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Reference

Most of the slides are taken from the first chapter of the online book by 
Michael Nielson:

• neuralnetworksanddeeplearning.com



Introduction

• Deep learning allows computational models 
that are composed of multiple layers to learn 
representations of data. 

• Significantly improved state-of-the-art results 
in speech recognition, visual object 
recognition, object detection, drug discovery 
and genomics. 

[Source: Yann LeCun, Yoshua Bengio, and Geoffrey Hinton, Deep Learning, Nature 2015]

“deep” comes from having 
multiple layers of non-linearity



Introduction

• “neural” is used because it is loosely inspired by neuroscience.

• The goal is generally to approximate some function 𝑓∗, e.g., consider 
a classifier 𝑦 = 𝑓∗ 𝑥 :

We define a mapping 𝑦 = 𝑓 𝜃, 𝑥 and learn the value of the parameters 𝜃
that result in the best function approximation.

• Feedforward network is a specific type of deep neural network where 
information flows through the function being evaluated from input 𝑥
through the intermediate computations used to define 𝑓, and finally 
to the output 𝑦.



Perceptron

• A perceptron takes several Boolean inputs (𝑥1, 𝑥2, 𝑥3) and returns a 
Boolean output.

• The weights (𝑤1, 𝑤2, 𝑤3) and the threshold are real numbers. 



Simplification (Threshold -> Bias)

𝑏



NAND gate using a perceptron

- NAND is equivalent to NOT AND



The first learning machine: 
the Perceptron 

Built at Cornell in 1960

The Perceptron was a linear classifier on top of 
a simple feature extractor

The vast majority of practical applications of 
ML today use glorified linear classifiers or 
glorified template matching.

Designing a feature extractor requires 
considerable efforts by experts.
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Slide Credit: Marc'Aurelio Ranzato, Yann LeCun

It’s an old paradigm



Design the weights and thresholds for the 
following truth table

When all the three Boolean variables are 1s, we output 1, 
otherwise we output 0. 

When all the three Boolean variables are 0s, we output 1, 
otherwise we output 0. 

When two of the three Boolean variables are 1s, we output 1, 
otherwise we output 0. 



NAND is universal for computation

• XOR gate and AND gate



OR gate using perceptrons?



Sigmoid neuron

• A sigmoid neuron can take real numbers (𝑥1, 𝑥2, 𝑥3) within 0 to 1 and 
returns a number within 0 to 1. The weights (𝑤1, 𝑤2, 𝑤3) and the bias 
term 𝑏 are real numbers. 

Sigmoid function



Sigmoid neuron

• A sigmoid neuron can take real numbers (𝑥1, 𝑥2, 𝑥3) within 0 to 1 and 
returns a number within 0 to 1. The weights (𝑤1, 𝑤2, 𝑤3) and the bias 
term 𝑏 are real numbers. 



Sigmoid function



Sigmoid function can be seen as smoothed 
step function



Reference for function approximation

Many of the slides are prepared using the following resources:

• http://neuralnetworksanddeeplearning.com/chap4.html



A simple function with one input and one 
output

Goal: Show that such functions can be approximated using sigmoid units in a deep neural 
network.

The slides show a constructive argument to simulate any function. 



Approximating a step function using Sigmoid 
unit

• Small weight and bias terms – coarse approximation of a step 
function



Approximating a step function using Sigmoid 
unit

• Larger weight and bias terms – better approximation of a step 
function



Approximating a step function using Sigmoid 
unit

• Assume that a very large weight is used for all neurons. In that case, 

we can change the bias term to get different values for s = −
𝑏

𝑤
, the 

point where the step function starts. 

𝑠 = 0.4



Approximating a bump function

• You can simulate a simple bump function using two neurons with different “s” values to indicate 
the start and end points for the bump function. 

• The weights are designed such a manner that 𝑤1 = −𝑤2, depending on whether the bump 
function is above or below “x” axis. 

0.4 0.6 𝑥



Approximating two bumps

• The first bump is from s=0.4 to 0.6 and the second bump is from 
s=0.7 to 0.9.



Approximating multiple bumps



Functions with multiple inputs

• It is not hard to see that the entire approach can be extended for cases with 
multiple inputs. 



Other Activation functions
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Inactive Active (>0)

𝒉𝒊
𝒍 = 𝒎𝒂𝒙 { 𝟎, 𝑾𝒊

𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒍 }1. Rectifier Linear Unit (ReLU):

2. Maxout:
𝒉𝒊
𝒍 = 𝒎𝒂𝒙 {𝑾𝒊

𝟏 𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝟏 𝒍, … ,𝑾𝒊

𝒌 𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒌 𝒍 }

In both cases, the DNN is a piecewise linear function.

One activation unit in 
an intermediate layer

𝒉𝒍−𝟏



Background – Piecewise linear functions
• Networks that use activation functions such as ReLU or maxout are piece-

wise linear functions.
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Piece-wise linear functions in 1D – We have 
linear functions for small pieces or regions

• The # of linear regions ↔ Expressiveness or representability of piece-wise 
linear networks. 

Piece-wise linear function in 2D – the depths can be 
obtained from different linear functions for different 

triangles (Carolinska institute, Sweden)



Notation for deep neural network (DNN)

Notation:

• Input: 𝒙

• Output: 𝒚

• Number of layers: 𝑳

• Width of layer 𝒍 : 𝒏𝒍

• Output of layer 𝒍 : 𝒉𝒍 ∈ ℝ𝒏𝒍

𝒙 𝒉𝟎 − 𝑰𝒏𝒑𝒖𝒕

𝒚 𝒉𝑳 −𝑶𝒖𝒕𝒑𝒖𝒕

𝒉𝟏

𝒉𝑳−𝟏
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Activation functions
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Inactive Active (>0)

𝒉𝒊
𝒍 = 𝒎𝒂𝒙 { 𝟎, 𝑾𝒊

𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒍 }1. Rectifier Linear Unit (ReLU):

2. Maxout:
𝒉𝒊
𝒍 = 𝒎𝒂𝒙 {𝑾𝒊

𝟏 𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝟏 𝒍, … ,𝑾𝒊

𝒌 𝒍𝒉𝒍−𝟏 + 𝒃𝒊
𝒌 𝒍 }

In both cases, the DNN is a piecewise linear function.

One activation unit in 
an intermediate layer

𝒉𝒍−𝟏



The number of regions in one layer using 
ReLUs
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𝑥

𝑦

𝑅1 𝑅2

𝑅3

𝑅4

𝑅5

𝑅6

𝑅7
𝒉𝟏
𝒍 = 𝟎

𝒉𝟐
𝒍 = 𝟎 𝒉𝟑

𝒍 = 𝟎

• ℎ𝑖
𝑙 = 0 𝑖𝑠 𝑛𝑜𝑡ℎ𝑖𝑛𝑔 𝑏𝑢𝑡 𝑎 ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒

• 3 ℎ𝑦𝑝𝑒𝑟𝑝𝑙𝑎𝑛𝑒𝑠 𝑝𝑎𝑟𝑡𝑖𝑡𝑖𝑜𝑛 𝑡ℎ𝑒 2𝐷 𝑠𝑝𝑎𝑐𝑒
𝑖𝑛𝑡𝑜 7 𝑟𝑒𝑔𝑖𝑜𝑛𝑠



Activation Patterns and Linear Regions
For ReLUs, we characterize these regions using the 
concept of activation patterns (Montufar, 2017):

• For a given input 𝒙
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𝒙𝒙



Activation Patterns and Linear Regions
For ReLUs, we characterize these regions using the 
concept of activation patterns (Montufar, 2017):

• For a given input 𝒙

• There is an activation set 𝑺𝒍 ⊆ {𝟏, 𝟐, … , 𝒏𝒍}
for each layer l such that 𝒊 ∈ 𝑺𝒍 iff 𝐡𝐢

𝐥 > 𝟎

𝑺𝟏 = {𝟏, 𝟑, 𝟒}
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𝒙



Activation Patterns and Linear Regions

For ReLUs, we characterize these regions using the 
concept of activation patterns (Montufar, 2017):

• For a given input 𝒙

• There is an activation set 𝑺𝒍 ⊆ {𝟏, 𝟐, … , 𝒏𝒍}
for each layer l such that 𝒊 ∈ 𝑺𝒍 iff 𝐡𝐢

𝐥 > 𝟎

• The activation pattern of 𝒙 is 𝓢 = (𝑺𝟏, … , 𝑺𝒍)

A linear region is the set of all points 
with a same activation pattern

𝑺𝟏 = {𝟏, 𝟑, 𝟒}

𝑺𝟐 = {𝟐, 𝟒}

𝑺𝟑 = {𝟓}

𝑺𝟒 = {𝟑, 𝟒, 𝟓}
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𝒙



Linear regions in the case of multiple layers
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A simple network 
with 3 hidden layers



Linear regions in the case of multiple layers
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A simple network 
with 3 hidden layers Hyperplanes partitioning the 

regions of previous layers



Linear regions in the case of multiple layers
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A simple network 
with 3 hidden layers Hyperplanes partitioning the 

regions of previous layers



Linear regions in the case of multiple layers
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A simple network 
with 3 hidden layers Hyperplanes partitioning the 

regions of previous layers



Linear regions in the case of multiple layers
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A simple network 
with 3 hidden layers Hyperplanes partitioning the 

regions of previous layers

Linear regions on the 
original input space

𝑏 𝑎

𝑓
𝑒

𝑐
𝑑

𝑥1

𝑥2

{𝑎, 𝑏, 𝑒, 𝑓}



Small changes in parameters produce small 
changes in output for sigmoid neurons

• Δ𝑜𝑢𝑡𝑝𝑢𝑡 is approx. a linear function in small changes in weights and bias terms. 
• Not for perceptrons!

• The outputs flip from 0 to 1 or vice versa for small change in inputs. 

(small change in 
output)

(small change in 
parameters)

(partial derivatives)



The architecture of neural networks



MNIST data

• Each grayscale image is of size 28x28.

• 60,000 training images and 10,000 test images

• 10 possible labels (0,1,2,3,4,5,6,7,8,9) 



Digit recognition using 3 layers

Input normalized to 
a value between 0 
and 1. 

Example outputs:

6 -> 
[0 0 0 0 0 0 1 0 0 0 ]’



Compute the weights and biases for the last 
layer



Cost function

• We assume that the network approximates a function 𝑦 𝑥 and outputs 𝑎.

• We use a quadratic cost function, i.e., mean squared error or MSE.

input -> x vector output -> a

parameters 
to compute

# of input 
samples



Cost function

• Can the cost function be negative in the above example?

• What does it mean when the cost is approximately equal to zero?



Gradient Descent

• Let us consider a cost function 𝐶 𝑣1, 𝑣2 that depends on two variables.

• The goal is to change the two variables to minimize the cost function.

Small changes in parameters to 
leads to small changes in output

Gradient vector!

Change the parameter using learning rate 
(positive) and gradient vector!

Update rule!



Cost function from the network

parameters 
to compute

# of input 
samples

What are the challenges in gradient descent when you have a large number of 
training samples?

Gradient from a set of training 
samples.



Stochastic gradient descent

• The idea is to compute the gradient using a small set of randomly 
chosen training data. 

• We assume that the average gradient obtained from the small set is 
close to the gradient obtained from the entire set. 



Stochastic gradient descent

• Let us consider a mini-batch with m randomly chosen samples.

• Provided that the sample size is large enough, we expect the 
average gradient from the m samples is approximately equal to 
the average gradient from all the n samples. 



Thank You



Source: http://math.arizona.edu/~calc/Rules.pdf



Source: http://math.arizona.edu/~calc/Rules.pdf


