3D Reconstruction

Srikumar Ramalingan

Revie

Estimation Revisited

3D Reconstruction

3D Reconstruction

Srikumar Ramalingam

School of Computing University of Utah

Presentation Outline

3D Reconstruction

Srikumar Ramalingai

Review

Pose Estimation Revisited

3D Recon-

1 Review

2 Pose Estimation Revisited

3 3D Reconstruction

Forward Projection (Reminder)

3D Reconstruction

Srikumar Ramalingar

Review

Pose Estimation Revisited

3D Recon

$$\begin{pmatrix} u \\ v \\ 1 \end{pmatrix} \sim \mathsf{KR} \begin{pmatrix} \mathsf{I} & -\mathbf{t} \end{pmatrix} \begin{pmatrix} X^m \\ Y^m \\ Z^m \\ 1 \end{pmatrix}$$

Backward Projection (Reminder)

3D Reconstruction

Srikumar Ramalinga

Review

Pose Estimation Revisited

3D Reconstruction

$$\textbf{Q} \sim \textbf{K}^{-1}\textbf{q}$$

Presentation Outline

3D Reconstruction

Srikumar Ramalingai

Review

Pose Estimation Revisited

3D Recon-

1 Review

2 Pose Estimation Revisited

3 3D Reconstruction

Sample Pose Estimation Problem

3D Reconstruction

Srikumar Ramalinga

Davian

Pose Estimation

Revisited

3D Reconstruction Compute the solution for pose estimation when λ_1 is given.

$$(\lambda_1 X_1 - \lambda_2 X_2)^2 + (\lambda_1 Y_1 - \lambda_2 Y_2)^2 + (\lambda_1 Z_1 - \lambda_2 Z_2)^2 = d_{12}^2$$

$$(\lambda_2 X_2 - \lambda_3 X_3)^2 + (\lambda_2 Y_3 - \lambda_3 Y_3)^2 + (\lambda_2 Z_2 - \lambda_3 Z_3)^2 = d_{23}^2$$

$$(\lambda_3 X_3 - \lambda_1 X_1)^2 + (\lambda_3 Y_3 - \lambda_1 Y_1)^2 + (\lambda_3 Z_3 - \lambda_1 Z_1)^2 = d_{31}^2$$

- Compute λ_2 from the first equation.
- Compute λ_3 from the third equation.
- Use the second equation to remove incorrect solutions for λ_2 and λ_3 .

Pose Estimation

3D Reconstruction

Srikumar Ramalinga

Davian

Pose Estimation Revisited

3D Reconstruction

■ We consider that the camera is calibrated, i.e. we know its calibration matrix K.

$$\mathsf{K} = \left(\begin{array}{ccc} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{array}\right)$$

$$\mathsf{K}^{-1} = \frac{1}{200} \left(\begin{array}{ccc} 1 & 0 & -320 \\ 0 & 1 & -240 \\ 0 & 0 & 200 \end{array} \right)$$

■ We are given three 2D image to 3D object correspondences. Let the 3 2D points be given by:

$$\mathbf{q_1} = \left(\begin{array}{c} 320 \\ 140 \\ 1 \end{array} \right) \qquad \mathbf{q_2} = \left(\begin{array}{c} 320 - 50\sqrt{3} \\ 290 \\ 1 \end{array} \right) \qquad \mathbf{q_3} = \left(\begin{array}{c} 320 + 50\sqrt{3} \\ 290 \\ 1 \end{array} \right) \quad .$$

- Let the inter-point distances be given by $\{d_{12} = 1000, d_{23} = 1000, d_{31} = 1000\}$
- Is it possible to have $\lambda_1 \neq \lambda_2$?

Pose Estimation using n correct correspondences

3D Recon-

Srikumar Ramalinga

2avia

Pose Estimation Revisited

3D Recon struction

- We can compute the pose using 3 correct correspondences.
- How to compute pose using n correspondences, with outliers.
 - Use RANSAC to identify m inliers where $m \le n$.
 - Use least squares to find the best pose using all the inliers
 basic idea is to use all the forward projection equations
 - for all the inliers and compute R and t.

General Version - RANSAC (REMINDER)

3D Reconstruction

Srikumai Ramalinga

n

Pose Estimation Revisited

3D Recon struction

- Randomly choose s samples
 - Typically s = minimum sample size that lets you fit a model
- 2 Fit a model (e.g., line) to those samples
- 3 Count the number of inliers that approximately fit the model
- Repeat N times
- 5 Choose the model that has the largest set of inliers

Slide: Noah Snavely

Let us do RANSAC!

3D Reconstruction

Srikumar Ramalingan

Review

Pose Estimation Revisited

3D Recon struction

IMAGE

3D MODEL

Matching Images

3D Reconstruction

Srikumar Ramalinga

D. . . .

Pose Estimation Revisited

3D Recor

We match keypoints from left and right images.

■ 2D-to-2D image matching using descriptors such as SIFT.

Kinect Sample Frames

3D Reconstruction

Srikumar Ramalingar

Revie

Pose Estimation Revisited

3D Reco

- Sequences of RGBD frames $(I_1, D_1), (I_2, D_2), (I_3, D_3), ..., (I_n, D_n).$
- How to register Kinect depth data for reconstructing large scenes?
- We have 2D-3D pose estimators and 2D-2D image matchers.

Kinect Sample Frames

3D Reconstruction

Srikumar Ramalingar

Revie

Pose Estimation Revisited

3D Recon

Matching Images

3D Reconstruction

Srikuma Ramalinga

Revie

Pose Estimation Revisited

3D Recor

We match keypoints from left and right images.

- One of the matches is incorrect!
- In a general image matching problem with 1000s of matches, we can have 100's of incorrect matches.

Presentation Outline

3D Reconstruction

Srikumar Ramalingaı

Reviev

1 Review

3D Reconstruction

2 Pose Estimation Revisited

3 3D Reconstruction

3D Reconstruction

Srikumar Ramalinga

Review

Pose Estimation Revisited

3D Reconstruction

- Given: calibration matrices (K_1, K_2) .
- Given: Camera poses $\{(R_1, \mathbf{t}_1), (R_2, \mathbf{t}_2)\}$ are known.
- Given: 2D point correspondence $(\mathbf{q}_1, \mathbf{q}_2)$.
- \blacksquare Our goal is to find the associated 3D point \mathbf{Q}^m .

3D Reconstruction

Srikumar Ramalinga

Reviev

Estimation Revisited

3D Reconstruction

- Due to noise, the back-projected rays don't intersect.
- The required point is given by $\mathbf{Q}^m = \frac{\mathbf{Q}_1^m + \mathbf{Q}_2^m}{2}$.
- The 3D point on the first back-projected ray is given by: $\mathbf{q}_1 \sim \mathsf{K}_1 \mathsf{R}_1 (\mathsf{I} \mathbf{t}_1) \mathbf{Q}_1^m$.
- The 3D point on the second back-projected ray is given by: $\mathbf{q}_2 \sim \mathsf{K}_2\mathsf{R}_2(\mathsf{I} \mathsf{t}_2)\mathbf{Q}_2^m$.

3D Reconstruction

Srikumar Ramalinga

Reviev

Pose Estimatio Revisited

3D Reconstruction

■ Let us parametrize the 3D points using λ_1 and λ_2 :

$$\mathbf{Q}_1^m = \mathbf{t}_1 + \lambda_1 \mathsf{R}_1^\mathsf{T} \mathsf{K}_1^{-1} \mathbf{q}_1$$

$$\mathbf{Q}_2^m = \mathbf{t}_2 + \lambda_2 \mathsf{R}_2^\mathsf{T} \mathsf{K}_2^{-1} \mathbf{q}_2$$

■ We rewrite using 3 × 1 constant vectors **a**, **b**, **c** and **d** for simplicity:

$$\mathbf{Q}_1^m = \mathbf{a} + \lambda_1 \mathbf{b}, \quad \mathbf{Q}_2^m = \mathbf{c} + \lambda_2 \mathbf{d}$$

3D Reconstruction

Srikumar Ramalinga

Review

Estimatio Revisited

3D Reconstruction

■ We can compute λ_1 and λ_2 as follows:

$$[\lambda_1, \lambda_2] = \arg\min_{\lambda_1, \lambda_2} dist(\mathbf{Q}_1^m, \mathbf{Q}_2^m)$$

3D Reconstruction

Srikumar Ramalingar

Review

Pose Estimation Revisited

3D Reconstruction

$$dist(\mathbf{Q}_1^m, \mathbf{Q}_2^m) = \sqrt{\sum_{i=1}^3 (a_i + \lambda_1 b_i - c_i - \lambda_2 d_i)^2}$$

$$[\lambda_1, \lambda_2] = \arg\min_{\lambda_1, \lambda_2} \sqrt{\sum_{i=1}^3 (a_i + \lambda_1 b_i - c_i - \lambda_2 d_i)^2}$$

$$[\lambda_1, \lambda_2] = \arg\min_{\lambda_1, \lambda_2} \sum_{i=1}^{3} (a_i + \lambda_1 b_i - c_i - \lambda_2 d_i)^2$$

$$D_{sqr} = \sum_{i=1}^{3} (a_i + \lambda_1 b_i - c_i - \lambda_2 d_i)^2$$

3D Reconstruction

Srikumar Ramalinga

Review

Pose Estimatio Revisited

3D Reconstruction

$$D_{sqr} = \sum_{i=1}^{3} (a_i + \lambda_1 b_i - c_i - \lambda_2 d_i)^2$$

At minima:

$$\frac{\partial D_{sqr}}{\partial \lambda_1} = \sum_{i=1}^3 2(a_i + \lambda_1 b_i - c_i - \lambda_2 d_i)b_i = 0$$

$$\frac{\partial D_{sqr}}{\partial \lambda_2} = \sum_{i=1}^3 2(a_i + \lambda_1 b_i - c_i - \lambda_2 d_i) d_i = 0$$

We have two linear equations with two variables λ_1 and λ_2 . This can be solved!

Once λ 's are computed then we can obtain:

$$\mathbf{Q}_1^m = \mathbf{a} + \lambda_1 \mathbf{b}$$

$$\mathbf{Q}_2^m = \mathbf{c} + \lambda_2 \mathbf{d}$$

We can compute the required intersection point \mathbf{Q}^m from the mid-point equation: $\mathbf{Q}^m = \frac{\mathbf{Q}_1^m + \mathbf{Q}_2^m}{2}$

Sample 3D Reconstruction

3D Reconstruction

Srikumai Ramalinga

D -- .: ---

Pose Estimation Revisited

3D Reconstruction

■ Calibration matrices:

$$\mathsf{K}_1 = \mathsf{K}_2 = \left(\begin{array}{ccc} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{array} \right)$$

- Rotation matrices: $R_1 = R_2 = I$.
- Translation matrices: $\mathbf{t}_1 = \mathbf{0}, \mathbf{t}_2 = (100, 0, 0)^T$.
- Correspondence:

$$\mathbf{q_1} = \left(\begin{array}{c} 520\\440\\1 \end{array}\right) \mathbf{q_2} = \left(\begin{array}{c} 500\\440\\1 \end{array}\right)$$

■ Compute the 3D point \mathbf{Q}^m .

Simple 3D Reconstruction Pipeline

3D Reconstruction

Srikumar Ramalinga

Revie

Pose Estimation Revisited

3D Reconstruction

- I Given a sequence of images $\{l_1, l_2, ..., l_n\}$ with known calibration, obtain 3D reconstruction.
- **2** Compute correspondences for the image pair (I_1, I_2) .
- 3 Find the motion between l_1 and l_2 using motion estimation algorithm (next class).
- 4 Compute partial 3D point cloud P_{3D} using the point correspondences from (I_1, I_2) .
- Initialize k = 3.
- 6 Compute correspondences for the pair (I_{k-1}, I_k) and compute the pose of I_k with respect to P_{3D} .
- Increment P_{3D} using 3D reconstruction from (I_{k-1}, I_k) .
- |8| k = k + 1
- 9 If k < n go to Step 5.

Three view triangulation

3D Reconstruction

Srikumar Ramalingaı

Reviev

Pose Estimatio Revisited

3D Reconstruction

$$\mathbf{Q}_1^m = \mathbf{a} + \lambda_1 \mathbf{b}, \quad \mathbf{Q}_2^m = \mathbf{c} + \lambda_2 \mathbf{d}, \quad \mathbf{Q}_3^m = \mathbf{e} + \lambda_3 \mathbf{f}$$

- We can compute the required point \mathbf{Q}^m from the intersection of three rays.
- What is the cost function to minimize?

Calibration matrices:

$$\mathsf{K}_1 = \mathsf{K}_2 = \mathsf{K}_3 = \left(\begin{array}{ccc} 200 & 0 & 320 \\ 0 & 200 & 240 \\ 0 & 0 & 1 \end{array}\right)$$

- Rotation matrices: $R_1 = R_2 = R_3 = I$.
- Translation matrices: $\mathbf{t}_1 = \mathbf{0}, \mathbf{t}_2 = (100, 0, 0)^T, \mathbf{t}_3 = (200, 0, 0)^T.$
- Correspondence:

$$\mathbf{q}_1 = \begin{pmatrix} 520 \\ 440 \\ 1 \end{pmatrix} \mathbf{q}_2 = \begin{pmatrix} 500 \\ 440 \\ 1 \end{pmatrix} \mathbf{q}_3 = \begin{pmatrix} 480 \\ 440 \\ 1 \end{pmatrix}$$

■ Compute the 3D point \mathbf{Q}^m .

Acknowledgments

3D Reconstruction

Srikumar Ramalingai

Reviev

Pose Estimatio Revisited

3D Recon-

Some presentation slides are adapted from the following materials:

■ Peter Sturm, Some lecture notes on geometric computer vision (available online).