Correlation and Covariance

R. F. Riesenfeld (Based on web slides by James H. Steiger)

Goals

- ⇒ Introduce concepts of
 - Covariance
 - Correlation
- ⇒ Develop computational formulas

R F Riesenfeld Sp 2010

CS5961 Comp Stat

R F Riesenfeld 1

2

Covariance

- ⇒ Variables may change in relation to each other
- □ Covariance measures how much the movement in one variable predicts the movement in a corresponding variable

R F Riesenfeld Sp 2010

CS5961 Comp Stat

3

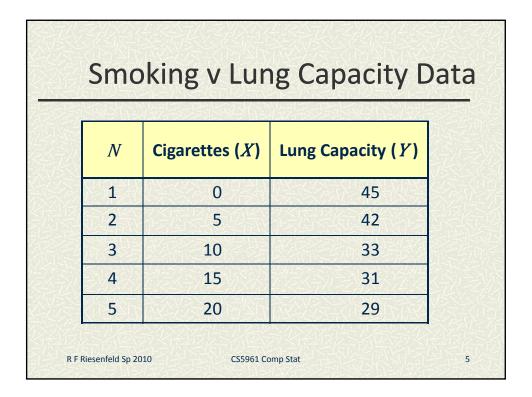
Smoking and Lung Capacity

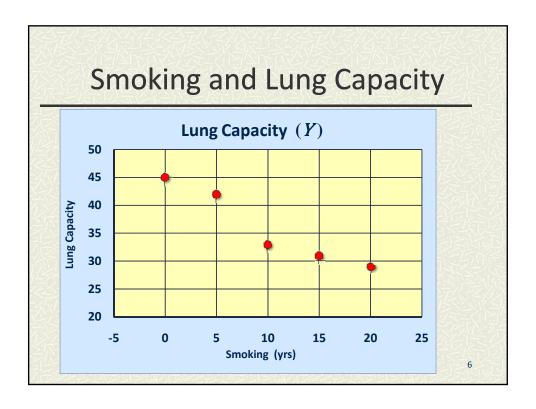
- ⇒ Example: investigate relationship between cigarette smoking and lung capacity
- ⇒ Data: sample group response data on smoking habits, and measured lung capacities, respectively

R F Riesenfeld Sp 2010

CS5961 Comp Stat

4





Smoking v Lung Capacity

- Observe that as smoking exposure goes up, corresponding lung capacity goes down
- ⇒ Variables *covary* inversely
- ⇒ Covariance and Correlation quantify relationship

R F Riesenfeld Sp 2010

CS5961 Comp Stat

7

Covariance

- ⇒ Variables that covary inversely, like smoking and lung capacity, tend to appear on opposite sides of the group means
 - □ When smoking is above its group mean, lung capacity tends to be below its group mean.
- Average product of deviation measures extent to which variables covary, the degree of linkage between them

R F Riesenfeld Sp 2010

CS5961 Comp Stat

8

The Sample Covariance

 \Rightarrow Similar to variance, for theoretical reasons, average is typically computed using (N-1), not N. Thus,

$$S_{xy} = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - \overline{X}) (Y_i - \overline{Y})$$

R F Riesenfeld Sp 2010

CS5961 Comp Stat

9

Calculating Covariance

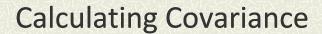
Cigs (X)	Lung Cap (Y)		
0	45		
5	42		
10	33		
15	31		
20	29		

 $\overline{X} = 10$ $\overline{Y} = 36$

R F Riesenfeld Sp 2010

CS5961 Comp Stat

10



Cigs (X)	$(X-\overline{X})$	$(X-\overline{X})(Y-\overline{Y})$	$(Y-\overline{Y})$	Cap (<i>Y</i>)
0	-10	-90	9	45
5	-5	-30	6	42
10	0	0	-3	33
15	5	-25	-5	31
20	10	-70	-7	29
		Σ = -215		

R F Riesenfeld Sp 2010

CS5961 Comp Stat

11

Covariance Calculation (2)

Evaluation yields,

$$S_{xy} = \frac{1}{4}(-215) = -53.75$$

R F Riesenfeld Sp 2010

CS5961 Comp Stat

12

Covariance under Affine Transformation

Let
$$L_i=aX_i+b$$
 and $M_i=cY_i+d$. Then, $\left(\Delta l\right)_i=a\left(\Delta x\right)_i$, $\left(\Delta m\right)_i=c\left(\Delta y\right)_i$, where, $\left(\Delta u\right)_i\equiv u_i-\overline{u}$.

Evaluating, in turn, gives,

$$S_{LM} = \frac{1}{N-1} \sum_{i=1}^{N} (\Delta l)_{i} (\Delta m)_{i}$$

R F Riesenfeld Sp 2010

CS5961 Comp Stat

13

Covariance under Affine Transf (2)

Evaluating further,

$$S_{LM} = \frac{1}{N-1} \sum_{i=1}^{N} (\Delta l)_{i} (\Delta m)_{i}$$

$$= \frac{1}{N-1} \sum_{i=1}^{N} a(\Delta x)_{i} c(\Delta y)_{i}$$

$$= ac \frac{1}{N-1} \sum_{i=1}^{N} (\Delta x)_{i} (\Delta y)_{i}$$

$$\therefore S_{LM} = acS_{xy}$$

R F Riesenfeld Sp 2010

CS5961 Comp Stat

14

(Pearson) Correlation Coefficient r_{xy}

⇒ Like covariance, but uses Z-values instead of deviations. Hence, invariant under linear transformation of the raw data.

$$r_{xy} = \frac{1}{N-1} \sum_{i=1}^{N} z x_i z y_i$$

R F Riesenfeld Sp 2010

CS5961 Comp Stat

15

Alternative (common) Expression

$$r_{xy} = \frac{s_{xy}}{s_x s_y}$$

R F Riesenfeld Sp 2010

CS5961 Comp Stat

16

Computational Formula 1

$$s_{xy} = \frac{1}{N-1} \left[\sum_{i=1}^{N} X_i Y_i - \frac{\sum_{i=1}^{N} X_i \sum_{i=1}^{N} Y_i}{N} \right]$$

R F Riesenfeld Sp 2010

CS5961 Comp Stat

17

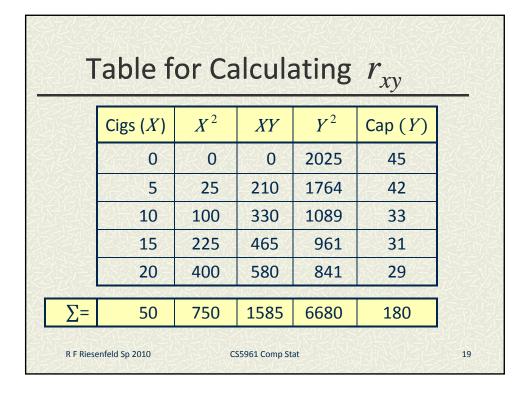
Computational Formula 2

$$\mathbf{r}_{xy} = \frac{N\sum XY - \sum X\sum Y}{\sqrt{\left(N\sum X^2 - \left(\sum X\right)^2\right)\left(N\sum Y^2 - \left(\sum Y\right)^2\right)}}$$

R F Riesenfeld Sp 2010

CS5961 Comp Stat

18



Computing r_{xy} from Table

$$r_{xy} = \frac{5(1585) - 50(180)}{\sqrt{\left(5(750 - 50^2)\right)\left(5(6680) - 180^2\right)}}$$

$$= \frac{7925 - 9000}{\sqrt{(3750 - 2500)(33400 - 32400)}}$$

R F Riesenfeld Sp 2010

CS5961 Comp Stat

20

Computing Correlation

$$r_{xy} = \frac{-1075}{\sqrt{(1250)(1000)}}$$

$$r_{xy} = -0.9615$$

R F Riesenfeld Sp 2010

CS5961 Comp Stat

21

$$r_{xy} = -0.96$$
 Conclusion

- \Rightarrow r_{xy} = -0.96 implies almost certainty smoker will have diminish lung capacity
- ⇒ Greater smoking exposure implies greater likelihood of lung damage

R F Riesenfeld Sp 2010

CS5961 Comp Stat

22

