Instructions

- All assignments will be take home and are to be done individually. Discussing topics is allowed; however, copying of each others work is considered cheating and will result in a failing grade. If a student is suspected of cheating, they may be asked to answer randomly selected homework questions in a public session to verify that they have actually mastered the material as claimed.

- Assignments are due by 5pm MT on the day in which they are to be submitted. Submissions will be done via Canvas. Ten points per 24-hour period as of the day and time for which the call went out (counting Saturday and Sunday) will be deducted for late assignments.

- Assignments will be submitted in electronic format and must be typeset. We recommend you use \LaTeX to typeset your assignments. While there is a bit of a learning curve, it is worth learning. If not, consider using Lyx, a front-end to \LaTeX. If neither of those work, feel free to use Word or Writer to type up your assignments. The deadline will be indicated on the class webpage. You will also submit any code you generate to solve the homework. The principle language of our textbook is Matlab. We will use Matlab for in-class demonstrations also. Students may use Matlab, Python, or other languages as they see fit as long as they are consistent as as long as they make sure that we can execute/run your code. Please also make sure to comment your code well so that we know what you are doing.

Practicum Examples (to be done in Class)

1. Chapter 2, page 56–70: 2.4 (for A, use interval \(x \leq 0 \)), 2.5, 2.7, 2.24 (second term in the equation of \(f \) should be \(\frac{3}{2} x^2 \) and not \(\frac{3}{2} \) as given in textbook) and 2.28.

Assignment Due by 18 September 2017 via Canvas by 5pm MT: Submit solutions for three of the following:

1. Chapter 2, page 56–70: 2.6, 2.9, 2.21, 2.22 and 2.25.