is to change the two variables to minimize the cost function.

Cost function from the network

wp — w, =w naC
k p— W — N7—
1 Owy,
Cw,b) = — > |ly(z) — aff _,

’ QHZ H bg%bﬁzbs—ﬁac

l \‘“ Ob;

of input

parameters
samples

to compute

What are the challenges in gradient descent when you have a large number of

training samples?

Gradient from a set of trainin
Ve =1 vC &
n ZT’ ¥ samples.

Stochastic gradient descent

* The idea is to compute the gradient using a small set of randomly
chosen training data.

* We assume that the average gradient obtained from the small set is
close to the gradient obtained from the entire set.

Stochastic gradient descent

Z?:lvc}fj " Z;L:VCI B

m n

vC

* Let us consider a mini-batch with m randomly chosen samples.

* Provided that the sample size is large enough, we expect the
average gradient from the m samples is approximately equal to
the average gradient from all the n samples.

Thank You

DERIVATIVE RULES

d ;. . d . . d .
dx[ﬁ:)znx ! E{mnx}zcﬂsx E(cnsx}z—smx
d, . . d d 3
dx(a-)zlna-ﬂ E(tanx]zse-:lx (cotx)=—ecsc” x
i{f(*{]- (x))=f(x)-g'(x)+ g(x)- f'(x) E{sraﬁ: x)=secxtanx i(csc x)=—cscxcotx
a8 ety A A d "
d [f{xJJ:g(x)-f{xj—fix}g(x} 4 (arosinr) = (arctanx) =L,
dx| g(x) (g(x)) dx 1— 2 dx l+x
i{f (g(x))=f"(g(x)-g'(x) i(arc secx) = J
dx , , dx ‘ xx.l'xz—l
d | d ., . d :
E{lnx)—; E{smhx)—cnshx E{cc—shx}-smhx

Source: http://math.arizona.edu/~calc/Rules.pdf

j‘x"deLx”'l +e, n#x-—1
n+1

X 1 X
a - +
I dx a C
Ina

ji{fr: 111|:1:|+c
X

—arcsinx4c

dx
2
-X

by

dx
j ——arctanx+c
1+x°

—arcsecx—+c

ji
xw,f'x?‘ —1

INTEGRAL RULES

Isinx:itz—cﬂsx+c
Icasxﬁix —sinx+c

i |
Isec“ xdx=tanx+4c¢

Isinh xdx =coshx+e¢

.
Icsc“ xdx=—cotx+c¢
Ise-::xtan xadx =secx+c
Icsc xcotxdr=—cscx+e

Icosh xadx=smhx+e¢

Source: http://math.arizona.edu/~calc/Rules.pdf

