Multicore Computing — CS 5966 / 6966 — Week 2 - Only Lecture (1/21/09)
http://www.eng.utah.edu/~cs5966

Contents

1 Class Matters 1
2 Learning CILK 1
3 Assignment 2 — GIVEN 1/21, DUE 1/27 — Variable Deadlines!! 1
4 Anatomy of Cilksort 3

1 Class Matters

e Thanks for the interesting discussions in the Google list!

e [made a mistake in announcing email addresses containing @cs.utah.edu. Kindly note that
the email addresses for this class are teach-cs5966@eng.utah.edu and cs5966@eng.utah. edu.
If in doubt, please send email to me or the TA directly (we don’t mind). Just make sure to
put 5966 in the subject line.

2 Learning CILK

Today we will study the basics of programming in Cilk. Next Monday (1/26), we will study the
theory behind Cilk through online material kept. Please be sure to have read these items
kept in the Week2 directory by 1/26/09:

® http://www.eng.utah.edu/~cs5966/LECTURES/Week2/PAPERS-AND-SLIDES/cilk-manual-5.4.6.pdf

Cilk 5.4.6 Reference Manual
e How to Survive the Multicore Software Revolution at http://www.cilk.com/multicore-e-book
e A Minicourse on Multithreaded Programming at

http://www.eng.utah.edu/~cs5966/LECTURES/Week2/PAPERS-AND-SLIDES/minicourse-cilk-leiserson-prokop.pdf

3 Assignment 2 - GIVEN 1/21, DUE 1/27 — Variable Deadlines!!

The Keys I provide are for your Google group discussion thread subjects. I'll tell you what to
post. There are also parts for individual submission.

Familiarizing with Cilk: Assignment 2 (due 1/25): Do this part, and report any
troubles you may have faced - or things you observed, in the Google group. A
few short sentences will do. In particular comment on what —stats tends to reveal as you increase
the number from 1 to 6 (summary only).

This part requires you to have tried out existing Cilk code. The deadline is kept early so
that we can identify problems you may face, early.

w

Copy over ~ganesh/5966/cilk into your area. (This avoids many hassles I had to
kludge around in order to set the library paths etc.)

Go into the cilk-5.4.6 directory.

touch cilksort

Type make -n cilksort to see something like this (you can touch getoptions.c also
if you are paranoid).

make -n cilksort
../support/cilkclocal -DHAVE_CONFIG_H -I. -I.. -I../runtime
-g -02 -c -o cilksort.o cilksort.cilk
gcc -DHAVE_CONFIG_H -I. -I.. -I../runtime
-g -02 -MT getoptions.o -MD -MP -MF .deps/getoptions.Tpo -c -o getoptions.o getoptions.c
mv -f .deps/getoptions.Tpo .deps/getoptions.Po
rm -f cilksort
../support/cilkclocal -g -02 -o cilksort cilksort.o getoptions.o -1lm

Having learned what make does, I'm just sticking in the —cilk-profile and -cilk-span
options below. Type these commands

../support/cilkclocal -cilk-span -cilk-profile -DHAVE_CONFIG_H -I. -I.. -I../runtime
-g -02 -c -o cilksort.o cilksort.cilk
gcc -DHAVE_CONFIG_H -I. -I.. -I../runtime
-g -02 -MT getoptions.o -MD -MP -MF .deps/getoptions.Tpo -c -o getoptions.o getoptions.c
mv -f .deps/getoptions.Tpo .deps/getoptions.Po
rm -f cilksort
../support/cilkclocal -cilk-profile -cilk-span -g -02 -o cilksort cilksort.o getoptions.o -1lm
cilksort --stats 2 --nproc 4
cilksort --stats 2 --nproc 4 -n 3000000
cilksort --stats 2 --nproc 4 -n 30000000
cilksort --stats 3 --nproc 4 -n 30000000

Running Measurements on Cilksort: Assignment 2 (due 1/25): Do this part, and
report some of the vital statistics you obtained as a small ASCII table. Make sure
that Buckley is lightly loaded. You can try Intel machines also, but the library contents has to
be rebuilt. All this should work on AMD machines.

cilksort
cilksort
cilksort
cilksort
cilksort
cilksort
cilksort
cilksort

—--stats
—--stats
--stats
--stats
--stats
--stats
--stats
--stats

—--nproc
—--nproc
—--nproc
—--nproc
—--nproc
--nproc
--nproc
—--nproc

0N O D WN R

|
BB

-n

!
BB

-n

B

3000000
3000000
3000000
3000000
3000000
3000000
3000000
3000000

Running Measurements on arraysum: Assignment 2 (due 1/25): [I've kept arraysum bi-
nary, but of course read protected its contents. Run these measurements and have a chat in the

class group.

arraysum --nproc 1 --stats 2 -n 10000001
arraysum --nproc 2 --stats 2 -n 10000001

etc.

till you see diminishing returns.

Writing arraysum: Assignment 2 (due 1/27): Write a version of arraysum that splits the

4

sta

/%

* X X X X X X K K K K K K X ¥ ¥ ¥

array recursively and adds the contents. Get ideas by studying cilksort.cilk included below. This
part requires you to mail an URL to us containing your solution, as detailed
below. This part carries 80% of the points for this assignment, with the earlier parts carrying
the rest. The 80% is split as shown below.

Do these parts. Assemble your results into a single PDF. Put the PDF at a URL. Please
then email me and Sriram directly a URL for this PDF. Have your email have a subject line
“5966, Writing arraysum.”

1. (10%): Study cilksort.cilk and write a few paragraphs on how it is organized.
You'll get ideas for your assignment from this exercise. (Feel free to modify cilksort to
obtain arraysum. However, do acknowledge the sources.)

2. (10%): Do a binary split of the array. Add the array serially (like sequential merge)
if of size below a threshold.

3. (10%): Do a 4-way split, keeping the same threshold for serial summation. Summarize

your salient observations.

4. (30%): Experimentally determine, using a few experiments, where you seem to obtain
the best speedup (linear) as well as reduced wall-clock time. You may vary the threshold

and the splitting degree to find the sweet-spots.
(20%): For the best results in terms of speedup and runtime.

6. (20%): For the clearest explanations of your experimental results.

Anatomy of Cilksort

tic const char *ident attribute__((__unused__))

= "$HeadURL: https://bradley.csail.mit.edu/svn/repos/cilk/5.4.3/examples/cilksort.cilk $ $LastChangedBy:

Copyright (c) 2000 Massachusetts Institute of Technology
Copyright (c) 2000 Matteo Frigo

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA

this program uses an algorithm that we call ‘cilksort’.
The algorithm is essentially mergesort:

cilksort(in[1..n]) =
spawn cilksort(in[1..n/2], tmp[1..n/2])
spawn cilksort(in[n/2..n], tmp[n/2..n])

sukhaj $ $Rev: 51

sync
spawn cilkmerge(tmp[1..n/2], tmp[n/2..n], in[1..n])

The procedure cilkmerge does the following:

cilkmerge(A[1..n], B[1..m], C[1..(n+tm)]) =
find the median of A \union B using binary
search. The binary search gives a pair
(ma, mb) such that ma + mb = (n + m)/2
and all elements in A[1..ma] are smaller than
Blmb..m], and all the B[1..mb] are smaller
than all elements in A[ma..n].

spawn cilkmerge(A[1..ma], B[1..mb]l, C[1..(n+m)/2])
spawn cilkmerge(A[ma..m], B[mb..n], C[(n+m)/2 .. (n+m)])
sync

The algorithm appears for the first time (AFAIK) in S. G. Akl and
N. Santoro, "Optimal Parallel Merging and Sorting Without Memory
Conflicts", IEEE Trans. Comp., Vol. C-36 No. 11, Nov. 1987 . The
paper does not express the algorithm using recursion, but the
idea of finding the median is there.

For cilksort of n elements, T_1 = 0(n log n) and
T_\infty = 0(log™3 n). There is a way to shave a
log factor in the critical path (left as homework).

O K K X X X X X X K K K K K K K K K X ¥ ¥ ¥ ¥ ¥ *

*/
#include <cilk-1lib.cilkh>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <getoptions.h>

typedef long ELM;

/* MERGESIZE must be >= 2 */
#define KILO 1024

#define MERGESIZE (2+KILO)
#define QUICKSIZE (2+KILO)
#define INSERTIONSIZE 20

static unsigned long rand_nxt = 0;

static inline unsigned long my_rand(void)

{
rand_nxt = rand_nxt * 1103515245 + 12345;
return rand_nxt;
}
static inline void my_srand(unsigned long seed)
{
rand_nxt = seed;
}
static inline ELM med3(ELM a, ELM b, ELM c)
{
if (a <Db) {
if (b <c) {
return b;
} else {
if (a < ¢)
return c;
else
return a;
}
} else {
if (b > c) {
return b;

} else {

if (a > ¢)
return c;
else
return a;
}
}
}
/%

* simple approach for now; a better median-finding
* may be preferable
*/
static inline ELM choose_pivot(ELM *low, ELM *high)
{

return med3(*low, *high, low[(high - low) / 21);

static ELM *seqpart(ELM *low, ELM *high)
{

ELM pivot;

ELM h, 1;

ELM *curr_low = low;

ELM *curr_high = high;

pivot = choose_pivot(low, high);
while (1) {
while ((h = *curr_high) > pivot)

curr_high--;

while ((1 = *curr_low) < pivot)
curr_low++;

if (curr_low >= curr_high)

break;
*curr_high-- = 1;
*curr_low++ = h;
}
/*

I don’t know if this is really necessary.

The problem is that the pivot is not always the

However, if the partition is trivial, then
*high is the largest element, whence the following

*
*
* first element, and the partition may be trivial.
*
*
*

code.

if (curr_high < high)
return curr_high;
else
return curr_high - 1;

}

#define swap(a, b) \
{\

ELM tmp;\

tmp = aj\

a = b;\

b = tmp;\
}

static void insertion_sort(ELM *low, ELM *high)

{
ELM *p, *q;
ELM a, b;

for (q = low + 1; q <= high; ++q) {
a = q[o0];

for (p=q - 1; p >= low && (b = p[0]) > a; p--)
pl1]l = b;
pli] = a;

}

/%

* tail-recursive quicksort, almost unrecognizable :-)
*/

void seqquick(ELM *low, ELM *high)

{
ELM *p;
while (high - low >= INSERTIONSIZE) {
p = segpart(low, high);
seqquick(low, p);
low = p + 1;
}
insertion_sort(low, high);
}

void seqmerge(ELM *lowl, ELM *highl, ELM *low2, ELM *high2,
ELM *lowdest)
{
ELM al, a2;

~
*

The following ’if’ statement is not necessary

for the correctness of the algorithm, and is

in fact subsumed by the rest of the function.
However, it is a few percent faster. Here is why.

The merging loop below has something like
if (a1l < a2) {
*dest++ = al;
++lowl;
if (end of array) break;
al = xlowl;

}

Now, al is needed immediately in the next iteration

and there is no way to mask the latency of the load.

A better approach is to load al *before* the end-of-array
check; the problem is that we may be speculatively
loading an element out of range. While this is

probably not a problem in practice, yet I don’t feel
comfortable with an incorrect algorithm. Therefore,

I use the ’fast’ loop on the array (except for the last
element) and the ’slow’ loop for the rest, saving both
performance and correctness.

O K K X X X X X X X X X K K K K K K X X X ¥

*/
if (lowl < highl && low2 < high2) {
al = xlowl;
a2 = xlow2;
for (;;) {
if (a1l < a2) {
*lowdest++ = al;
al = x++lowl;
if (lowl >= highl)
break;
} else {
*lowdest++ = a2;
a2 = x++low2;
if (low2 >= high2)
break;

}
if (lowl <= highl && low2 <= high2) {
al = xlowl;
a2 = xlow2;
for ;) {
if (a1l < a2) {
*lowdest++ = al;
++lowl;
if (lowl > highl)
break;
al = xlowl;
} else {
*lowdest++ = a2;
++low2;
if (low2 > high2)
break;
a2 = *low2;

}
}
if (lowl > highl) {

memcpy (lowdest, low2, sizeof (ELM) * (high2 - low2 + 1));

If val is

} else {
memcpy (lowdest, lowl, sizeof (ELM) * (highl - lowl + 1));
}
}
#define swap_indices(a, b) \
{\
ELM *tmp;\
tmp = a;\
a = b;\
b = tmp;\
}
ELM *binsplit(ELM val, ELM *low, ELM *high)
{
/*
* returns index which contains greatest element <= val.
* less than all elements, returns low-1
*/
ELM *mid;
while (low != high) {
mid = low + ((high - low + 1) >> 1);
if (val <= *mid)
high = mid - 1;
else
low = mid;
}
if (xlow > val)
return low - 1;
else
return low;
}

cilk void cilkmerge(ELM *lowl, ELM *highl, ELM *low2,

{

ELM *high2, ELM *lowdest)

/*

* Cilkmerge: Merges range [lowl, highl] with range [low2, high2]
* into the range [lowdest, ...]

*/

ELM *splitl, *split2; /*

* where each of the ranges are broken for

* recursive merge

*/

long int lowsize; /*
* total size of lower halves of two
* ranges - 2

*/

* We want to take the middle element (indexed by splitl) from the

* larger of the two arrays. The following code assumes that splitl
* is taken from range [lowl, highl]. So if [lowl, highil] is

* actually the smaller range, we should swap it with [low2, high2]
*/

if (high2 - low2 > highl - lowl) {
swap_indices(lowl, low2);
swap_indices(highl, high2);

if (highl < lowl) {
/* smaller range is empty */
memcpy (lowdest, low2, sizeof (ELM) * (high2 - low2));
return;

if (high2 - low2 < MERGESIZE) {
segmerge(lowl, highl, low2, high2, lowdest);
return;

* Basic approach: Find the middle element of one range (indexed by
* splitl). Find where this element would fit in the other range

* (indexed by split 2). Then merge the two lower halves and the two
* upper halves.

*/
splitl = ((highl - lowl + 1) / 2) + lowl;
split2 = binsplit(*splitl, low2, high2);

lowsize = splitl - lowl + split2 - low2;

/*

* directly put the splitting element into

* the appropriate location

*/

*(lowdest + lowsize + 1) = *splitl;

spawn cilkmerge(lowl, splitl - 1, low2, split2, lowdest);

spawn cilkmerge(splitl + 1, highl, split2 + 1, high2,
lowdest + lowsize + 2);

sync;
return;

cilk void cilksort(ELM *low, ELM *tmp, long size)

/*

* divide the input in four parts of the same size (A, B, C, D)

* Then:
* 1) recursively sort A, B, C, and D (in parallel)
* 2) merge A and B into tmpl, and C and D into tmp2 (in parallel)
* 3) merbe tmpl and tmp2 into the original array

*/

long quarter = size / 4;
ELM *A, *B, *C, *D, *tmpA, *tmpB, *tmpC, *tmpD;

if (size < QUICKSIZE) {
/* quicksort when less than 1024 elements */
seqquick(low, low + size - 1);
return;

A = low;

tmpA = tmp;

B = A + quarter;

tmpB = tmpA + quarter;
C = B + quarter;

tmpC = tmpB + quarter;
D = C + quarter;

tmpD = tmpC + quarter;

spawn cilksort(A, tmpA, quarter);

spawn cilksort(B, tmpB, quarter);

spawn cilksort(C, tmpC, quarter);

spawn cilksort(D, tmpD, size - 3 * quarter);

sync;

spawn cilkmerge(A, A + quarter - 1, B, B + quarter - 1, tmpA);
spawn cilkmerge(C, C + quarter - 1, D, low + size - 1, tmpC);

sync;

spawn cilkmerge(tmpA, tmpC - 1, tmpC, tmpA + size - 1, A);

sync;
}
void scramble_array(ELM *arr, unsigned long size)
{
unsigned long ij;
unsigned long j;
for (i = 0; i < size; ++i) {
j = my_rand(Q);
j =3 % size;
swap(arr([i], arr[jl);
}
}
cilk void fill_array(ELM *arr, unsigned long size)
{
unsigned long ij;
my_srand (1) ;
/* first, fill with integers 1..size */
for (i = 0; i < size; ++i) {
arr[i] = i;
}
/* then, scramble randomly */
scramble_array(arr, size);
}
int usage(void)
{
fprintf(stderr, "\nUsage: cilksort [<cilk-options>] [-n size] [-benchmark] [-h]\n\n");
fprintf (stderr, "Cilksort is a parallel sorting algorithm, donned \"Multisort\", which\n");
fprintf(stderr, "is a variant of ordinary mergesort. Multisort begins by dividing an\n");
fprintf(stderr, "array of elements in half and sorting each half. It then merges the\n");
fprintf (stderr, "two sorted halves back together, but in a divide-and-conquer approach\n");
fprintf (stderr, "rather than the usual serial merge.\n\n");
return -1;
}
char x*specifiers[] =
{"-n", "-benchmark", "-h", 0};

int opt_types[] =
{LONGARG, BENCHMARK, BOOLARG, O};

cilk int main(int argc, char *xargv)
{

long size;

ELM *array, *tmp;

long i;

int success, benchmark, help;
Cilk_time tm_begin, tm_elapsed;
Cilk_time wk_begin, wk_elapsed;
Cilk_time cp_begin, cp_elapsed;

/* standard benchmark options */
size = 3000000;

get_options(argc, argv, specifiers, opt_types, &size, &benchmark, &help);

if (help)
return usage();

if (benchmark) {
switch (benchmark) {

case 1: /* short benchmark options -- a little work */
size = 10000;
break;
case 2: /* standard benchmark options */
size = 3000000;
break;
case 3: /* long benchmark options -- a lot of work */
size = 4100000;
break;
}
}
arra (ELM *) malloc(size * sizeof (ELM));

tmp = (ELM *) malloc(size * sizeof (ELM));

spawn fill_array(array, size);
sync;

/* Timing. "Start" timers */

sync;

cp_begin = Cilk_user_critical_path;
wk_begin = Cilk_user_work;
tm_begin = Cilk_get_wall_time();

spawn cilksort(array, tmp, size);
sync;

/* Timing. "Stop" timers x/

tm_elapsed = Cilk_get_wall_time() - tm_begin;
wk_elapsed = Cilk_user_work - wk_begin;
cp_elapsed = Cilk_user_critical_path - cp_begin;

success = 1;
for (i = 0; i < size; ++i)
if (array[i] !'= i)
success = 0;

if (!success)
printf("SORTING FAILURE");

else {
printf ("\nCilk Example: cilksort\n");
printf (" running on %d processor’%s\n\n", Cilk_active_size, Cilk_active_size > 1 ? "s" : "");

printf ("options: number of elements = %1ld\n\n", size);
printf ("Running time = %4f s\n", Cilk_wall_time_to_sec(tm_elapsed));
printf ("Work = %4f s\n", Cilk_time_to_sec(wk_elapsed));
printf ("Critical path = %4f s\n\n", Cilk_time_to_sec(cp_elapsed));

}

free(array);
free(tmp) ;
return O;

10

11

