3D Reconstruction

Srikumar Ramalingam

School of Computing
University of Utah

Presentation Outline

1 Review

2 Pose Estimation Revisited

3 3D Reconstruction

Forward Projection (Reminder)

3D Recon-
struction
Srikumar
Ramalingam

Review
Pose
Estimation
Revisited
3D Reconstruction

$$
\left(\begin{array}{c}
u \\
v \\
1
\end{array}\right) \sim \operatorname{KR}\left(\begin{array}{ll}
1 & -\mathbf{t}
\end{array}\right)\left(\begin{array}{c}
X^{m} \\
Y^{m} \\
Z^{m} \\
1
\end{array}\right)
$$

Backward Projection (Reminder)

3D Recon-
struction
Srikumar
Ramalingam

Review
Pose
Estimation Revisited

3D Reconstruction

$$
\mathbf{Q} \sim K^{-1} \mathbf{q}
$$

Presentation Outline

1 Review

2 Pose Estimation Revisited

3 3D Reconstruction

Sample Pose Estimation Problem

3D Recon-
struction
Srikumar Ramalingam

Compute the solution for pose estimation when λ_{1} is given.
$\left(\lambda_{1} X_{1}-\lambda_{2} X_{2}\right)^{2}+\left(\lambda_{1} Y_{1}-\lambda_{2} Y_{2}\right)^{2}+\left(\lambda_{1} Z_{1}-\lambda_{2} Z_{2}\right)^{2}=d_{12}^{2}$
$\left(\lambda_{2} X_{2}-\lambda_{3} X_{3}\right)^{2}+\left(\lambda_{2} Y_{3}-\lambda_{3} Y_{3}\right)^{2}+\left(\lambda_{2} Z_{2}-\lambda_{3} Z_{3}\right)^{2}=d_{23}^{2}$
$\left(\lambda_{3} X_{3}-\lambda_{1} X_{1}\right)^{2}+\left(\lambda_{3} Y_{3}-\lambda_{1} Y_{1}\right)^{2}+\left(\lambda_{3} Z_{3}-\lambda_{1} Z_{1}\right)^{2}=d_{31}^{2}$

- Compute λ_{2} from the first equation.
- Compute λ_{3} from the third equation.
- Use the second equation to remove incorrect solutions for λ_{2} and λ_{3}.

Pose Estimation

3D Reconstruction

Srikumar Ramalingam

■ We consider that the camera is calibrated, i.e. we know its calibration matrix K.

$$
\begin{aligned}
\mathrm{K} & =\left(\begin{array}{ccc}
200 & 0 & 320 \\
0 & 200 & 240 \\
0 & 0 & 1
\end{array}\right) \\
\mathrm{K}^{-1} & =\frac{1}{200}\left(\begin{array}{ccc}
1 & 0 & -320 \\
0 & 1 & -240 \\
0 & 0 & 200
\end{array}\right)
\end{aligned}
$$

- We are given three 2D image to 3D object correspondences. Let the 32D points be given by:
$\mathbf{q}_{1}=\left(\begin{array}{c}320 \\ 140 \\ 1\end{array}\right) \quad \mathbf{q}_{2}=\left(\begin{array}{c}320-50 \sqrt{3} \\ 290 \\ 1\end{array}\right) \quad \mathbf{q}_{3}=\left(\begin{array}{c}320+50 \sqrt{3} \\ 290 \\ 1\end{array}\right)$
- Let the inter-point distances be given by $\left\{d_{12}=1000, d_{23}=1000, d_{31}=1000\right\}$
- Is it possible to have $\lambda_{1} \neq \lambda_{2}$?

Pose Estimation using n correct correspondences

■ We can compute the pose using 3 correct correspondences.

- How to compute pose using n correspondences, with outliers.
- Use RANSAC to identify m inliers where $m \leq n$.
- Use least squares to find the best pose using all the inliers - basic idea is to use all the forward projection equations for all the inliers and compute R and t.

General Version - RANSAC (REMINDER)

3D Recon-
struction
Srikumar
Ramalingam

Review
Pose
Estimation Revisited

3D Reconstruction

1 Randomly choose s samples

- Typically $s=$ minimum sample size that lets you fit a model

2 Fit a model (e.g., line) to those samples
3 Count the number of inliers that approximately fit the model

4 Repeat N times
5 Choose the model that has the largest set of inliers
Slide: Noah Snavely

Let us do RANSAC!

3D Recon-
struction
Srikumar
Ramalingam

Review
Pose
Estimation Revisited

3D Reconstruction

IMAGE

Matching Images

3D Recon-
struction
Srikumar
Ramalingam

Review
Pose
Estimation Revisited

3D Reconstruction

We match keypoints from left and right images.

- 2D-to-2D image matching using descriptors such as SIFT.

Kinect Sample Frames

3D Reconstruction

Srikumar Ramalingam

- Sequences of RGBD frames $\left(I_{1}, D_{1}\right),\left(I_{2}, D_{2}\right),\left(I_{3}, D_{3}\right), \ldots,\left(I_{n}, D_{n}\right)$.
- How to register Kinect depth data for reconstructing large scenes?
■ We have 2D-3D pose estimators and 2D-2D image matchers.

Kinect Sample Frames

3D Recon-
struction
Srikumar
Ramalingam

Review
Pose
Estimation Revisited

struction

Matching Images

3D Recon-
struction
Srikumar
Ramalingam

Review
Pose
Estimation
Revisited
3D Reconstruction

We match keypoints from left and right images.

- One of the matches is incorrect!
- In a general image matching problem with 1000s of matches, we can have 100's of incorrect matches.

Presentation Outline

3D Recon-
struction
Srikumar
Ramalingam

Review

Pose
Estimation Revisited

3D Reconstruction

1 Review

2 Pose Estimation Revisited

3 3D Reconstruction

3D Reconstruction (Two view triangulation)

3D Recon-
struction
Srikumar Ramalingam

Review
Pose
Estimation
Revisited
3D Reconstruction

■ Given: calibration matrices - $\left(\mathrm{K}_{1}, \mathrm{~K}_{2}\right)$.
■ Given: Camera poses - $\left\{\left(\mathrm{R}_{1}, \mathbf{t}_{1}\right),\left(\mathrm{R}_{2}, \mathbf{t}_{2}\right)\right\}$ are known.
■ Given: 2D point correspondence - $\left(\mathbf{q}_{1}, \mathbf{q}_{2}\right)$.

- Our goal is to find the associated 3D point \mathbf{Q}^{m}.

3D Reconstruction (Two view triangulation)

3D Recon-
struction
Srikumar
Ramalingam

Review
Pose
Estimation
Revisited
3D Reconstruction

■ Due to noise, the back-projected rays don't intersect.

- The required point is given by $\mathbf{Q}^{m}=\frac{\mathbf{Q}_{1}^{m}+\mathbf{Q}_{2}^{m}}{2}$.
- The 3D point on the first back-projected ray is given by: $\mathbf{q}_{1} \sim \mathrm{~K}_{1} \mathrm{R}_{1}\left(\mathrm{I}-\mathbf{t}_{1}\right) \mathbf{Q}_{1}^{m}$.
- The 3D point on the second back-projected ray is given by: $\mathbf{q}_{2} \sim \mathrm{~K}_{2} \mathrm{R}_{2}\left(\mathrm{I}-\mathbf{t}_{2}\right) \mathbf{Q}_{2}^{m}$.

3D Reconstruction (Two view triangulation)

3D Recon-
struction
Srikumar
Ramalingam

Review

Pose

Estimation Revisited

3D Reconstruction

- Let us parametrize the 3 D points using λ_{1} and λ_{2} :

$$
\begin{aligned}
\mathbf{Q}_{1}^{m} & =\mathbf{t}_{1}+\lambda_{1} \mathbf{R}_{1}^{T} \mathbf{K}_{1}^{-1} \mathbf{q}_{1} \\
\mathbf{Q}_{2}^{m} & =\mathbf{t}_{2}+\lambda_{2} \mathbf{R}_{2}^{T} \mathbf{K}_{2}^{-1} \mathbf{q}_{2}
\end{aligned}
$$

- We rewrite using 3×1 constant vectors $\mathbf{a}, \mathbf{b}, \mathbf{c}$ and \mathbf{d} for simplicity:

$$
\mathbf{Q}_{1}^{m}=\mathbf{a}+\lambda_{1} \mathbf{b}, \quad \mathbf{Q}_{2}^{m}=\mathbf{c}+\lambda_{2} \mathbf{d}
$$

3D Reconstruction (Two view triangulation)

3D Recon-
struction
Srikumar
Ramalingam

Review

Pose

Estimation Revisited

3D Reconstruction

- We can compute λ_{1} and λ_{2} as follows:

$$
\left[\lambda_{1}, \lambda_{2}\right]=\arg \min _{\lambda_{1}, \lambda_{2}} \operatorname{dist}\left(\mathbf{Q}_{1}^{m}, \mathbf{Q}_{2}^{m}\right)
$$

3D Reconstruction (Two view triangulation)

$$
\begin{gathered}
\operatorname{dist}\left(\mathbf{Q}_{1}^{m}, \mathbf{Q}_{2}^{m}\right)=\sqrt{\sum_{i=1}^{3}\left(a_{i}+\lambda_{1} b_{i}-c_{i}-\lambda_{2} d_{i}\right)^{2}} \\
{\left[\lambda_{1}, \lambda_{2}\right]=\arg \min _{\lambda_{1}, \lambda_{2}} \sqrt{\sum_{i=1}^{3}\left(a_{i}+\lambda_{1} b_{i}-c_{i}-\lambda_{2} d_{i}\right)^{2}}} \\
{\left[\lambda_{1}, \lambda_{2}\right]=\arg \min _{\lambda_{1}, \lambda_{2}} \sum_{i=1}^{3}\left(a_{i}+\lambda_{1} b_{i}-c_{i}-\lambda_{2} d_{i}\right)^{2}} \\
D_{\text {sqr }}=\sum_{i=1}^{3}\left(a_{i}+\lambda_{1} b_{i}-c_{i}-\lambda_{2} d_{i}\right)^{2}
\end{gathered}
$$

3D Reconstruction (Two view triangulation)

3D Recon-
struction
Srikumar
Ramalingam

Review
Pose
Estimation
Revisited
3D Reconstruction

$$
D_{s q r}=\sum_{i=1}^{3}\left(a_{i}+\lambda_{1} b_{i}-c_{i}-\lambda_{2} d_{i}\right)^{2}
$$

At minima:

$$
\begin{aligned}
& \frac{\partial D_{s q r}}{\partial \lambda_{1}}=\sum_{i=1}^{3} 2\left(a_{i}+\lambda_{1} b_{i}-c_{i}-\lambda_{2} d_{i}\right) b_{i}=0 \\
& \frac{\partial D_{s q r}}{\partial \lambda_{2}}=\sum_{i=1}^{3} 2\left(a_{i}+\lambda_{1} b_{i}-c_{i}-\lambda_{2} d_{i}\right) d_{i}=0
\end{aligned}
$$

We have two linear equations with two variables λ_{1} and λ_{2}. This can be solved!

Once λ 's are computed then we can obtain:

$$
\begin{aligned}
& \mathbf{Q}_{1}^{m}=\mathbf{a}+\lambda_{1} \mathbf{b} \\
& \mathbf{Q}_{2}^{m}=\mathbf{c}+\lambda_{2} \mathbf{d}
\end{aligned}
$$

We can compute the required intersection point \mathbf{Q}^{m} from the mid-point equation: $\mathbf{Q}^{m}=\frac{\mathbf{Q}_{1}^{m}+\mathbf{Q}_{2}^{m}}{2}$

Sample 3D Reconstruction

3D Recon-
struction
Srikumar Ramalingam

Review
Pose
Estimation Revisited

3D Reconstruction

- Calibration matrices:

$$
\mathrm{K}_{1}=\mathrm{K}_{2}=\left(\begin{array}{ccc}
200 & 0 & 320 \\
0 & 200 & 240 \\
0 & 0 & 1
\end{array}\right)
$$

- Rotation matrices: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{I}$.
- Translation matrices: $\mathbf{t}_{1}=\mathbf{0}, \mathbf{t}_{2}=(100,0,0)^{T}$.
- Correspondence:

$$
\mathbf{q}_{1}=\left(\begin{array}{c}
520 \\
440 \\
1
\end{array}\right) \mathbf{q}_{2}=\left(\begin{array}{c}
500 \\
440 \\
1
\end{array}\right)
$$

- Compute the 3 D point \mathbf{Q}^{m}.

Simple 3D Reconstruction Pipeline

1 Given a sequence of images $\left\{I_{1}, I_{2}, \ldots, I_{n}\right\}$ with known calibration, obtain 3D reconstruction.
2 Compute correspondences for the image pair $\left(I_{1}, I_{2}\right)$.
3 Find the motion between I_{1} and I_{2} using motion estimation algorithm (next class).
4 Compute partial 3D point cloud $P_{3 D}$ using the point correspondences from $\left(I_{1}, I_{2}\right)$.
5 Initialize $k=3$.
6 Compute correspondences for the pair $\left(I_{k-1}, I_{k}\right)$ and compute the pose of I_{k} with respect to $P_{3 D}$.
7 Increment $P_{3 D}$ using 3D reconstruction from $\left(I_{k-1}, I_{k}\right)$.
$8 k=k+1$
9 If $k<n$ go to Step 5 .

Three view triangulation

3D Recon-
struction
Srikumar Ramalingam

Review

Pose

Estimation Revisited

3D Reconstruction

$$
\mathbf{Q}_{1}^{m}=\mathbf{a}+\lambda_{1} \mathbf{b}, \quad \mathbf{Q}_{2}^{m}=\mathbf{c}+\lambda_{2} \mathbf{d}, \quad \mathbf{Q}_{3}^{m}=\mathbf{e}+\lambda_{3} \mathbf{f}
$$

- We can compute the required point \mathbf{Q}^{m} from the intersection of three rays.
- What is the cost function to minimize?

Problem

3D Recon-
struction
Srikumar Ramalingam

Review
Pose
Estimation Revisited

3D Reconstruction

■ Calibration matrices:

$$
\mathrm{K}_{1}=\mathrm{K}_{2}=\mathrm{K}_{3}=\left(\begin{array}{ccc}
200 & 0 & 320 \\
0 & 200 & 240 \\
0 & 0 & 1
\end{array}\right)
$$

- Rotation matrices: $\mathrm{R}_{1}=\mathrm{R}_{2}=\mathrm{R}_{3}=\mathrm{I}$.
- Translation matrices:

$$
\mathbf{t}_{1}=\mathbf{0}, \mathbf{t}_{2}=(100,0,0)^{T}, \mathbf{t}_{3}=(200,0,0)^{T} .
$$

- Correspondence:

$$
\mathbf{q}_{1}=\left(\begin{array}{c}
520 \\
440 \\
1
\end{array}\right) \mathbf{q}_{2}=\left(\begin{array}{c}
500 \\
440 \\
1
\end{array}\right) \mathbf{q}_{3}=\left(\begin{array}{c}
480 \\
440 \\
1
\end{array}\right)
$$

- Compute the 3D point \mathbf{Q}^{m}.

Acknowledgments

3D Recon-
struction
Srikumar
Ramalingam

Review

Pose
Estimation Revisited

Some presentation slides are adapted from the following materials:

- Peter Sturm, Some lecture notes on geometric computer vision (available online).

