1. (20%) Problem 5.3

Answer: For each implication, see if it is true for all assignments to free variables. The symbols =, <, etc. are supposed to have their standard meaning.

(a) \((1 = 2) \Rightarrow (2 = 3).\) This formula has truth value true.

(b) \((\text{gcd}(x, y) = z) \Rightarrow (\text{gcd}(x + y, y) = z).\) Here, \(\text{gcd}\) stands for the greatest common divisor of its arguments. This formula has truth value true.

(c) \((k > 1) \land \text{hasclique}(G, k) \Rightarrow \text{hasclique}(G, k - 1).\) Here, \(\text{hasclique}(G, k)\) means that graph \(G\) has a clique of size \(k.\) This formula has truth value true.

(d) \((k > 1) \land \text{hasclique}(G, k) \Rightarrow \text{hasclique}(G, k + 1).\) This formula has a truth value of neither true nor false. It is satisfiable for some graphs \(G\) and falsifiable for others.

(e) \(((a \Rightarrow (b \Rightarrow c)) \Rightarrow ((a \Rightarrow b) \Rightarrow (a \Rightarrow c))).\) This formula has truth value true.

(f) (20%) Read Section 18.3.8 and apply this polynomial time algorithm to show that \((a \lor b) \land (a \lor b) \land (a \lor b)\) is satisfiable.

```
|-> !a ----->b<--
|    |    |    |
|    v    v    |
-- !b     a--|
```

This implication graph results from the above 2CNF clauses. It has no cycles that include both \(x\) and \(!x\), hence the formula is satisfiable. The assignment is obtained from the paths \(!a--->a\) and \(!b-->b\) that exist. These paths give us the truth value assignment \(a=1\) and \(b=1\).
Problem 18.3 Prove the following using a similar approach as illustrated above (Sperschneider’s book, p. 107): Every barber shaves everyone who does not shave himself. No barber shaves someone who shaves himself. Prove that there exists no barber.

We obtain the following FOL assertions after a few trials:

i. “If x is a barber, then for all y that don’t shave themself, x will shave them.”

$$\forall x.(\text{barb}(x) \Rightarrow \forall y.(\neg \text{shav}(y, y) \Rightarrow \text{shav}(x, y)))$$

ii. “If y is a self shaver, then for all x that are barbers, x will keep off y.”

$$\forall y.(\text{shav}(y, y) \Rightarrow \forall x.(\text{barb}(x) \Rightarrow \neg \text{shav}(x, y)))$$

iii. To prove there is no barber, suppose there is one, say $$b_0$$. Then Step 1(g)i yields

$$\forall y. (\neg \text{shav}(y, y) \Rightarrow \text{shav}(b_0, y))$$

iv. Specializing $$y = b_0$$, we get

$$\neg \text{shav}(b_0, b_0) \Rightarrow \text{shav}(b_0, b_0)$$

which is

$$\text{shav}(b_0, b_0).$$

v. Specializing $$y = b_0$$ in Step 1(g)ii and doing modus ponens with $$\text{shav}(b_0, b_0)$$ yields

$$\forall x.(\text{barb}(x) \Rightarrow \neg \text{shav}(x, b_0)))$$

vi. Specializing $$x = b_0$$, we get $$\neg \text{shav}(b_0, b_0)$$ which contradicts $$\text{shav}(b_0, b_0)$$.

vii. Hence there is no such $$b_0$$.

25% of your points come from this problem: Using weakest preconditions, find two inputs that can make the Binary search loop print HL*. Apply these inputs and run the program to show that this printing happens.

```c
#include <stdio.h>
#include <string.h>
#define STRLEN 16

int main(){
    char item; char str[STRLEN]; int lo=0; int hi; int mid, found=0;
    printf("Please give char to be searched: \n"); scanf("%c", &item);
    printf("Please give string within which to search: \n"); scanf("%s", str);
    hi=strlen(str)-1; // strlen ignores null at the end of string
    // hi points to last char in a 0 based array
    while(!found && lo <= hi) {
        mid = (lo+hi)/2;
        if (item == str[mid]) { printf("*"); found = 1; }
        else if (item < str[mid]) { hi = mid-1; printf("L"); }
        else { lo = mid+1; printf("H"); }
    }
    if (found) printf("\nitem %c found at posn %d\n", item, mid);
    else printf("\nitem %c not in str %s\n", item, str);
    return found;
}
```
Here is the sequence of path predicates

1: negate exit condition

!(f && l <= h)

2: set f to true , to get

!(f && l <= h) i.e. True

3: Then we get i = s[m]

4: Then i = s[(l+h)/2]

5: Then (!f && l <= m-1) && (i = s[(l+h)/2])

6: Then (!f && l <= m-1) && (i = s[(l+m-1)/2])

7: Then (i < s[m]) && (!f && l <= m-1) && (i = s[(l+m-1)/2])

8: Then (i != s[m]) && (i < s[m]) && (!f && l <= m-1) && (i = s[(l+m-1)/2])

which is

(i < s[m]) && (!f && l <= m-1) && (i = s[(l+m-1)/2])

9: Then (i < s[(l+h)/2]) && (!f && l <= (l+h)/2-1) && (i = s[(l+(l+h)/2-1)/2])

10: Then

(!f && l <= h) && (i < s[(l+h)/2]) && (!f && l <= (l+h)/2-1)

which is

(1 <= h) && (i < s[(l+h)/2]) && !f && (1 <= (l+h)/2-1) && (i = s[(1+(l+h)/2-1)/2])

i.e.

(1 < s[(l+h)/2]) && !f && (1 <= (l+h)/2-1) && (i = s[(1+(l+h)/2-1)/2])

11: Then

(i < s[(m+1+h)/2]) && !f && (m+1 <= (m+1+h)/2-1) && (i = s[(m+1)+(m+1+h)/2-1)/2])

12: Then

(i >= s[m]) && (i < s[(m+1+h)/2]) && !f

&& (m+1 <= (m+1+h)/2-1) && (i = s[(m+1)+(m+1+h)/2-1)/2])

13: Then

(i != s[m]) && (i >= s[m]) && (i < s[(m+1+h)/2]) && !f

&& (m+1 <= (m+1+h)/2-1) && (i = s[(m+1)+(m+1+h)/2-1)/2])

which is
\[(i > s[m]) \&\& (i < s[(m+1+h)/2]) \&\& !f \&\& (m+1 <= (m+1+h)/2-1) \&\& (i = s[((m+1)+(m+1+h)/2)/2])\]

14: Then
\[(i > s[(1+h)/2]) \&\& (i < s[((1+h)/2+(1+h)/2)/2]) \&\& !f \&\& ((1+h)/2+1 <= ((1+h)/2+(1+h)/2-1)) \&\& (i = s[((1+h)/2+(1+h)/2-1)/2])\]

15: Finally
\[!f \&\& (1 <= h) \&\& (i > s[(1+h)/2]) \&\& (i < s[((1+h)/2+(1+h)/2)/2]) \&\& !f \&\& ((1+h)/2+1 <= ((1+h)/2+(1+h)/2-1)) \&\& (i = s[((1+h)/2+(1+h)/2-1)/2])\]

which is
\[\&\& (1 <= h) \&\& (i > s[1]) \&\& (i < s[6]) \&\& !f \&\& ((1+h)/2+1 <= ((1+h)/2+(1+h)/2)/2) \&\& (i = s[((1+h)/2+(1+h)/2)/2])\]

Say \(l = 1, h = 7\), then
\[\&\& (i > s[4]) \&\& (i < s[6]) \&\& !f \&\& (5 <= 5) \&\& (i = s[5])\]

So pick \(i = 3\) (for fun). Then,
\[\&\& (3 >= s[4]) \&\& (3 < s[6]) \&\& (3 = s[5])\]

Then pick \(s[4,5,6] = 2,3,4\) and \(l=1\), and \(h=7\), and \(i=3\).

This will make the HL* printout

The \(l\) pointer first goes up to 5, then the \(h\) pointer comes down to 6, then finally \(l+h\) div 2 will set \(m\) to 5, to exit!

2. (5%) Show why Peterson’s protocol can fail on a TSO memory model. Explain using an example.
Answer: It was clearly explained with respect to the proof of Peterson’s algo, in class.

3. (10%) Show that the loop invariant guessed for Tournament min is one (a loop invariant) by walking back through the \(A[2.y-1] <= A[2.y]\) path.
Answer: Sweeping back, we have
\[LI: minA[y:2y] = min A[n:2n]\]

Back through \(y := y-1\)
\[\min A[y-1 : 2y-2] = \min A[n:2n] \]

Back through the \(A[2.y-1] \leq A[2.y] \) path's assignment

\[\min A[y-1 : 2y-2] = \min A[n:2n] \quad \text{-- where } A[y-1] \text{ is set to } A[2y-1] \]

Back through conditional

\[
\Rightarrow \quad \text{where } A[y-1] = A[2y-1]
\]

Now show

\[
\text{(min } A[y:2y] = \min A[n:2n] \text{)} \\
\Rightarrow
\]

\[
\Rightarrow \quad \text{where } A[y-1] = A[2y-1]
\]

i.e.

\[
\text{(min } A[y:2y] = \min A[n:2n] \text{)} \quad (A[2y-1] \leq A[2y]) \\
\min A[y-1:2y-2] = \min(A[n:2n]) \quad \text{where } A[y-1] = A[2y-1]
\]

This is true because

- since \((A[2y-1] \leq A[2y]) \), the min element is \(A[2y-1] \)

- This element is guaranteed to be at \(A[y-1] \)

Thus the precondition denotes the same min as the post-condition.