
A Minicourse on

Multithreaded Programming

Charles E� Leiserson

Harald Prokop

MIT Laboratory for Computer Science

��� Technology Square

Cambridge� Massachusetts ���	

fcel�prokopg�lcs�mit�edu

July ��� �

�

Abstract

These notes contain two lectures that teach multithreaded algorithms using a Cilk�
like ��� �� ��� model	 These lectures were designed for the latter part of the MIT
undergraduate class
	��
 Introduction to Algorithms	 The style of the lecture notes
follows that of the textbook by Cormen� Leiserson� and Rivest ��� but the pseudocode
from that textbook has been �Cilki�ed� to allow it to describe multithreaded algo�
rithms	

The �rst lecture teaches the basics behind multithreading� including de�ning the
measures of work and critical�path length	 It culminates in the greedy scheduling
theorem due to Graham and Brent ����
�	 The second lecture shows how parallel
applications� including matrix multiplication and sorting� can be analyzed using divide�
and�conquer recurrences	

� Multithreaded programming

As multiprocessor systems have become increasingly available� interest has grown in parallel
programming� Multithreaded programming is a programming paradigm in which a single
program is broken into multiple threads of control which interact to solve a single problem�
These notes provide an introduction to the analysis of multithreaded algorithms�

This research was supported in part by the Defense Advanced Research Projects Agency �DARPA�
under Grant F������	
�����
��

�

��� Model

Our model of multithreaded computation is based on the procedure abstraction found in vir�
tually any programming language� As an example� the procedure Fib gives a multithreaded
algorithm for computing the Fibonacci numbers��

Fib�n�
� if n � 	
	 then return n

 else x� spawn Fib�n� ��
� y � spawn Fib�n� 	�
� sync
 return �x� y�

A spawn is the parallel analog of an ordinary subroutine call� The keyword spawn
before the subroutine call in line
 indicates that the subprocedure Fib�n��� can execute in
parallel with the procedure Fib�n� itself� Unlike an ordinary function call� however� where
the parent is not resumed until after its child returns� in the case of a spawn� the parent
can continue to execute in parallel with the child� In this case� the parent goes on to spawn
Fib�n�	�� In general the parent can continue to spawn o� children� producing a high degree
of parallelism�

A procedure cannot safely use the return values of the children it has spawned until it
executes a sync statement� If any of its children have not completed when it executes a
sync� the procedure suspends and does not resume until all of its children have completed�
When all of its children return� execution of the procedure resumes at the point immediately
following the sync statement� In the Fibonacci example� the sync statement in line � is
required before the return statement in line to avoid the anomaly that would occur if x
and y were summed before each had been computed�

The spawn and sync keywords specify logical parallelism� not �actual� parallelism�
That is� these keywords indicate which code may possibly execute in parallel� but what ac�
tually runs in parallel is determined by a scheduler � which maps the dynamically unfolding
computation onto the available processors�

We can view a multithreaded computation in graph�theoretic terms as a dynamically
unfolding dag G � �V�E�� as is shown in Figure � for Fib� We de�ne a thread to be
a maximal sequence of instructions not containing the parallel control statements spawn�
sync� and return� Threads make up the set V of vertices of the multithreaded computation
dag G� Each procedure execution is a linear chain of threads� each of which is connected to
its successor in the chain by a continuation edge� When a thread u spawns a thread v� the
dag contains a spawn edge �u� v� � E� as well as a continuation edge from u to u�s successor
in the procedure� When a thread u returns� the dag contains an edge �u� v�� where v is the
thread that immediately follows the next sync in the parent procedure� Every computation
starts with a single initial thread and �assuming that the computation terminates�� ends

�This algorithm is a terrible way to compute Fibonacci numbers since it runs in exponential time when
logarithmic methods are known �� page ���� but it serves as a good didactic example�

	

��
��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��

��
��
��
��
��
��

��
��
��
��
��
��

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

���
���
���
���

���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����
����
����
����

���
���
���
���
���
���

���
���
���
���
���
���

����
����
����
����
����
����

����
����
����
����
����
����

����
����
����
����

����
����
����
����

fib(3)

fib(2)

fib(1)

fib(1)

fib(2)

fib(1) fib(0)

fib(0)

fib(4)

Figure �� A dag representing the multithreaded computation of Fib���	 Threads are shown as
circles� and each group of threads belonging to the same procedure are surrounded by a rounded
rectangle	 Downward edges are spawns dependencies� horizontal edges represent continuation de�
pendencies within a procedure� and upward edges are return dependencies	

with a single �nal thread � Since the procedures are organized in a tree hierarchy� we can
view the computation as a dag of threads embedded in the tree of procedures�

��� Performance Measures

Two performance measures su�ce to gauge the theoretical e�ciency of multithreaded algo�
rithms� We de�ne the work of a multithreaded computation to be the total time to execute
all the operations in the computation on one processor� We de�ne the critical�path length

of a computation to be the longest time to execute the threads along any path of dependen�
cies in the dag� Consider� for example� the computation in Figure �� Suppose that every
thread can be executed in unit time� Then� the work of the computation is ��� and the
critical�path length is ��

When a multithreaded computation is executed on a given number P of processors� its
running time depends on how e�ciently the underlying scheduler can execute it� Denote
by TP the running time of a given computation on P processors� Then� the work of the
computation can be viewed as T�� and the critical�path length can be viewed as T��

The work and critical�path length can be used to provide lower bounds on the running
time on P processors� We have

TP � T��P � ���

since in one step� a P �processor computer can do at most P work� We also have

TP � T� � �	�

since a P �processor computer can do no more work in one step than an in�nite�processor
computer�

The speedup of a computation on P processors is the ratio T��TP � which indicates how
many times faster the P �processor execution is than a one�processor execution� If T��TP �
��P �� then we say that the P �processor execution exhibits linear speedup� The maximum
possible speedup is T��T�� which is also called the parallelism of the computation� because
it represents the average amount of work that can be done in parallel for each step along the
critical path� We denote the parallelism of a computation by P �

��� Greedy Scheduling

The programmer of a multithreaded application has the ability to control the work and
critical�path length of his application� but he has no direct control over the scheduling of his
application on a given number of processors� It is up to the runtime scheduler to map the
dynamically unfolding computation onto the available processors so that the computation
executes e�ciently� Good on�line schedulers are known �
� �� �� but their analysis is compli�
cated� For simplicity� we�ll illustrate the principles behind these schedulers using an o��line
�greedy� scheduler�

A greedy scheduler schedules as much as it can at every time step� On a P �processor
computer� time steps can be classi�ed into two types� If there are P or more threads ready to
execute� the step is a complete step� and the scheduler executes any P threads of those ready
to execute� If there are fewer than P threads ready to execute� the step is an incomplete

step� and the scheduler executes all of them� This greedy strategy is provably good�

Theorem � �Graham ����� Brent ���	 A greedy scheduler executes any multithreaded com�
putation G with work T� and critical�path length T� in time

TP � T��P � T� �
�

on a computer with P processors�

Proof� For each complete step� P work is done by the P processors� Thus� the number
of complete steps is at most T��P � because after T��P such steps� all the work in the
computation has been performed� Now� consider an incomplete step� and consider the subdag
G� of G that remains to be executed� Without loss of generality� we can view each of the
threads executing in unit time� since we can replace a longer thread with a chain of unit�time
threads� Every thread with in�degree � is ready to be executed� since all of its predecessors
have already executed� By the greedy scheduling policy� all such threads are executed� since
there are strictly fewer than P such threads� Thus� the critical�path length of G� is reduced
by �� Since the critical�path length of the subdag remaining to be executed decreases by �
each for each incomplete step� the number of incomplete steps is at most T�� Each step is
either complete or incomplete� and hence Inequality �
� follows�

Corollary
 A greedy scheduler achieves linear speedup when P � O�P ��

Proof� Since P � T��T�� we have P � O�T��T��� or equivalently� that T� � O�T��P ��
Thus� we have TP � T��P � T� � O�T��P ��

�

��� Cilk and �Socrates

Cilk ��� �� ��� is a parallel� multithreaded language based on the serial programming lan�
guage C� Instrumentation in the Cilk scheduler provides an accurate measure of work and
critical path� Cilk�s randomized scheduler provably executes a multithreaded computation
on a P �processor computer in TP � T��P �O�T�� expected time� Empirically� the scheduler
achieves TP � T��P �T� time� yielding near�perfect linear speedup if P � P � You can read
more about Cilk on the Web at http���theory�lcs�mit�edu��cilk�

Among the applications that have been programmed in Cilk are the �Socrates and
Cilkchess chess�playing programs� These programs have won numerous prizes in interna�
tional competition and are considered to be among the strongest in the world� An interesting
anomaly occurred during the development of �Socrates which was resolved by understanding
the measures of work and critical�path length�

The �Socrates program was initially developed on a
	�processor computer at MIT� but it
was intended to run on a ��	�processor computer at the National Center for Supercomputing
Applications �NCSA� at the University of Illinois� A clever optimization was proposed which�
during testing at MIT� caused the program to run much faster than the original program�
Nevertheless� the optimization was abandoned� because an analysis of work and critical�path
length indicated that the program would actually be slower on the NCSA machine�

Let us examine this anomaly in more detail� For simplicity� the actual timing numbers
have been simpli�ed� The original program ran in T�� � � seconds at MIT on
	 processors�
The �optimized� program ran in T �

��
� �� seconds also on
	 processors� The original

program had work T� � 	��� seconds and critical�path length T� � � second� Using the
formula TP � T��P � T� as a good approximation of runtime� we discover that indeed
T�� � � � 	����
	��� The �optimized� program had work T� � ��	� seconds and critical�
path length T� � � seconds� yielding T �

��
� �� � ��	��
	��� But� now let us determine the

runtimes on ��	 processors� We have T��� � 	������	�� � � and T �

���
� ��	����	�� � ���

which is twice as slow� Thus� by using work and critical�path length� we can predict the
performance of a multithreaded computation�

Exercise ���� Sketch the multithreaded computation that results from executing Fib����
Assume that all threads in the computation execute in unit time� What is the work of
the computation� What is the critical�path length� Show how to schedule the dag on
	 processors in a greedy fashion by labeling each thread with the time step on which it
executes�

Exercise ��
� Write a multithreaded procedure Sum�A�� where A�� � � n� is an array� which
uses divide�and�conquer to sum the elements of the array A in parallel�

Exercise ��� Prove that a greedy scheduler achieves the stronger bound

TP � �T� � T���P � T� � ���

Exercise ���� Prove that the time for a greedy scheduler to execute any multithreaded
computation is within a factor of 	 of the time required by an optimal scheduler�

�

Exercise ���� For what number P of processors do the two chess programs described in
this section run equally fast�

Exercise ���� Professor Tweed takes some measurements of his �deterministic� multi�
threaded program� which is scheduled using a greedy scheduler� and �nds that T� � ��
seconds and T�� � �� seconds� What is the fastest that the professor�s computation could
possibly run on �� processors� Use Inequality ��� and the two lower bounds from Inequalities
��� and �	� to derive your answer�

� Analysis of multithreaded algorithms

We now turn to the design and analysis of multithreaded algorithms� Because of the divide�
and�conquer nature of the multithreaded model� recurrences are a natural way to express the
work and critical�path length of a multithreaded algorithm� We shall investigate algorithms
for matrix multiplication and sorting and analyze their performance�

��� Parallel Matrix Multiplication

To multiply two n�n matrices A and B in parallel to produce a matrix C� we can recursively
formulate the problem as follows�

�
C�� C��

C�� C��

�
�

�
A�� A��

A�� A��

�
	

�
B�� B��

B�� B��

�

�

�
A��B�� � A��B�� A��B�� � A��B��

A��B�� � A��B�� A��B�� � A��B��

�
�

Thus� each n�n matrix multiplication can be expressed as � multiplications and � additions
of �n�	� � �n�	� submatrices� The multithreaded procedure Mult multiplies two n � n
matrices� where n is a power of 	� using an auxiliary procedure Add to add n� n matrices�
This algorithm is not in�place�

Add�C� T� n�
� if n � �
	 then C��� ��� C��� �� � T ��� ��

 else partition C and T into �n�	�� �n�	� submatrices
� spawn Add�C��� T��� n�	�
� spawn Add�C��� T��� n�	�
 spawn Add�C��� T��� n�	�
� spawn Add�C��� T��� n�	�
� sync

Mult�C�A�B� n�
� if n � �
	 then C��� ��� A��� �� 	B��� ��

 else allocate a temporary matrix T �� � � n� � � � n�
� partition A� B� C� and T into �n�	�� �n�	� submatrices
� spawn Mult�C��� A��� B��� n�	�
 spawn Mult�C��� A��� B��� n�	�
� spawn Mult�C��� A��� B��� n�	�
� spawn Mult�C��� A��� B��� n�	�
� spawn Mult�T��� A��� B��� n�	�
�� spawn Mult�T��� A��� B��� n�	�
�� spawn Mult�T��� A��� B��� n�	�
�	 spawn Mult�T��� A��� B��� n�	�
�
 sync
�� spawn Add�C� T� n�
�� sync

The matrix partitionings in line � of Mult and line
 of add take O��� time� since only a
constant number of indexing operations are required�

To analyze this algorithm� let AP �n� be the P �processor running time of Add on n� n
matrices� and let MP �n� be the P �processor running time of Mult on n� n matrices� The
work �running time on one processor� for Add can be expressed by the recurrence

A��n� � �A��n�	� � ����

� ��n�� �

which is the same as for the ordinary double�nested�loop serial algorithm� Since the spawned
procedures can be executed in parallel� the critical�path length for Add is

A��n� � A��n�	� � ����

� ��lgn� �

The work for Mult can be expressed by the recurrence

M��n� � �M��n�	� � A��n�

� �M��n�	� � ��n��

� ��n�� �

which is the same as for the ordinary triple�nested�loop serial algorithm� The critical�path
length for Mult is

M��n� � M��n�	� � ��lgn�

� ��lg� n� �

�

Thus� the parallelism for Mult is M��n��M��n� � ��n�� lg� n�� which is quite high� To
multiply ���� � ���� matrices� for example� the parallelism is �ignoring constants� about
��������� � ���� Most parallel computers have far fewer processors�

To achieve high performance� it is often advantageous for an algorithm to use less space�
because more space usually means more time� For the matrix�multiplication problem� we
can eliminate the temporary matrix T in exchange for reducing the parallelism� Our new
algorithmMult�Add performs C � C �A 	B using a similar divide�and�conquer strategy
to Mult�

Mult�Add�C�A�B� n�
� if n � �
	 then C��� ��� C��� �� � A��� �� 	B��� ��

 else partition A� B� and C into �n�	�� �n�	� submatrices
� spawn Mult�Add�C��� A��� B��� n�	�
� spawn Mult�Add�C��� A��� B��� n�	�
 spawn Mult�Add�C��� A��� B��� n�	�
� spawn Mult�Add�C��� A��� B��� n�	�
� sync
� spawn Mult�Add�C��� A��� B��� n�	�
�� spawn Mult�Add�C��� A��� B��� n�	�
�� spawn Mult�Add�C��� A��� B��� n�	�
�	 spawn Mult�Add�C��� A��� B��� n�	�
�
 sync

Let MAP �n� be the P �processor running time of Mult�Add on n � n matrices� The
work for Mult�Add is MA��n� � ��n��� following the same analysis as for Mult� but the
critical�path length is now

MA��n� � 	MA��n�	� � ����

� ��n� �

since only � recursive calls can be executed in parallel�
Thus� the parallelism is MA��n��MA��n� � ��n��� On ����� ���� matrices� for exam�

ple� the parallelism is �ignoring constants� still quite high� about ����� � ���� In practice�
this algorithm often runs somewhat faster than the �rst� since saving space often saves time
due to hierarchical memory�

�

A

B

� A�l�	� � A�l�	�

�

�

l

m

l�	

j � �j

� A�l�	� � A�l�	�
�

Figure
� Illustration of P�Merge	 The median of array A is used to partition array B� and then
the lower portions of the two arrays are recursively merged� as� in parallel� are the upper portions	

��� Parallel Merge Sort

This section shows how to parallelize merge sort� We shall see the parallelism of the algorithm
depends on how well the merge subroutine can be parallelized�

The most straightforward way to parallelize merge sort is to run the recursion in parallel�
as is done in the following pseudocode�

Merge�Sort�A� p� r�
� if p � r
	 then q � b�p� r��	c

 spawn Merge�Sort�A� p� q�
� spawn Merge�Sort�A� q � �� r�
� sync
 Merge�A� p� q� r�

The work of Merge�Sort on an array of n elements is

T��n� � 	T��n�	� � ��n�

� ��n lgn� �

since the running time of Merge is ��n�� Since the two recursive spawns operate in parallel�
the critical�path length of Merge�Sort is

T��n� � T��n�	� � ��n�

� ��n� �

Consequently� the parallelism of the algorithm is T��n��T��n� � ��lgn�� which is puny� The
obvious bottleneck is Merge�

The following pseudocode� which is illustrated in Figure 	� performs the merge in parallel�

�

P�Merge�A�� � � l�� B�� � �m�� C�� � � n��
� if m � l � without loss of generality� larger array should be �rst
	 then spawn P�Merge�B�� � �m�� A�� � � l�� C�� � � n��

 elseif n � �
� then C���� A���
� elseif l � � � and m � �
 then if A��� � B���
� then C���� A���� C�	�� B���
� else C���� B���� C�	�� A���
� else �nd j such that B�j� � A�l�	� � B�j � �� using binary search
�� spawn P�Merge�A�� � � �l�	��� B�� � � j�� C�� � � �l�	 � j���
�� spawn P�Merge�A��l�	 � �� � � l�� B��j � �� � �m�� C��l�	 � j � �� � � n��
�	 sync

This merging algorithm �nds the median of the larger array and uses it to partition the
smaller array� Then� the lower portions of the two arrays are recursively merged� and in
parallel� so are the upper portions�

To analyze P�Merge� let PM P �n� be the P �processor time to merge two arrays A and
B having n � m � l elements in total� Without loss of generality� let A be the larger of the
two arrays� that is� assume l � m�

We�ll analyze the critical�path length �rst� The binary search of B takes ��lgm� time�
which in the worst case is ��lgn�� Since the two recursive spawns in lines �� and �� operate
in parallel� the worst�case critical�path length is ��lgn� plus the worst�case critical path�
length of the spawn operating on the larger subarrays� In the worst case� we must merge
half of A with all of B� in which case the recursive spawn operates on at most
n�� elements�
Thus� we have

PM��n� � PM��
n��� � ��lgn�

� ��lg� n� �

To analyze the work of Merge� observe that although the two recursive spawns may
operate on di�erent numbers of elements� they always operate on n elements between them�
Let �n be the number of elements operated on by the �rst spawn� where � is a constant in
the range ��� � � �
��� Thus� the second spawn operates on �� � ��n elements� and the
worst�case work satis�es the recurrence

PM ��n� � PM ���n� � PM ����� ��n� � ��lgn� � ���

We shall show that PM ��n� � ��n� using the substitution method� �Actually� the Akra�
Bazzi method �	�� if you know it� is simpler�� We assume inductively that PM ��n� � an �
b lgn for some constants a� b � �� We have

PM��n� � a�n� b lg��n� � a��� ��n� b lg���� ��n� � ��lgn�

� an� b�lg��n� � lg���� ��n�� � ��lgn�

��

� an� b�lg� � lgn� lg��� �� � lgn� � ��lgn�

� an� b lgn� �b�lgn� lg����� ����� ��lgn��

� an� b lgn �

since we can choose b large enough so that b�lgn�lg��������� dominates ��lgn�� Moreover�
we can pick a large enough to satisfy the base conditions� Thus� PM ��n� � ��n�� which is
the same work asymptotically as the ordinary� serial merging algorithm�

We can now reanalyze the Merge�Sort using the P�Merge subroutine� The work
T��n� remains the same� but the worst�case critical�path length now satis�es

T��n� � T��n�	� � ��lg� n�

� ��lg� n� �

The parallelism is now ��n lgn����lg� n� � ��n� lg� n��

Exercise
��� Give an e�cient and highly parallel multithreaded algorithm for multiply�
ing an n � n matrix A by a length�n vector x that achieves work ��n�� and critical path
��lgn�� Analyze the work and critical�path length of your implementation� and give the
parallelism�

Exercise
�
� Describe a multithreaded algorithm for matrix multiplication that achieves
work ��n�� and critical path ��lgn�� Comment informally on the locality displayed by your
algorithm in the ideal cache model as compared with the two algorithms from this section�

Exercise
�� Write a Cilk program to multiply an n� � n� matrix by an n� � n� matrix
in parallel� Analyze the work� critical�path length� and parallelism of your implementation�
Your algorithm should be e�cient even if any of n�� n�� and n� are ��

Exercise
��� Write a Cilk program to implement Strassen�s matrix multiplication al�
gorithm in parallel as e�ciently as you can� Analyze the work� critical�path length� and
parallelism of your implementation�

Exercise
��� Write a Cilk program to invert a symmetric and positive�de�nite matrix
in parallel� �Hint� Use a divide�and�conquer approach based on the ideas of Theorem
���	
from �����

Exercise
��� Akl and Santoro ��� have proposed a merging algorithm in which the �rst
step is to �nd the median of all the elements in the two sorted input arrays �as opposed to
the median of the elements in the larger subarray� as is done in P�Merge�� Show that if the
total number of elements in the two arrays is n� this median can be found using ��lgn� time
on one processor in the worst case� Describe a linear�work multithreaded merging algorithm
based on this subroutine that has a parallelism of ��n� lg� n�� Give and solve the recurrences
for work and critical�path length� and determine the parallelism� Implement your algorithm
as a Cilk program�

��

Exercise
��� Generalize the algorithm from Exercise Exercise 	� to �nd arbitrary order
statistics� Describe a merge�sorting algorithm with ��n lgn� work that achieves a parallelism
of ��n� lgn�� �Hint� Merge many subarrays in parallel��

Exercise
��� The length of a longest�common subsequence of two length�n sequences
x and y can be computed in parallel using a divide�and�conquer multithreaded algorithm�
Denote by c�i� j� the length of a longest common subsequence of x�� � � i� and y�� � � j�� First�
the multithreaded algorithm recursively computes c�i� j� for all i in the range � � i � n�	
and all j in the range � � j � n�	� Then� it recursively computes c�i� j� for � � i � n�	 and
n�	 � j � n� while in parallel recursively computing c�i� j� for n�	 � i � n and � � j � n�	�
Finally� it recursively computes c�i� j� for n�	 � i � n and n�	 � j � n� For the base
case� the algorithm computes c�i� j� in terms of c�i � �� j � ��� c�i � �� j�� and c�i� j � �� in
the ordinary way� since the logic of the algorithm guarantees that these three values have
already been computed�

That is� if the dynamic programming tableau is broken into four pieces

�
I II
III IV

�
�

then the recursive multithreaded code would look something like this�

spawn I
sync
spawn II
spawn III
sync
spawn IV
sync

Analyze the work� critical�path length� and parallelism of this algorithm� Describe and
analyze an algorithm that is asymptotically as e�cient �same work� but more parallel� Make
whatever interesting observations you can� Write an e�cient Cilk program for the problem�

References

��� Selim G� Akl and Nicola Santoro� Optimal parallel merging and sorting without memory
con icts� IEEE Transactions on Computers� C�
����� November �����

�	� M� Akra and L� Bazzi� On the solution of linear recurrence equations� Computational
Optimization and Application� ������!	��� �����

�
� Robert D� Blumofe� Executing Multithreaded Programs E�ciently� PhD thesis� De�
partment of Electrical Engineering and Computer Science� Massachusetts Institute of
Technology� September �����

�	

��� Robert D� Blumofe� Christopher F� Joerg� Bradley C� Kuszmaul� Charles E� Leiserson�
Keith H� Randall� and Yuli Zhou� Cilk� An e�cient multithreaded runtime system�
In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming �PPoPP�� pages 	��!	�� Santa Barbara� California� July �����

��� Robert D� Blumofe and Charles E� Leiserson� Scheduling multithreaded computations
by work stealing� In Proceedings of the �	th Annual Symposium on Foundations of
Computer Science �FOCS�� pages
�!
�� Santa Fe� New Mexico� November �����

�� Richard P� Brent� The parallel evaluation of general arithmetic expressions� Journal of
the ACM� 	��	��	��!	�� April �����

��� Cilk���	 �Beta �� Reference Manual� Available on the Internet from
http���theory�lcs�mit�edu��cilk�

��� Thomas H� Cormen� Charles E� Leiserson� and Ronald L� Rivest� Introduction to Algo�
rithms� MIT Press and McGraw Hill� �����

��� Matteo Frigo� Charles E� Leiserson� and Keith H� Randall� The implementation of the
Cilk�� multithreaded language� In ACM SIGPLAN
�� Conference on Programming
Language Design and Implementation �PLDI�� pages 	�	!		
� Montreal� Canada� June
�����

���� R� L� Graham� Bounds on multiprocessing timing anomalies� SIAM Journal on Applied
Mathematics� ���	����!�	�� March ����

���� Keith H� Randall� Cilk� E�cient Multithreaded Computing� PhD thesis� Department of
Electrical Engineering and Computer Science� Massachusetts Institute of Technology�
May �����

�

