Lecture 3
Scientific and Data Computing I

Mike Kirby
School of Computing
Model Components

• Cash Bond Model
 – $B(t)$ is the cash value at time t
 – r is the rate-of-return (non-volatile).

• Fixed r:
 \[B(t) = B(0) e^{rt} \]

• Variable $r(t)$:
 \[B(t) = B(0) \exp \left(\int_0^t r(s) ds \right) \]
Profit Model

• Profit Model Assuming a Fixed Surcharge

\[P(t) = B(t) - B(0) - C_0 \]

\[P(t) = B(0) \cdot (e^{rt} - 1) - C_0 \]
Profit Model (Continued)

- Profit Versus Time Accounting for Surcharge
Root Finding Problem

- Bisection Method
- Newton’s Method
- Secant Method
Bisection Method

• Bisection Method (Algorithm)

Letting \(c_{i-1} = (a_{i-1} + b_{i-1})/2 \)
if \(f(c_{i-1}) = 0 \) then stop
else if \(f(a_{i-1})f(c_{i-1}) < 0 \) then \(a_i = a_{i-1}, b_i = c_{i-1} \)
else \(a_i = c_{i-1}, b_i = b_{i-1} \)

The error in the approximation satisfies \(|c_i - \bar{x}| \leq \frac{1}{2} \ell_i \)
Bisection Method (Continued)

• Why Bisect?

\[\epsilon(\bar{c}) = |x^* - \bar{c}| \]
Bisection Method (Continued)

• On the theory side …

Theorem 2.1 If \(f \in C[a, b] \), with \(f(a)f(b) < 0 \), then the midpoints \(c_0, c_1, c_2, \ldots \) computed using the bisection method converge to a solution \(\bar{x} \) of \(f(x) = 0 \), and the error satisfies

\[
|c_i - \bar{x}| \leq \frac{1}{2^{i+1}}(b - a)
\]
Additional Comments
 - Multiple Roots
 - Multi-dimensions

Classroom Demonstration in Matlab
Newton’s Method

• Newton’s Method (Algorithm)

\[f(x) \approx f(x_0) + f'(x_0)(x - x_0) \]

Using the approximation and solving for \(x \):

\[x_2 = x_1 - \frac{f(x_1)}{f'(x_1)} \]

\[x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)}, \text{ for } i = 0, 1, 2, 3, \ldots \]
Newton’s Method (Continued)

• Why does it work?
Newton’s Method (Continued)

• On the theory side …

Theorem 2.2. Assuming $f \in C^2(a, b)$, with $a < \bar{x} < b$ and $f'(x) \neq 0$ for $a < x < b$. In this case, for x_0 chosen close to the \bar{x}, Newton’s method will converge to \bar{x}. Moreover, if $f'''(\bar{x}) \neq 0$, and x_0 does not have the finite termination property, then

$$|x_{i+1} - \bar{x}| = C_i |x_i - \bar{x}|^2,$$

where, as $i \to \infty$,

$$C_i \to \left| \frac{f'''(\bar{x})}{2f'(\bar{x})} \right|$$
Higher-Order Extensions

• Halley’s Method:

\[x_{n+1} = x_n - \frac{2f(x_n)f'(x_n)}{2[f'(x_n)]^2 - f(x_n)f''(x_n)}\]

• Re-written to “follow” Newton-method form:

\[x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \left[1 - \frac{f(x_n)}{f'(x_n)} \cdot \frac{f''(x_n)}{2f'(x_n)}\right]^{-1}\]
Issues In Practice

• Importance of the initial condition
• Runaway problem
• Zero slope problem

Classroom Demonstration in Matlab
Secant Method

- Secant Method Algorithm:

Approximate the derivative with:

\[f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}} \]

\[x_{i+1} = x_i - \frac{f(x_i)(x_i - x_{i-1})}{f(x_i) - f(x_{i-1})}, \text{ for } i = 1, 2, \ldots \]
Secant Method (Continued)

• On the theory side …

Theorem 2.3. Assuming $f \in C^2(a, b)$, with $a < \bar{x} < b$ and $f'(x) \neq 0$ for $a < x < b$. In this case, for x_0 and x_1 chosen close to the \bar{x}, the second method will converge to \bar{x}. Moreover, if $f''(\bar{x}) \neq 0$, and x_0 and x_1 does not have the finite termination property, then

$$|x_{i+1} - \bar{x}| = D_i |x_i - \bar{x}|^\gamma$$

where $\gamma = (1 + \sqrt{5})$, and as $i \to \infty$,

$$D_i \to \left| \frac{f''(\bar{x})}{2f'(\bar{x})} \right|^{-\frac{1}{\gamma}}$$
Issues In Practice

• Storage
• Multi-Dimensional Secant

Classroom Demonstration in Matlab
Automatic Differentiation

• Hand Differentiation
• Symbolic Differentiation
 – Symbolic Manipulation Software (Mathematica, Maple, etc.)
 – Translate to Code
• Numerical Differentiation
 – Finite Difference
 – Complex Step
• Automatic Differentiation
 – Analytically Differentiates Code Directly from Source
 – Preprocessor
 – Operator Overloading
For Next Time

• Read Chapter 2
• Look ahead to Chapter 7
• Start working on Practicums
• Start working on Homework 1