
11/3/09 

1 

Interrupts 
Arduino, AVR, and deep dark programming secrets 

What is an Interrupt?  


   A transfer of program control that is not directed by 
the programmer 

   Like a phone call in the middle of a conversation 


   Stop what you are doing, deal with the interruption, 
then continue where you left off 


   Very handy for handling events that need immediate 
attention 

   Or that need to occur at regular intervals 


   Or that need to run automatically without the 
programmer keeping track 

What Happens 

   An interrupt is signaled somehow  


   A phone rings 


   The AVR stops running user code and checks to see what 
caused the interrupt 

   Stop your conversation and check which phone is ringing 


   The AVR runs an Interrupt Service Routing (ISR) related 
to that interrupt 

   Answer the phone and handle the call 


   The AVR restores the system state and picks up the user 
code where it left off 

   Hang up and resume your previous conversation 

Types of Interrupts 


   On Arduino/AVR, there are three types 

   External: A signal outside the chip (connected to a pin) 


   Timer: Internal to the chip, like an alarm clock 


   Device: One of the AVR devices (USART, SPI, ADC, 
EEPROM) signals that it needs attention  

Example: USART 


   USART handles the serial communication between 
Arduino and the host 

   Why not just check for a new character in a loop?  


   How frequently would you have to check?  


   How much processor time would be spend checking?  

Example: USART 

   Serial port at 9600 baud (9600 bits/sec) 


   Each bit is sent at 9.6 kHz (close to 10kHz) 


   Each bit takes around 100usec 


   Around 10 bits required for each character 


   So, one character every 1msec or so 


   If the USART is buffered, you have about 1msec to get a 
character before it’s overwritten by the next one 


   So, you have to check faster than once every 
millisecond to keep up (around 1000 times a sec) 

   If your main loop is not doing anything else, you can do 

this, but if you’re doing other things, or communicating 
at faster speeds, it gets ugly fast 



11/3/09 

2 

Example: USART 


   Instead – set up an interrupt handler for the USART 

   The USART will cause an interrupt each time it receives 

a complete character 


   The Interrupt Service Routine (ISR) for this USART-
receive event will be called 


   The ISR will take the character from the USART and 
put it in a buffer for your program to use 


   You never have to check the USART directly, characters 
just show up in your program’s buffer as they arrive 

Types of Interrupts 


   On Arduino/AVR, there are three types 

   External: A signal outside the chip (connected to a pin) 


   Timer: Internal to the chip, like an alarm clock 


   Device: One of the AVR devices (USART, SPI, ADC, 
EEPROM) signals that it needs attention  

External Interrupts 


   An external event (signal on an input pin) causes an 
interrupt 

   A button, a sensor, an external chip, etc. 

   There are two external interrupt pins on Arduino 


   Interrupt 0 (Pin 2) and Interrupt 1 (Pin 3) 


   Supported by the Arduino software 

attachInterrupt(interrupt#, func-name, mode); 


   Interrupt# is 0 or 1 

   Func-name is the name of the ISR function 

   Mode is LOW, CHANGE, RISING, or FALLING 

From the Arduino Reference 

•  Two other Arduino functions: 
•   interrupts();       // enables interrupts 
•   sei();                 // enables interrupts (AVR) 

•   noInterrupts();  // disables interrupts 
•   cli();                 // disables interrupts (AVR) 

External Interrupt Example 
int pin = 13;                       // the builtin LED pin 
volatile int state = LOW;    // Hold the state of the LED 

// Note that external interrupt 0 looks for changes on 
// digital pin 2 of the Arduino board 
void setup() {   

 pinMode(pin, OUTPUT);   
 attachInterrupt(0, blink, CHANGE); // attach ISR 
 interrupts();  // enable interrupts (actually not needed) 

} 

void loop() {   
 digitalWrite(pin, state);   // Main code writes to LED  

} 

void blink() { state = !state; }  // ISR changes LED state 



11/3/09 

3 

Aside: Volatile Qualifier 
Another External Interrupt Example 

// Interrupt-Driver Bumper Example for a robot 
// A bumper switch on the front of the robot should be tied to digital pin 2 and ground 

#include <avr/interrupt.h>   // Some important interrupt-related definitions (needed?) 

volatile int bumper;    // Indicator to the main code have we hit something 

void setup(){     
 pinMode(2, INPUT);      // Make digital 2 an input   (for the bumper switch)  
 digitalWrite(2, HIGH);    // Enable pull up resistor  (bumper switch pulls low) 

 // attach our interrupt pin (pin 2) to its ISR     
 attachInterrupt(0, bumperISR, FALLING);        

 interrupts();    // interrupts are enabled by default, but this doesn’t hurt 

 // start moving     
 bumper = 0;     
 DriveForward(); 

} 

Another External Interrupt Example 
// The interrupt hardware calls this when we hit our bumper 
void bumperISR(){     

 Stop();                     // stop forward motion 
 bumper = 1;       // indicate that the bumper was hit    
 DriveBackward();    // set motors to reverse        
 delay(1000);           // back up for 1 second        
 TurnRight();            // turn right (away from obstacle)        
 DriveForward();      // drive off again...  

} 

void loop(){     
 // You can put any other robot driving commands here 
 // but you don’t need to check for the bumper here. 
 // It’s handled by the external interrupt 

 // If you want to, you can check the value of the bumper 
 // variable in the main code to see if it was hit. If you do  
 // check, you can reset it to 0 so that you can continue to  
 // check later.  

} 

External Interrupt Summary 


   AVR ATMega328p has 2 external interrupts 

   0 (on Arduino pin 2) and 1 (on Arduino pin 3) 


   Use attachInterrupt (int#, ISR-name, mode); to 
attach an ISR to an external interrupt 

   Make sure to provide a function definition for  

ISR-name 


   Choose mode as LOW, CHANGE, RISING, FALLING 


   If the main code looks at a variable that is set in the 
ISR, make sure that variable is volatile 


   detachInterrupt(int#); is also available 


   interrupts(); and noInterrupts(); turn them on and off 

Aside – more external interrupts 


   Arduino (AVR) has only 2 external interrupt pins 


   Actually, if you want CHANGE mode, there are lots 
more pins you can use (pretty much all the digital pins) 

   But, that requires a little deep dark secret AVR-hacking  


   So, unless you need it, don’t worry about it 


   If you do need it, let me know, or look at the interrupt 
examples linked to the class web site.  

Types of Interrupts 


   On Arduino/AVR, there are three types 

   External: A signal outside the chip (connected to a pin) 


   Timer: Internal to the chip, like an alarm clock 


   Device: One of the AVR devices (USART, SPI, ADC, 
EEPROM) signals that it needs attention  



11/3/09 

4 

Motivation 


   Arduino 101 – blinky LED 

   Problem – Arduino is just wasting time during the delay. 

It can’t be used for anything else.  

int ledPin =  13;    // LED connected to digital pin 13  

void setup()   {                    
pinMode(ledPin, OUTPUT); // initialize the digital pin as an output:    
}  

void loop()  {    
 digitalWrite(ledPin, HIGH);   // set the LED on    
 delay(1000);                    // wait for a second    
 digitalWrite(ledPin, LOW);    // set the LED off    
 delay(1000);                    // wait for a second  

} 

Motivation 

   Arduino 101 – blinky LED 


   Non-delay version – use a timer to see if it’s time to blink 


   Can use the Arduino for other things in the meantime 


   But, the programmer has to manage this activity 


   Don’t use delay – that ties up the processor while it’s 
delaying 

   Instead, there is a millis(); function that returns the current 

number of milliseconds since the last system reset 

   Based on internal timers!  


   Use that to check occasionally if enough time has passed that 
you should flip the LED again 


   You can do other things between checking  

non-delay blinky 
const int ledPin =  13;     // LED connected to digital pin 13 
int LedState = 0;   // Remember state of LED 
long previousMillis = 0;   // Store last time LED flashed 
long interval = 1000;  // Interval at which to blink 

void setup()   {                    
pinMode(ledPin, OUTPUT);      }  

void loop()  {    
// check to see if it's time to blink the LED; that is, is the difference between the  
// current time and last time we blinked is bigger than the blink interval    
if (millis() - previousMillis > interval) {      

 previousMillis = millis(); // save the last time you blinked the LED   
 // if the LED is off turn it on and vice-versa:      
 if (ledState == LOW) ledState = HIGH;  else   ledState = LOW;      
 digitalWrite(ledPin, ledState);   } // set the LED with the ledState of the variable:  

// Outside of this check, we can do other things…  
// Depending on how long the other things take, we might delay slightly longer than  
// 1000 millisec, but that’s probably fine for this application 
} 

Motivation 


   Instead, we could use interrupts 

   Interrupt the processor every 1sec (for example) 


   Change the state of the LED 


   Then continue with program execution 


   Keeps the LED blinking at a fixed rate 


   Doesn’t require any attention in the main program 


   This is a general technique, not just for LED-blinking!  

Agenda 


   First look at timers 

   What are they?  


   How to read/write timer values?  


   How to configure them?  


   Then look at how a timer can cause an interrupt 

   Like an alarm clock 


   When a timer alarm goes off, and ISR may be called 

AVR Timers 


   Timers are like on-chip alarm clocks 

   They count (tick) once for each system clock tick 


   16MHz for Arduino  


   Your program can check, and reset the count value 


   You can also “prescale” the timer’s clock so that it’s 
counting more slowly than the 16MHz Arduino clock 


   You can also have the timer set an alarm when the 
count gets to some particular value 


   The alarm is an interrupt 


   You can define the ISR for that timer alarm 



11/3/09 

5 

AVR Timers 


   Our Arduino’s AVR has three internal timers 

   Timer0: an 8-bit timer (counts 0 to 255) 


   Used for system timing, millis(); micros();, etc. 

   and PWM on pins 5 and 6 


   Timer1: a 16-bit timer (counts 0 to 65,535) 

   Used for PWM on pins 9 and 10 


   Timer 2: an 8-bit timer (counts 0 to 255) 

   Used for PWM on pins 3 and 11 


   Don’t use Timer0 – it will mess things up… 


   If you use Timer1 or Timer2, you will lose PWM on 
some pins… 

Timer Normal Mode 


   Start counting on system reset 


   Count until you get to your TOP, then start again at 0 

   8bit timer TOP is 255 


   16bit timer TOP is 65,535 


   Access a timer’s current value using a special register 

   TCNT0, TCNT1, TCNT2 


   A = TCNT2;  // Read the value of timer 2 

   TCNT1 = 0; // Reset the value of timer 1 to 0 

How Fast to Count?  


   16MHz is fast! 

   16,000,000 ticks/sec, 62.5ns per clock tick 


   A “prescaler” slows down the rate at which a timer 
counts by some factor 

   Increases the range of time you can count, but makes 

the smallest tick resolution larger 


   Timer0 and Timer1: divide clock by 1, 8, 64, 256, 1024 


   Timer2: divide clock by 1, 8, 32, 64, 128, 256, 1024 

Resolution/Timing with Prescaler 
Prescale Value Tick Time OVF 

frequency 
OVF Period 

1 62.5nsec 62.5 kHz 16usec 

8 500nsec 7.8125kHZ 128usec 

32 2usec 1.953125kHZ 512usec 

64 4usec 976.5625Hz 1.024msec 

128 8usec ~496.03Hz 2.048msec 

256 16usec ~244.14Hz 4.096msec 

1024 64usec ~61.04Hz 16.384msec 

8-bit counter at 16MHz system clock frequency (Timer2) 
OVF = Overflow (time it takes to count from 0 to TOP) 
TOP = 255 for an 8-bit counter 

Resolution/Timing with Prescaler 
Prescale Value Tick Time OVF 

frequency 
OVF Period 

1 62.5nsec ~244.14Hz 4.096msec 

8 500nsec ~30.52HZ 32.768msec 

64 4usec ~3.815Hz 262.144msec 

256 16usec ~0.954Hz ~1.05sec 

1024 64usec ~0.238Hz ~4.19sec 

16-bit counter at 16MHz system clock frequency (Timer1) 
OVF = Overflow (time it takes to count from 0 to TOP) 
TOP = 16,535 for a 16-bit counter 

Example: Flash LED at 1Hz 


   Find a counter prescale that lets us count slowly 
enough that we can count to 1sec 

   Figure out what to count to to get to 1sec 

timer_count = ((16,000,000/prescale)/target_freq) – 1 


   Set up counter with the right prescaler, then check if the 
count is up to timer_count.  


   Flash the LED and reset the timer to 0 


   (16,000,000Hz/1024)/1Hz –1 = 15,624   
(–1 because we count starting at 0!) 

   So, if you count 0 to 15,624 at a 1024 prescale, that’s  

(15,625)x( 64usec)=1,000,000usec = 1sec 



11/3/09 

6 

Flash LED at 1Hz 

int LEDPin = 13;  // Built-in LED pin 

void setup () { 
 pinMode(LEDpin, OUTPUT);  // Make sure it’s an output 

 // set up timer1 (16-bit timer) in normal up-counting mode 
 // set up timer1 (16-bit timer) for prescale of 1024 

}  

void loop (){ 
 if (TCNT1 >= 15624) { // reached 1sec on timer1 
  digitalWrite(LEDPin, !digitalRead(LEDPin)); // toggle LEDPin 
  TCNT1 = 0; // reset counter to 0 
 } 

} 

Aside: toggle-tweaking 

digitalWrite(LEDPin, !digitalRead(LEDPin)); 

boolean FlipFlop = 0; 

… 

digitalWrite(LEDPin, FlipFlop); 
FlipFlop = !FlipFlop; 

Easy…  

Faster…  

How to Configure Timers?  


   Set values into internal timer control registers 

   TCNTn is the timer count value 


   TCCRnA and TCCRnB are the timer control registers 


   Each bit in these control registers controls some aspect 
of the timer’s behavior 

Detour: Setting bits inside bytes 

   TCCR1B is an 8-bit byte 


   Want to set bits 2 (CS12) and 0 (CS10) to 1, leave others 0 

   TCCR1B = B00000101;    // overwrite whole byte 

   TCCR1B = TCCR1B | B00000101;  // leave other bits unchanged 

   TCCR1B |= B00000101;   // shorthand version of above 

   CS12 = 2 and CS10 = 0 – these are magically set in an included header file 

   bitSet(TCCR1B, CS12);  // Arduino functions for setting an individual bit  

bitSet(TCCR1B, CS10);  // There’s also bitClear(reg,bit); for clearing a bit… 

   TCCR1B |= ((1<<CS10) | (1<< CS12));  // Register bits all have names 

   TCCR1B |= _BV(CS10) | _BV(CS12);    // _BV(bit) is another Arduino function 

   TCCR1B |= bit(CS10) | bit(CS12);  // Yet another Arduino function 



11/3/09 

7 

Detour: Setting Bits 


   | = logical OR  

   00101101 | 01100011 = 01101111 

   If there’s a 1 in A or B, there’s a 1 in C 


   (1<<CS12) 

   CS12 is defined to be 2 (in a secret included file) 

   (1<<2) is 1 shifted two places to the left in the byte 

   this is 00000100 

   CS10 = 0 

   So ((1<<CS12) | (1<<CS10)) = 00000100 | 00000001 

   This equals 00000101 


   _BV(CS12) = bit(CS12) = (1<<CS12) = 00000100 

Flash LED at 1Hz 
int LEDPin = 13;  // Built-in LED pin 

void setup () { 
 pinMode(LEDpin, OUTPUT);  // Make sure it’s an output 

 // set up timer1 (16-bit timer) in normal up-counting mode 
 // set up timer1 (16-bit timer) for prescale of 1024 

}  

void loop (){ 
 if (TCNT1 >= 15624) { // reached 1sec on timer1 
  digitalWrite(LEDPin, !digitalRead(LEDPin)); // toggle LEDPin 
  TCNT1 = 0; // reset counter to 0 
 } 

} 

Flash LED at 1Hz 
int LEDPin = 13;  // Built-in LED pin 

void setup () { 
 pinMode(LEDpin, OUTPUT);  // Make sure it’s an output 

 // Timer is in “normal” mode by default (all 0’s in TCCR1A and B) 
 // Prescale of 1024 means  CS12=1, CS11=0, CS10=1 
 TCCR1B |= ((1<<CS12) | (1<<CS10)); // TCCR1B=00000101 

}  

void loop (){ 
 if (TCNT1 >= 15624) { // reached 1sec on timer1 
  digitalWrite(LEDPin, !digitalRead(LEDPin)); // toggle LEDPin 
  TCNT1 = 0; // reset counter to 0 
 } 

} 

Flash LED at 1Hz 
int LEDPin = 13;  // Built-in LED pin 

void setup () { 
 pinMode(LEDpin, OUTPUT);  // Make sure it’s an output 

 // Timer is in “normal” mode by default (all 0’s in TCCR1A and B) 
 // Prescale of 1024 means  CS12=1, CS11=0, CS10=1 
 bitSet(TCCR1B, CS12);   // TCCR1B=00000100 

   bitSet(TCCR1B, CS10);   // TCCR1B=00000101 
}  

void loop (){ 
 if (TCNT1 >= 15624) { // reached 1sec on timer1 
  digitalWrite(LEDPin, !digitalRead(LEDPin)); // toggle LEDPin 
  TCNT1 = 0; // reset counter to 0 
 } 

} 

Flash LED at 1/minute 
int LEDPin = 13;  // Built-in LED pin 
int ElapsedSeconds = 0; // Keep track of seconds 

void setup () { 
 pinMode(LEDpin, OUTPUT);  // Make sure it’s an output 

 // Timer is in “normal” mode by default (all 0’s in TCCR1A and B) 
 // Prescale of 1024 means  CS12=1, CS11=0, CS10=1 
 TCCR1B |= ((1<<CS12) | (1<<CS10)); // TCCR1B=00000101 

}  

void loop (){ 
 if (TCNT1 >= 15624) { // reached 1sec on timer1 
  TCNT1 = 0;        // reset timer1 count to 0 
  ElapsedSeconds++;   // Increment # of seconds seen so far 
  if (ElapsedSeconds == 60)  {   // Check for 1min 
   ElapsedSeconds = 0;      // reset seconds counter 
   digitalWrite(LEDPin, !digitalRead(LEDPin)); // toggle LEDPin 
  }    
 } 

} 

CTC Mode 

   Normal mode is just counting up (perhaps prescaled) 


   CTC is Clear on Timer Compare mode 

   Set a value in another magic register 


   When the counter gets to this value, set a flag and reset 
back to 0 


   Basically changes what value a counter counts to 


   OCRnA and OCRnB are the registers 

   Output Compare Register 


   Two (A and B) for each counter (0, 1, and 2) 


   Flag is set in TIFRn 

   Timer Interrupt Flag Register (0, 1, and 2) 



11/3/09 

8 

Setting CTC Mode Checking CTC Result  


   Flag is set in the TIFRn register 

Flashing LED at 1Hz (using CTC) 
int LEDPin = 13;  // Built-in LED pin 

void setup () { 
 pinMode(LEDpin, OUTPUT);  // Make sure it’s an output 

 TCCR1B |= _BV(WGM12); // Configure timer 1 for CTC mode 
 TCCR1B |= ((1<<CS12) | (1<<CS10)); // Timer1 prescale of 1024 
 OCR1A = 15624;  //Set CTC compare value in OCR1A register 

}  

void loop (){ 
 if (TIFR1 & _BV(OCF1A) {   // reached 15624 – CTC sets the flag 
  digitalWrite(LEDPin, !digitalRead(LEDPin)); // toggle LEDPin 
  TIFR1 = _BV(OCF1A);   // reset flag by writing a 1 to it 
       // Strange but true…  
 } 

} 

Details 


   (TIFR1 & _BV(OCF1A)  

   & is logical AND 


   11010110 & 00010001 = 00010000 


   Only if there’s a 1 in A and B is there a 1 in C 


   Remember _BV(OCF1A) is also (1<<OCF1A) 


   OCF1A = 1 (all bits are numbered in the magic included file 


   This ANDs the TIFR1 register with (00000010) 


   Answer is 1 only if the OCF1A bit is 1 


   Picks off the OCF1A bit 


   bit_is_set(TIFR1, OCF1A); // Arduino version!  

Flashing LED at 1Hz (using CTC) 
int LEDPin = 13;  // Built-in LED pin 

// Arduino-ized version 
void setup () { 

 pinMode(LEDpin, OUTPUT);  // Make sure it’s an output 

 bitSet (TCCR1B, WGM12); // Configure timer 1 for CTC mode 
 bitSet (TCCR1B, CS12);     // Timer1 prescale of 1024 
 bitSet (TCCR1B, CS10);  
 OCR1A = 15624;  //Set CTC compare value in OCR1A register 

}  

void loop (){ 
 if (bit_is_set(TIFR1, OCF1A)) {   // reached 15624 – CTC sets the flag 
  digitalWrite(LEDPin, !digitalRead(LEDPin)); // toggle LEDPin 
  bitSet (TIFR1, OCF1A);         // reset flag by writing a 1 to it 
            // Strange but true…  
 } 

} 

OK – Add Interrupts!  


   Can configure things so that an interrupt is signaled 
whenever the CTC compare target is reached 

   Set interrupt in TIMSKn timer interrupt mask register 


   Interrupt flag is in TIFRn timer interrupt flag register 


   ISR(TIMER1_COMPA_vect){…} // ISR definition 


   Can also configure for interrupt on overflow  

   i.e. counting all the way to TOP 


   ISR(TIMER2_OVF_vect){…} // ISR definition 



11/3/09 

9 

TIMSKn and TIFRn (1 and 2) 

Output Compare Interrupt Enable (A and B) 

Timer Overflow Interrupt Enable 

Output Compare Flag (A and B) 
Timer Overflow Flag 

Flash LED at 1Hz (with Interrupts) 
int LEDPin = 13;  // Built-in LED pin 

// Arduino-ized version 
void setup () { 

 pinMode(LEDpin, OUTPUT);  // Make sure it’s an output 
 bitSet (TCCR1B, WGM12);       // Configure timer1 for CTC mode 
 bitSet (TMSK1, OCIE1A);         // enable CTC interrupt on OCR1A compare 
 bitSet (TCCR1B, CS12);           // Timer1 prescale of 1024 
 bitSet (TCCR1B, CS10);  
 OCR1A = 15624;              //Set CTC compare value in OCR1A register 

        interrupts();                       // Make sure interrupts are enabled (default?) 
}  

void loop (){ 
  // Anything else you want to do…  

} 

ISR(TIMER1_COMPA_vect){     // ISR for CTC compare interrupt 
  digitalWrite(LEDPin, !digitalRead(LEDPin)); // toggle LEDPin 

} 

Flash at 1Hz with OVF Interrupt 


   Find a prescale value for a timer that results in a 1Hz 
overflow rate 

   Configure the timer 


   Set the interrupt to the overflow interrupt 


   Set up the ISR 

Resolution/Timing with Prescaler 
Prescale Value Tick Time OVF 

frequency 
OVF Period 

1 62.5nsec ~244.14Hz 4.096msec 

8 500nsec ~30.52HZ 32.768msec 

64 4usec ~3.815Hz 262.144msec 

256 16usec ~0.954Hz ~1.05sec 

1024 64usec ~0.238Hz ~4.19sec 

16-bit counter at 16MHz system clock frequency (Timer1) 
OVF = Overflow (time it takes to count from 0 to TOP) 

Flash LED at 1Hz (with OVF interrupt) 
int LEDPin = 13;  // Built-in LED pin 

// Arduino-ized version 
void setup () { 

 pinMode(LEDpin, OUTPUT);  // Make sure it’s an output 
  TCCR1B=0;                             // Configure Timer1 for normal mode (default) 
 bitSet (TMSK1, TOIE1);           // enable OVF interrupt on Timer1 
 bitSet (TCCR1B, CS12);           // Timer1 prescale of 256 

        interrupts();                        // Make sure interrupts are enabled (default?) 
}  

void loop (){ 
  // Anything else you want to do…  

} 

ISR(TIMER1_OVF_vect){     // ISR for OVF interrupt 
  digitalWrite(LEDPin, !digitalRead(LEDPin)); // toggle LEDPin 

} 



11/3/09 

10 

Flash LED at 1Hz (Timer2) 


   Use Timer2 (8-bit) 

   Overflows at 61Hz 


   Count up to 61 overflows to be 1Hz 


   Interrupt each time you overflow 

Resolution/Timing with Prescaler 
Prescale Value Tick Time OVF 

frequency 
OVF Period 

1 62.5nsec 62.5 kHz 16usec 

8 500nsec 7.8125kHZ 128usec 

32 2usec 1.953125kHZ 512usec 

64 4usec 976.5625Hz 1.024msec 

128 8usec ~496.03Hz 2.048msec 

256 16usec ~244.14Hz 4.096msec 

1024 64usec ~61.04Hz 16.384msec 

8-bit counter at 16MHz system clock frequency (Timer2) 
OVF = Overflow (time it takes to count from 0 to TOP) 

1Hz OVF on Timer2 (8-bit) 
int LEDPin = 13;  // Built-in LED pin 
volatile int Overflows; // Hold the current OVF count 

// Arduino-ized version 
void setup () { 

 pinMode(LEDpin, OUTPUT);  // Make sure it’s an output 
 bitSet (TMSK2, OIE2);           // enable OVF interrupt on Timer2 
 bitSet (TCCR2B, CS12);           // Timer2 prescale of 1024 
 bitSet (TCCR2B, CS10); 
 TCNT2=0;              // init Timer2 count to 0 (not strictly needed) 

        interrupts();                            // Make sure interrupts are enabled (default?) 
}  

void loop (){ 
  // Anything else you want to do…  

} 

ISR(TIMER2_OVF_vect){     // ISR for OVF interrupt 
 Overflows++;    // increment seconds count 
 if (Overflows == 61) { 
  digitalWrite(LEDPin, !digitalRead(LEDPin)); // toggle LEDPin 
  Overflows = 0;    // reset Overflows counter 
 } 

}   

Timer Summary 


   Three timers on AVR (You need to read AVR doc for details!!!!!) 

   Timer0 (8-bit) – used for system stuff (PWM on pins 5,6) 

   Timer1 (16-bit) – (PWM on 9, 10) 

   Timer2 (8-bit) – (PWM on 3,11) 


   Set and read timer values (counts) in TCNTn register 


   Set timer prescale in the TCCRnB register 

   Tables tell you what the tick-rate and OVF period are for each prescale 


   Set timer mode (normal, CTC, PWM (not covered here!)) in the 
TCCRnA and TCCRnB registers 


   Change timer TOP value in CTC mode 

   Set new TOP in OCRnA or OCRnB register 

Timer Interrupts Summary 


   Set interrupt enable in TIMSKn register 

   OVF interrupt is TOIEn 


   CTC interrupts are OCIEnA and OCIEnB 


   Interrupt flags are in TIFRn register 

   OVF flag is TOVn 


   CTC flags are OCFnA and OCFnB 


   Set ISR 

   ISR(TIMERn_OVF_vect){…} 


   ISR(TIMERn_COMPA_vect){…} 


   ISR(TIMERn_COMPB_vect){…} 

Bit setting and checking 


   Set and clear bits in AVR registers 

   sfr = Special Function register (i.e. TCCR1B…) 


   bitSet(sfr,bit);    bitClear(sfr.bit); 


   Check on a bit in an AVR register 

   bit_is_set(sfr, bit);     bit_is_clear(sfr, bit); 


   Loop on checking bits (wait for a bit) 

   loop_until_bit_is_set(sfr,bit); 


   loop_until_bit_is_clear(sfr, bit); 



11/3/09 

11 

Types of Interrupts 

   On Arduino/AVR, there are three types 


   External: A signal outside the chip (connected to a pin) 

   Use attachInterrupt(int#, ISR-name, mode);  


   also detachInterrupt(int#);  


   Timer: Internal to the chip, like an alarm clock 

   Set timer features (normal, CTC, etc.) 


   Set interrupt enables (OVF, CTC) 


   Set ISR 


   Device: One of the AVR devices (USART, SPI, ADC, 
EEPROM) signals that it needs attention 

   Probably don’t want to mess with these… Arduino does 

the right thing (but check AVR doc for details) 


   i.e. analogRead uses ADC, spi_write uses SPI, println uses 
USART, etc.   

Final Word 


   Interrupts are a wonderful way of reacting to events, or 
setting things up to happen at specific times or 
frequencies 

   Once they’re set up, they operate on their own without 

main-program fussing 


   You can also write wonderfully incomprehensible code 
that uses interrupts!  


