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INTRODUCTION

The Finding Concurrency and Algorithm Structure design spaces focus on algo-
rithm expression. At some point, however, algorithms must be translated into pro-
grams. The patterns in the Supporting Structures design space address that phase
of the parallel program design process, representing an intermediate stage between
the problem-oriented patterns of the Algorithm Structure design space and the spe-
cific programming mechanisms described in the Implementation Mechanisms design
space. We call these patterns Supporting Structures because they describe software
constructions or “structures” that support the expression of parallel algorithms.
An overview of this design space and its place in the pattern language is shown in
Fig. 5.1.

The two groups of patterns in this space are those that represent program-
structuring approaches and those that represent commonly used shared data struc-
tures. These patterns are briefly described in the next section. In some programming
environments, some of these patterns are so well-supported that there is little work
for the programmer. We nevertheless document them as patterns for two reasons:
First, understanding the low-level details behind these structures is important for
effectively using them. Second, describing these structures as patterns provides
guidance for programmers who might need to implement them from scratch. The
final section of this chapter describes structures that were not deemed important
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Figure 5.1: Overview of the Supporting Structures design space and its place in the
pattern language

enough, for various reasons, to warrant a dedicated pattern, but which deserve
mention for completeness.

5.1.1 Program Structuring Patterns

Patterns in this first group deseribe approaches for structuring source code. These
patterns include the following.

e SPMD. In an SPMD (Single Program, Multiple Data) program, all UEs
execute the same program (Single Program) in parallel, but each has its own
set of data (Multiple Data). Different UEs can follow different paths through
the program. In the source code, the logic to control this is expressed using a
parameter that uniquely labels each UE (for example a process ID).

e Master/Worker. A master process or thread sets up a pool of worker pro-
cesses or threads and a bag of tasks. The workers execute concurrently, with
each worker repeatedly removing a task from the bag of tasks and processing
it, until all tasks have been processed or some other termination condition
has been reached. In some implementations, no explicit master is present.

e Loop Parallelism. This pattern addresses the problem of transforming a
serial program whose runtime is dominated by a set of compute-intensive
loops into a parallel program where the different iterations of the loop are
executed in parallel.

e Fork/Join. A main UE forks off some number of other UEs that then con-
tinue in parallel to accomplish some portion of the overall work. Often the
forking UE waits until the child UEs terminate and join.
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While we define each of these program structures as a distinct pattern, this
is somewhat artificial. It is possible, for example, to implement the Master/Worker
pattern using the Fork/Join pattern or the SPMD pattern. These patterns do not
represent exclusive, unique ways to structure a parallel program. Rather, they define
the major idioms used by experienced parallel programmers.

These patterns also inevitably express a bias rooted in the subset of parallel
programming environments we consider in this pattern language. To an MPI pro-
grammer, for example, all program structure patterns are essentially a variation on
the SPMD pattern. To an OpenMP programmer, however, there is a huge differ-
ence between programs that utilize thread IDs (that is, the SPMD pattern) versus
programs that express all concurrency in terms of loop-level worksharing constructs
(that is, the Loop Parallelism pattern).

Therefore, in using these patterns, don’t think of them too rigidly. These
patterns express important techniques and are worthy of consideration in isolation,
but do not hesitate to combine them in different ways to meet the needs of a
particular problem. For example, in the SPMD pattern, we will discuss parallel
algorithms based on parallelizing loops but expressed with the SPMD pattern. It
might seem that this indicates that the SPMD and Loop Parallelism patterns are
not really distinct patterns, but in fact it shows how flexible the SPMD pattern is.

5.1.2 Patterns Representing Data Structures

Patterns in this second group have to do with managing data dependencies. The
Shared Data pattern deals with the general case. The others describe specific fre-
quently used data structures.

® Shared Data. This pattern addresses the general problem of handling data
that is shared by more than one UE, discussing both correctness and perfor-
mance issues.

e Shared Queue. This pattern represents a “thread-safe” implementation of
the familiar queue abstract data type (ADT), that is, an implementation
of the quene ADT that maintains the correct semantics even when used by
concurrently executing UEs.

e Distributed Array. This pattern represents a class of data structures often
found in parallel scientific computing, namely arrays of one or more dimen-
sions that are decomposed into subarrays and distributed among processes or
threads.

5.2 FORCES

All of the program structuring patterns address the same basic problem: how to
structure source code to best support algorithm structures of interest. Unique forces
are applicable to each pattern, but in designing a program around these structures,
there are some common forces to consider in most cases:

e Clarity of abstraction. Is the parallel algorithm clearly apparent from the
source code?
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In a well-structured program, the algorithm leaps from the page. The ¢ Environmental affinity. Is the program well aligned with the programming
reader can see the details of the algorithm with little mental effort. We refer environment and hardware of choice?
to this quality as elarity of abstraction. Good clarity of abstraction is always If the hardware, for example, lacks support for shared memory, an algo-
important for writing correct code, but is particularly essential for parallel rithm structure based on shared memory would be a poor choice. This issue
programs: Parallel programmers must deal with multiple simultaneous tasks also comes up when considering programming environments. When creating
that interact in subtle ways. Getting this right can be very difficult, especially a programming environment, the creators usually have a particular style of
if it is hard to figure out what the algorithm is doing by looking at the source programming in mind. For example, OpenMP is designed specifically for pro-
code. grams consisting of a series of loops, the iterations of which will be split
= . . between multiple threads (loop-based parallelism). It is much easier to write
e Scalability. Hou..r many processors can the para.lle] program effectlve.ly utilize? software when the program structure employed is well aligned with the pro-
The scalability of a program is restricted by three factors. First, there gramming environment.
is the amount of concurrency available in the algorithm. If an algorithm only
has ten concurrent tasks, then running with more than ten PEs will provide e Sequential equivalence. Where appropriate, does a program produce equiv-
no benefit. Second, the fraction of the runtime spent doing inherently serial alent results when run with many UEs as with one? If not equivalent, is the
work limits how many processors can be used. This is described quantitatively relationship between them clear?
by Amdahl’s law as discussed in Chapter 2. Finally, the parallel overhead of It is highly desirable that the results of an execution of a parallel pro-
the algorithm contributes to the serial fraction mentioned in Amdahl’s law gram be the same regardless of the number of PEs used. This is not always pos-
and limits scalability. sible, especially if bitwise equivalence is desired, because floating-point opera-
. s tions performed in a different order can produce small (or, for ill-conditioned
o Efficiency. How close does the program come to fully utilizing the resources algorithms, not so small) changes in the resulting values. However, if we know
?f the parallel computer? Recall the quantitative definition of efficiency given that the parallel program gives equivalent results when executed on one pro-
in Chapter 2: cessor as many, then we can reason about correctness and do most of the
testing on the single-processor version. This is much easier, and thus, when
_ 5P ssible tial equivalence is a highly desirable goal.
E(P) = e (5.1) possible, sequential eq ghly gos
_ T 5.9
= PT(P) (5.2) 5.3 CHOOSING THE PATTERNS
Choosing which program structure pattern to use is usually straightforward. In
P is the number of PEs, T'(1) is some sequential reference time, and T'(P) is most cases, the programming environment selected for the project and the patterns
the parallel time with P PEs. S(P) is the speedup. used from the Algorithm Structure design space point to the appropriate program
The most rigorous definition of efficiency sets T(1) to the execution structure pattern to use. We will consider these two factors separately.
time of the best sequential algorithm corresponding to the parallel algorithm The relationship between the patterns in the Algorithm Structure and Sup-
under study. When analyzing parallel programs, “best” sequential algorithms porting Structures design spaces is shown in Table 5.1. Notice that the Supporting
are not always available, and it is common to use the runtime for the parallel
program on a single PE as the reference time. This can inflate the efficiency
because managing the parallel computation always incurs some overhead, Table 5.1: Relationship between Supporting Structures patterns and Afgorithm Structure patterns.
even when executing on a single PE. Efficiency is closely related to scalability The nun!ber of stars (ranging from zero to fc_lur) is an indi_cation of the 1ik:eiihood that the given
because every highly scalable algorithm is also highly efficient. Even when the Supporting Structures pattern is useful in the implementation of the Algorithm Structure pattern.
scalability is lh.nited by the' a.vai.lable number of tasks or the parallel hardware, - Teids P — L
however, algorithms can differ in their efficiency. o S 5 ::;i ) D&:";‘pc;;:fm Datate | Pipeline Cm?dc:;a:“m
e Maintainability. Is the program easy to debug, verify, and modify? SPMD . *hk PR e . ok
Casting an algorithm into source code is almost never a one-time propo- Toop
sition. Programs need to be debugged, new features added, performance tuned, Paralletism| X X%K *k fafalied
etc. These changes to the source code are referred to as maintenance. Pro- M“;f::{” ok ok ke *k * * * *
grams are more or less maintainable depending on how hard it is to make R ok e *k AT ey
these changes and to do them correctly.
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Table 5.2: Relationship between Supporting Structures patterns and programming environments.
The number of stars (ranging from zero to four) is an indication of the likelihood that the given
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Supporting Structures pattern is useful in the programming environment.

OpenMP MPI Java

SPMD ok Fodok A * ok
LoopParalletism kA ok * 2.8 & 4
Master/ Worker * 4 *okok % d ke
Fork/Join ok d %%k ke

Structures patterns can be used with multiple Algorithm Structure patterns. For
example, consider the range of applications using the Master/Worker pattern:
In [BCM*91,CG91, CGMS94], it is used to implement everything from embarrass-
ingly parallel programs (a special case of the Task Parallelism pattern) to those us-
ing the Geometric Decomposition pattern. The SPMD pattern is even more flexible
and covers the most important algorithm structures used in scientific computing
(which tends to emphasize the Geometric Decomposition, Task Parallelism, and
Divide and Conquer patterns). This flexibility can make it difficult to choose a
program structure pattern solely on the basis of the choice of Algorithm Structure
pattern(s).

The choice of programming environment, however, helps narrow the choice
considerably. In Table 5.2, we show the relationship between programming environ-
ments and the Supporting Structures patterns. MPI, the programming environment
of choice on any distributed-memory computer, strongly favors the SPMD pattern.
OpenMP, the standard programming model used on virtually every shared-memory
computer on the market, is closely aligned with the Loop Parallelism pattern. The
combination of programming environment and Algorithm Structure patterns typi-
cally selects which Supporting Structures patterns to use.

THE SPMD PATTERN

Problem

The interactions between the various UEs cause most of the problems when writing
correct and efficient parallel programs. How can programmers structure their par-
allel programs to make these interactions more manageable and easier to integrate
with the core computations?

Context

A parallel program takes complexity to a new level. There are all the normal chal-
lenges of writing any program. On top of those challenges, the programmer must
manage multiple tasks running on multiple UEs. In addition, these tasks and UEs
interact, either through exchange of messages or by sharing memory. In spite of
these complexities, the program must be correct, and the interactions must be well
orchestrated if excess overhead is to be avoided.
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Fortunately, for most parallel algorithms, the operations carried out on each
UE are similar. The data might be different between UEs, or slightly different
computations might be needed on a subset of UEs (for example, handling bound-
ary conditions in partial differential equation solvers), but for the most part each
UE will carry out similar computations. Hence, in many cases the tasks and their
interactions can be made more manageable by bringing them all together into one
source tree. This way, the logic for the tasks is side by side with the logic for the
interactions between tasks, thereby making it much easier to get them right.

This is the so-called “Single Program, Multiple Data” (SPMD) approach. It
emerged as the dominant way to structure parallel programs early in the evolution
of scalable computing, and programming environments, notably MPI, have been
designed to support this approach.

In addition to the advantages to the programmer, SPMD makes management
of the solution much easier. It is much easier to keep a software infrastructure up
to date and consistent if there is only one program to manage. This factor becomes
especially important on systems with large numbers of PEs. These can grow to
huge numbers. For example, the two fastest computers in the world according to
the November 2003 top 500 list [Top], the Earth Simulator at the Earth Simulator
Center in Japan and the ASCI Q at Los Alamos National Labs, have 5120 and
8192 processors, respectively. If each PE runs a distinct program, managing the
application software could quickly become prohibitively difficult.

This pattern is by far the most commonly used pattern for structur-
ing parallel programs. It is particularly relevant for MPI programmers
and problems using the Task Parallelism and Geometric Decomposition
patterns. It has also proved effective for problems using the Divide and
Conquer and Recursive Data patterns.

Forces

e Using similar code for each UE is easier for the programmer, but most complex
applications require that different operations run on different UEs and with
different data.

¢ Software typically outlives any given parallel computer. Hence, programs
should be portable. This compels the programmer to assume the lowest com-
mon denominator in programming environments, and to assume that only
basic mechanisms for coordinating tasks will be available.

11t is not that the available programming environments pushed SPMD; the force was the other
way around. The programming environments for MIMD machines pushed SPMD because that is
the way programmers wanted to write their programs. They wrote them this way because they
found it to be the best way to get the logic correct and efficient for what the tasks do and how they
interact. For example, the programming environment PVM, sometimes considered a predecessor
to MPI, in addition to the SPMD program structure also supported running different programs
on different UEs (sometimes called the MPMD program structure), The MPI designers, with the
benefit of the PVM experience, chose to support anly SPMD.
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e Achieving high scalability and good efficiency in a parallel program requires
that the program be well aligned with the architecture of the parallel com-
puter. Therefore, the details of the parallel system must be exposed and,
where appropriate, under the programmer’s control.

Solution

The SPMD pattern solves this problem by creating a single source-code image that
runs on each of the UEs. The solution consists of the following basic elements.

¢ Initialize. The program is loaded onto each UE and opens with bookkeeping
operations to establish a common context. The details of this procedure are
tied to the parallel programming environment and typically involve establish-
ing communication channels with other UEs.

e Obtain a unique identifier. Near the top of the program, an identifier is
set that is unique to each UE. This is usually the UE’s rank within the MPI
group (that is, a number in the interval from 0 to N — 1, where N is the
number of UEs) or the thread ID in OpenMP. This unique identifier allows
different UEs to make different decisions during program execution.

e Run the same program on each UE, using the unique ID to differ-
entiate behavior on different UEs. The same program runs on each UE.
Differences in the instructions executed by different UEs are usually driven
by the identifier. (They could also depend on the UE's data.) There are many
ways to specify that different UEs take different paths through the source
code. The most common are (1) branching statements to give specific blocks
of code to different UEs and (2) using the UE identifier in loop index calcu-
lations to split loop iterations among the UEs.

e Distribute data. The data operated on by each UE is specialized to that UE
by one of two techniques: (1) decomposing global data into chunks and storing
them in the local memory of each UE, and later, if required, recombining them
into the globally relevant results or (2) sharing or replicating the program'’s
major data structures and using the UE identifier to associate subsets of the
data with particular UEs.

e Finalize. The program closes by cleaning up the shared context and shutting
down the computation. If globally relevant data was distributed among UEs,
it will need to be recombined.

Discussion. An important issue to keep in mind when developing SPMD pro-
grams is the clarity of abstraction, that is, how easy it is to understand the algorithm
from reading the program’s source code. Depending on how the data is handled,
this can range from awful to good. If complex index algebra on the UE identifier
is needed to determine the data relevant to a UE or the instruction branch, the al-
gorithm can be almost impossible to follow from the source code. (The Distributed
Array pattern discusses useful techniques for arrays.)
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In some cases, a replicated data algorithm combined with simple loop splitting
is the best option because it leads to a clear abstraction of the parallel algorithm
within the source code and an algorithm with a high degree of sequential equiva-
lence. Unfortunately, this simple approach might not scale well, and more complex
solutions might be needed. Indeed, SPMD algorithms can be highly scalable, and
algorithms requiring complex coordination between UEs and scaling out to several
thousand UEs [PH95] have been written using this pattern. These highly scalable
algorithms are usually extremely complicated as they distribute the data across
the nodes (that is, no simplifying replicated data techniques), and they generally
include complex load-balancing logic. These algorithms, unfortunately, bear little
resemblance to their serial counterparts, reflecting a common criticism of the SPMD
pattern.

An important advantage of the SPMD pattern is that overheads associated
with starfup and termination are segregated at the beginning and end of the pro-
gram, not inside time-critical loops. This contributes to efficient programs and
results in the efficiency issues being driven by the communication overhead, the
capability to balance the computational load among the UEs, and the amount of
concurrency available in the algorithm itself.

SPMD programs are closely aligned with programming environments based on
message passing. For example, most MPI or PVM programs use the SPMD pattern.
Note, however, that it is possible to use the SPMD pattern with OpenMP [CPPO01].
With regard to the hardware, the SPMD pattern does not assume anything con-
cerning the address space within which the tasks execute. As long as each UE can
run its own instruction stream operating on its own data (that is, the computer can
be classified as MIMD), the SPMD structure is satisfied. This generality of SPMD
programs is one of the strengths of this pattern.

Examples

The issues raised by application of the SPMD pattern are best discussed using three
specific examples:

e Numerical integration to estimate the value of a definite integral using the
trapezoid rule

e Molecular dynamics, force computations
» Mandelbrot set computation
Numerical integration. We can use a very simple program, frequently used in

teaching parallel programming, to explore many of the issues raised by the SPMD
pattern. Consider the problem of estimating the value of = using Eq. 5.3.

W=/:de (5.3)

1+ z2

‘We use trapezoidal integration to numerically solve the integral. The idea is to fill
the area under a curve with a series of rectangles. As the width of the rectangles
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#include <stdioc.h>
#include <math.h>

int main () {
int i;
int num_steps = 1000000;
double x, pi, step, sum = 0.0;

step = 1.0/ (double) num_steps;
for (i=0;i< num_steps; i++)

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);
1
pi = step * sum;
printf("pi %1f\n",pi);
return 0;

Figure 5.2: Sequential program to carry out a trapezoid rule integration to compute f 01 1+_4='—’ di

approaches zero, the sum of the areas of the rectangles approaches the value of the
integral.

A program to carry this calculation out on a single processor is shown in
Fig. 5.2. To keep the program as simple as possible, we fix the number of steps to
use in the integration at 1,000,000. The variable sum is initialized to 0 and the step
size is computed as the range in x (equal to 1.0 in this case) divided by the number
of steps. The area of each rectangle is the width (the step size) times the height
(the value of the integrand at the center of the interval). Because the width is a
constant, we pull it out of the summation and multiply the sum of the rectangle
heights by the step size, step, to get our estimate of the definite integral.

We will look at several versions of the parallel algorithm. We can see all the
elements of a classic SPMD program in the simple MPI version of this program,
as shown in Fig. 5.3. The same program is run on each UE. Near the beginning of
the program, the MPI environment is initialized and the ID for each UE (my_id)
is given by the process rank for each UE in the process group associated with the
communicator MPI_COMM_WORLD (for information about communicators and other
MPI details, see the MPI appendix, Appendix B). We use the number of UEs and
the ID to assign loop ranges (i_start and i_end) to each UE. Because the number
of steps may not be evenly divided by the number of UEs, we have to make sure
the last UE runs up to the last step in the calculation. After the partial sums have
been computed on each UE, we multiply by the step size, step, and then use the
MPI_Reduce() routine to combine the partial sums into a global sum. (Reduction
operations are described in more detail in the Implementation Mechanisms design
space.) This global value will only be available in the process with my_id == 0, so
we direct that process to print the answer.

In essence, what we have done in the example in Fig. 5.3 is to replicate the key
data (in this case, the partial summation value, sum), use the UE’s ID to explicitly
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#include <stdio.h>
#include <math.h>
#include <mpi.h>

int main (int arge, char #argv[]) {
int i, i_start, i_end;
int num_steps = 1000000;
double x, pi, step, sum = 0.0;

int my_id, numprocs;
step = 1.0/(double) num_steps;

MPI_Init(kargc, kargv);
MPI_Comm_rank(MPI_COMM_WORLD, &my_id);
MPI_Comm_size (MPI_COMM_WORLD, &numprocs);

i_start = my_id * (num_steps/numprocs);
i_end = i_start + (num_steps/numprocs);
if (my_id == (numprocs-1)) i_end = num_steps;

for (i=i_start; i< i_end; i++)
{
x = (i+0.5)+step;
sum = sum + 4.0/(1.0+x*x);
}
sum *= step;
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, O,
MPI_COMM_WORLD) ;
if (my_id == 0) printf("pi %1lf\n",pi);
MPI_Finalize();
return 0;

Figure 5.3: MPI program to carry out a trapezoid rule integration in parallel by assigning one
block of loop iterations to each UE and performing a reduction

split up the work into blocks with one block per UE, and then recombine the local
results into the final global result. The challenge in applying this pattern is to
(1) split up the data correctly, (2) correctly recombine the results, and (3) achieve
an even distribution of the work. The first two steps were trivial in this example. The
load balance, however, is a bit more difficult. Unfortunately, the simple procedure we
used in Fig. 5.3 could result in significantly more work for the last UE if the number
of UEs does not evenly divide the number of steps. For a more even distribution of
the work, we need to spread out the extra iterations among multiple UEs. We show
one way to do this in the program fragment in Fig. 5.4. We compute the number of
iterations left over after dividing the number of steps by the number of processors
(rem). We will increase the number of iterations computed by the first rem Uks
to cover that amount of work. The code in Fig. 5.4 accomplishes that task. These
sorts of index adjustments are the bane of programmers using the SPMD pattern.
Such code is error-prone and the source of hours of frustration as program readers
try to understand the reasoning behind this logic.

Finally, we use a loop-splitting strategy for the numerical integration program.
The resulting program is shown in Fig. 5.5. This approach uses a common trick to
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int rem = num_steps ), numprocs;

i_start = my_id * (num_steps/numprocs);
i_end = i_start + (num_steps/numprocs);

if (rem != O){
if(my_id < rem){
i_start += my_id;
i_end += (my_id + 1);

else {
i_start += rem;
i_end += rem;
}
}

Figure 5.4; Index calculation that more evenly distributes the work when the number of steps is
not evenly divided by the number of UEs. The idea is to split up the remaining tasks (rem) among
the first rem UEs.

#include <stdio.h>
#include <math.h>
#include <mpi.h>

int main (int arge, char »=argv(]l) {
int i;
int num_steps = 1000000;
double x, pi, step, sum = 0.0;

int my_id, numprocs;
step = 1.0/(double) num_steps;

MPI_Init(kargec, &argv);
MPI_Comm_rank (MPI_COMM_WORLD, &my_id);
MPI_Comm_size(MPI_COMM_WORLD, &numprocs);

for (i=my_id; i< num_steps; i+= numprocs)
1

x = (i+0.5)*step;
sum = sum + 4.0/(1.0+x#*x);
b
sum *= step;
MPI_Reduce(&sum, &pi, 1, MPI_DOUBLE, MPI_SUM, O,
MPI_COMM_WORLD) ;
if (my_id == 0) printf("pi %1f\n",pi);
MPI_Finalize();
return 0;

Figure 5.5: MPI program to carry out a trapezoid rule integration in parallel using a simple loop-
splitting algorithm with cyclic distribution of iterations and a reduction
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#include <stdio.h>
#include <math.h>
#include <omp.h>

int main () {
int num_steps = 1000000;
double pi, step, sum = 0.0;

step = 1.0/(double) num_steps;
#pragma omp parallel reduction(+:sum)
{

int i, id = omp_get_thread_num();
int numthreads = omp_get_num_threads();
double x;

for (i=id;i< num_steps; i+=numthreads){
x = (i+0.5)*step;
sum += + 4.0/(1.0+x*x);
}
} // end of parallel region
pi = step * sum;
printf("\n pi is %1f\n",pi);
return 0;

Figure 5.6: OpenMP program to carry out a trapezoid rule integration in parallel using the same
SPMD algorithm used in Fig. 5.5

achieve a cyclic distribution of the loop iterations: Each UE starts with the iteration
equal to its rank, and then marches through the iterations of the loop with a stride
equal to the number of UEs. The iterations are interleaved among the UEs, in the
same manner as a deck of cards would be dealt. This version of the program evenly
distributes the load without resorting to complex index algebra.

SPMD programs can also be written using OpenMP and Java. In Fig. 5.6,
we show an OpenMP version of our trapezoidal integration program. This program
is very similar to the analogous MPI program. The program has a single parallel
region. We start by finding the thread ID and the number of threads in the team.
We then use the same trick to interleave iterations among the team of threads. As
with the MPI program, we use a reduction to combine partial sums into a single
global sum.

Molecular dynamics. Throughout this pattern language, we have used molec-
ular dynamics as a recurring example. Molecular dynamics simulates the motions
of a large molecular system. It uses an explicit time-stepping methodology where at
each time step, the force on each atom is computed and standard techniques from
classical mechanics are used to compute how the forces change atomic motions.
This problem is ideal for presenting key concepts in parallel algorithms be-
cause there are so many ways to approach the problem based on the target computer
system and the intended use of the program. In this discussion, we will follow the
approach taken in [Mat95] and assume that (1) a sequential version of the program
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Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: velocities (3,N) /Avelocity vector
Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff volume

loop over time steps
initialize_forces (N, Forces)
if(time to update neighbor list)
neighbor_list (N, Atoms, neighbors)
end if
vibrational_forces (N, atoms, forces)
rotational_forces (N, atoms, forces)
non_bonded_forces (N, atoms, neighbors, forces)
update_atom_positions_and_velocities(
N, atoms, velocities, forces)
physical_properties ( ... Lots of stuff ... )
end loop

Figure 5.7: Pseudocode for molecular dynamics example. This code is very similar to the version dis-
cussed earlier, but a few extra details have been included. To support more detailed pseudocode
examples, the call to the function that initializes the force arrays has been made explicit. Also, the
fact that the neighbor list is only occasionally updated is made explicit.

exists, (2) having a single program for sequential and parallel execution is impor-
tant, and (3) the target system is a small cluster connected by standard Ethernet
LAN. More scalable algorithms for execution on massively parallel systems are
discussed in [PH95].

The core algorithm, including pseudocode, was presented in Sec. 3.1.3. While
we won't repeat the discussion here, we do provide a copy of the pseudocode in
Fig. 5.7.

The parallel algorithm is discussed in several of the patterns in the Finding
Concurrency and Algorithm Structure design spaces. Following are the key points
from those discussions that we will need here along with the location of the original
discussion.

1. Computing the non_bonded_forces takes the overwhelming majority of the
runtime (Sec. 3.1.3).

2. In computing the non_bonded_force, each atom potentially interacts with
all the other atoms. Hence, each UE needs read access to the full atomic
position array. Also, due to Newton’s third law, each UE will be scattering
contributions to the force across the full force array (the Examples section of
the Data Sharing pattern).

3. One way to decompose the MD problem into tasks is to focus on the compu-
tations needed for a particular atom, that is, we can parallelize this problem
by assigning atoms to UEs (the Examples section of the Tusk Decomposition
pattern).

Given that our target is a small cluster and from point (1) in the preceding
list, we will only parallelize the force computations. Because the network is slow for
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parallel computing and given the data dependency in point (2), we will:
e Keep a copy of the full force and coordinate arrays on each node.

e Have each UE redundantly update positions and velocities for the atoms (that
is, we assume it is cheaper to redundantly compute these terms than to do
them in parallel and communicate the results).

e Have each UE compute its contributions to the force array and then combine
(or reduce) the UEs’ contributions into a single global force array copied onto
each UE.

The algorithm is a simple transformation from the sequential algorithm. Pseu-
docode for this SPMD program is shown in Fig. 5.8. As with any MPI program,

#include <mpi.h>

Int const N // number of atoms
Int comst LN // mazimum number of atoms assigned to a UE

Int ID // an ID for each UE
Int num UEs // the number of UEs in the parallel computation

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: velocities (3,N) //velocity vector

Array of Real :: forces (3,N) //force in each dimension
Array of Real :: final forces(3,N) //globally summed force
Array of List :: neighbors(LN) //atoms in cutoff volume
Array of Int :: local_atoms(LN) //atems for this UE

ID = 0 // default ID (used by the serial code)

num_UEs = 1 // default num_UEs (used by the serial code)
MPI_Init()

MPI_Comm_size(MPI_COMM_WORLD, &ID)

MPI_Comm_rank (MPI_COMM_WORLD, &num_UEs)

loop over time steps

initialize_forces (N, forces, final_ forces)

if(time to update neighbor list)
neighbor_list (N, LN, atoms, neighbors)

end if

vibrational_forces (N, LN, local_atoms, atoms, forces)

rotational _forces (N, LN, local_atoms, atoms, forces)

non_bonded_forces (N, LN, atoms, local_atoms, neighbors,
forces)

MPI_All_reduce{forces, final_forces, 3+N, MPI_REAL,
MPI_SUM, MPI_COMM_WORLD)

update_atom_positions_and_velocities(
N, atoms, velocities, final_forces)
physical _properties ( ... Lots of stuff ... )
end loop

MPI_Finalize()

Figure 5.8: Pseudocode for an SPMD molecular dynamics program using MPI
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function non_bonded_forces (N, LN, atoms, local_atoms,
neighbors, Forces)

Int N // number of atoms
Int LN // mazimum number of atoms assigned to a UE

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(LN) //atoms in cutoff volume
Array of Int :: local_atoms(LN) //atoms assigned to this UE
real :: forceX, forceY, forceZ

loop [i] over local_atoms

loop [j] over neighbors(i)
forceX = non_bond_force(atoms(1,i), atoms(1,i))
forceY = non_bond_force(atoms(2,i), atoms(2,3i))
forceZ = non_bond_force(atoms(3,i), atoms(3,j))
force{1,1) += forceX; force{i,j) -= forceX;
force(2,i) += forceY; force{2,j) -= forceY;
force{3,i) += forceZ; force{3,j) -= forceZ;

end loop [j]

end loop [i]
end function non_bonded_forces

Figure 5.9: Pseudocode for the nonbonded computation in a typical parallel molecular dy-
namics code. This code is almost identical to the sequential version of the function shown
in Fig. 4.4. The only major change is a new array of integers holding the indices for the
atoms assigned to this UE, local_atoms. We've also assumed that the neighbor list has been
generated to hold only those atoms assigned to this UE. For the sake of allocating space for these
arrays, we have added a parameter LN which is the largest number of atoms that can be assigned
to a single UE.

the MPI include file is referenced at the top of the program. The MPI environment
is initialized and the ID is associated with the rank of the MPI process.

Only a few changes are made to the sequential functions. First, a second force
array called final_forces is defined to hold the globally consistent force array
appropriate for the update of the atomic positions and velocities. Second, a list
of atoms assigned to the UE is created and passed to any function that will be
parallelized. Finally, the neighbor_list is modified to hold the list for only those
atoms assigned to the UE.

Finally, within each of the functions to be parallelized (the forces calculations),
the loop over atoms is replaced by a loop over the list of local atoms.

We show an example of these simple changes in Fig. 5.9. This is almost iden-
tical to the sequential version of this function discussed in the Task Parallelism
pattern. As discussed earlier, the following are the key changes.

e A new array has been added to hold indices for the atoms assigned to this
UE. This array is of length LN where LN is the maximum number of atoms
that can be assigned to a single UE,
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¢ The loop over all atoms (loop over i) has been replaced by a loop over the
elements of the local_atoms list.

¢ We assume that the neighbor list has been modified to correspond to the
atoms listed in the local_atoms list.

The resulting code can be used for a sequential version of the program by
setting LN to N and by putting the full set of atom indices into local_atoms. This
feature satisfies one of our design goals: that a single source code would work for
both sequential and parallel versions of the program.

The key to this algorithm is in the function to compute the neighbor list. The
neighbor list function contains a loop over the atoms. For each atom i, there is a loop
over all other atoms and a test to determine which atoms are in the neighborhood
of atom i. The indices for these neighboring atoms are saved in ne ighbors, a list
of lists. Pseudocode for this code is shown in Fig. 5.10.

function neighbor (N, LN, ID, cutoff, atoms, local_atoms,
neighbors)

Int N // number of atoms
Int LN // maz number of atoms assigned to a UE
Real cutoff // radius of sphere defining neighborhood

Array of Real :: atoms (3,N) //3D coordinates

Array of List :: neighbors(LN) //atoms in cutoff volume
Array of Int :: local_atoms(LN) //atoms assigned to this UE
real :: dist_squ

initialize_lists (local_atoms, neighbors)

loop [i] over atoms on UE //split loop iterations among UEs
add_to_list (i, local_atoms)
loop [j] over atoms greater than i
dist_squ = square(atom(1,i)-atom(1,j)) +
square (atom(2,i)-atom(2,j)) +
square(atom(3,i)-atem(3,3))
if(dist_squ < (cutoff * cutoff))
add_to_list (j, neighbors(i))
end if
end loop [j]

end loop [i]
end function neighbors

Figure 5.10: Pseudocode for the neighbor list computation. For each atom i, the indices for
atoms within a sphere of radius cutoff are added to the neighbor list for atom i. Notice
that the second loop (over j) only considers atoms with indices greater than i. This accounts
for the symmetry in the force computation due to Newton's third law of motion, that is,
that the force between atom i and atom j is just the negative of the force between atom 3
and atom i.
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The logic defining how the parallelism is distributed among the UEs is cap-
tured in the single loop in Fig. 5.10:

loop [i] over atoms on UE //split loop iterations amoeng UEs
add_to_list (i, local_atoms)

The details of how this loop is split among UEs depends on the programming
environment. An approach that works well with MPI is the cyclic distribution we
used in Fig. 5.5

for (i=id;i<number_of_atoms; i+= number_of_UEs){
add_to_list (i, local_atoms)
}

More complex or even dynamic distributions can be handled by creating an
ouner-computes filter [Mat95]. An owner-computes filter provides a flexible and
reusable schedule for mapping loop iterations onto UEs. The filter is a boolean
function of the ID and the loop iteration. The value of the function depends on
whether a UE “owns” a particular iteration of a loop. For example, in a molecular
dynamics program, the call to the owner-computes function would be added at the
top of the parallelized loops over atoms:

for (i=0;i<number_of_atoms; i++)}{
if 1(is_owner (i)) break

add_to_list (i, local_atoms)
}

No other changes to the loop are needed to support expression of concurrency.
If the logic managing the loop is convoluted, this approach partitions the iterations
among the UEs without altering that logic, and the index partitioning logic is
located clearly in one place in the source code. Another advantage occurs when
several loops that should be scheduled the same way are spread out throughout a
program. For example, on a NUMA machine or a cluster it is very important that
data brought close to a PE be used as many times as possible. Often, this means
reusing the same schedule in many loops.

This approach is described further for molecular dynamics applications in
[Mat95]. It could be important in this application since the workload captured in
the neighbor list generation may not accurately reflect the workload in the various
force computations. One could easily collect information about the time required
for each atom and then readjust the is_owner function to produce more optimal
work loads.
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#include <omp.h>
Int const N // number of atoms
Int const LN // mazimum number of atoms assigned to a UE
Int ID // an ID for each UE
Int num_UEs // number of UEs in the parallel computation
Array of Real :: atoms(3,N) //3D coordinates
Array of Real :: velocities(3,N) S/velocity vector
Array of Real :: forces(3,N) //force in each dim
Array of List :: neighbors(LN) //atoms in cutoff volume
Array of Int :: local_atoms(LN) //atoms for this UE

ID=0
num_UEs = 1

#pragna omp parallel private (ID, num_UEs, local_atoms, forces) {
ID = omp_get_thread_num()
num_UEs = omp_get_num_threads()

loop over time steps
initialize_forces (N, forces, final_forces)
if(time to update neighbor list)
neighbor_list (N, LN, atoms, neighbors)

end if

vibrational forces (N, LN, local_atoms, atoms, forces)

rotational forces (N, LN, local_atoms, atoms, forces)

non_bonded_forces (N, LN, atoms, local_atoms,

neighbors, forces)

#pragma critical

final _forces += forces
#barrier

#pragma single
{
update_atom_positions_and_velocities(
N, atoms, velocities, forces)
physical_properties ( ... Lots of stuff ... )
} // remember, the end of a single implies a barrier

end loop

{ } // end of OpenMP parallel region

Figure 5.11: Pseudocode for a parallel molecular dynamics program using OpenMP

These SPMD algorithms work for OpenMP programs as well. All of the basic
functions remain the same. The top-level program is changed to reflect the needs
of OpenMP. This is shown in Fig. 5.11.

The loop over time is placed inside a single parallel region. The parallel region
is created with the parallel pragma:

#pragma omp parallel private (ID, num_UEs, local_atoms, forces)
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This pragma causes a team of threads to be created with each member of
the team executing the loop over time. The private clause causes copies of the
listed variables to be created for each UE. The reduction is carried out in a critical
section:

#pragma critical
final_forces += forces

A reduction clause on the parallel region cannot be used in this case because
the result would not be available until the parallel region completes. The critical
section produces the correct result, but the algorithm used has a runtime that is
linear in the number of UEs and is hence suboptimal relative to other reduction al-
gorithms as discussed in the Implementation Mechanisms design space. On systems
with a modest number of processors, however, the reduction with a critical section
works adequately.

The barrier following the critical section is required to make sure the reduction
completes before the atomic positions and velocities are updated. We then use an
OpenMP single construct to cause only one UE to do the update. An additional
barrier is not needed following the single since the close of a single construct
implies a barrier. The functions used to compute the forces are unchanged between
the OpenMP and MPI versions of the program.

Mandelbrot set computation. Consider the well-known Mandelbrot set
[Dous6]. We discussed this problem and its parallelization as a task-parallel prob-
lem in the Task Parallelism pattern. Each pixel is colored based on the behavior of
the quadratic recurrence relation in Eq. 5.4.

Zpi1 =2+ C (5.4)

C and Z are complex numbers and the recurrence is started with Zy = C. The image
plots the imaginary part of C' on the vertical axis (—1.5 to 1.5) and the real part
on the horizontal axis (—1 to 2). The color of each pixel is black if the recurrence
relation converges to a stable value or is colored depending on how rapidly the
relation diverges.

In the Task Parallelism pattern, we described a parallel algorithm where each
task corresponds to the computation of a row in the image. A static schedule with
more tasks than UEs should be possible that achieves an effective statistical balance
of the load among nodes. We will show how to solve this problem using the SPMD
pattern with MPL

Pseudocode for the sequential version of this code is shown in Fig. 5.12. The
interesting part of the problem is hidden inside the routine compute_Row(). Be-
cause the details of this routine are not important for understanding the parallel
algorithm, we will not show them here, however. At a high level, for each point in
the row the following happens.
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Int const Nrows // number of rows in the image
Int const RowSize // number of pizels in a row
Int const M // number of colors in color map

Real :: conv // divergence rate for a pizel

Array of Int :: color_map (M) // pizel color based on conv rate
Array of Int :: row (RowSize) // Pizels to draw

Array of Real :: ranges(2) // ranges in X and ¥ dimensions

manage_?ser_input(ranges, color_map) // input ranges, color map
initialize_graphics(RowSize, Nrows, M, ranges, color_map)

for (int i = 0; i<Nrows; i++){
compute_Row (RowSize, ranges, row)
graph(i, RowSize, M, color_map, ranges, row)

} // end loop [i] over rows

Figure 5.12: Pseudocode for a sequential version of the Mandelbrot set generation program

e Each pixel corresponds to a value of C' in the quadratic recurrence. We com-
pute this value based on the input range and the pixel indices.

o We then compute the terms in the recurrence and set the value of the pixel
based on whether it converges to a fixed value or diverges. If it diverges, we
set the pixel value based on the rate of divergence.

Once computed, the rows are plotted to make the well-known Mandelbrot set
images. The colors used for the pixels are determined by mapping divergence rates
onto a color map.

An SPMD program based on this algorithm is straightforward; code is shown
in Fig. 5.13. We will assume the computation is being carried out on some sort
of distributed-memory machine (a cluster or even an MPP) and that there is one
machine that serves as the interactive graphics node, while the others are restricted
to computation. We will assume that the graphics node is the one with rank 0.

The program starts with the usual MPI setup, as described in the MPI ap-
pendix, Appendix B. The UE with rank 0 takes input from the user and then
broadcasts this to the other UEs. It then loops over the number of rows in the
image, receiving rows as they finish and plotting them. UEs with rank other than 0
use a cyclic distribution of loop iterations and send the rows to the graphics UE as
they finish.

Known uses. The overwhelming majority of MPI programs use this pattern.
Pedagogically oriented discussions of SPMD programs and examples can be found in
MPI textbooks such as [GLS99] and [Pac96]. Representative applications using this
pattern include quantum chemistry [WSG95], finite element methods [ABKP03,
KLK™*03], and 3D gas dynamics [MHC*99].
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#include <mpi.h>
Int const Nrows // number of rows in the image
Int const RowSize // number of pizels in a row
Int const M // number of colors in coler map
Real :: conv // divergence rate for a pizel
Array of Int :: color_map (M) // pizel color based on conv rate
Array of Int :: row (RowSize) // Pizels to draw
Array of Real :: ranges(2) // ranges in X and Y dimensions
Int :: inRowSize // size of received row
Int :: ID // ID of each UE (process)
Int :: num_UEs // number of UEs (processes)
Int :: nworkers // number of UEs puting rows
MPI_Status :: stat // MPI status parameter

MPI_Init()
MPI_Comm_size (MPI_COMM_WORLD, &ID)
MPI_Comm_rank (MPI_COMM_WORLD, &num_UEs)

// Algorithm requires at least two UEs since we are
// going to dedicate one to graphics
if (num_UEs < 2) MPI_Abort(MPI_COMM_WORLD, 1)

if (ID == 0 ){
manage_user_input{ranges, color_map) // input ranges, color map
initialize_graphics(RowSize, Nrows, M, ranges, color_map)

// Broadcast data from rank 0 process to all other processes
MPI_Bcast (ranges, 2, MPI_REAL, 0, MPI_COMM_WORLD);
if (ID == 0) { // UE with rank 0 does graphics
for (int i = 0; i<Nrows; i++){
MPI_Recv(row, &inRowSize, MPI_REAL, MPI_ANY_SOURCE,
MPI_ANY_TAG, MPI_COMM_WORLD, &stat)
rov_index = stat(MPI_TAG)
graph(row_index, RowSize, M, color_map, ranges, Row)
} // end Loop over i
else { // The other UEs compute the rouws
nworkers = num _UEs - 1
for (int i = ID-1; i<Nrows; i+=nworkers){
compute_Row (RowSize, ranges, row)
MPI_Send (row, RowSize, MPI_REAL, 0, i, MPI_COMM_WORLD);
} // end loop over i
}
MPI_Finalize()

Figure 5.13: Pseudocode for a parallel MPI version of the Mandelbrot set generation program

Examples of the SPMD pattern in combination with the Distributed Ar-
ray pattern include the GAMESS quantum chemistry program [0OSGO03| and the
ScaLAPACK library [BCC™97, Scal.

Related Patterns

The SPMD pattern is very general and can be used to implement other patterns.
Many of the examples in the text of this pattern are closely related to the Loop Par-
allelism pattern. Most applications of the Geometric Decomposition pattern with
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MPT use the SPMD pattern as well. The Distribufed Array pattern is essentially a
special case of distributing data for programs using the SPMD pattern.

5.5 THE MASTER/WORKER PATTERN

Problem

How should a program be organized when the design is dominated by the need to
dynamically balance the work on a set of tasks among the UEs?

Context

Parallel efficiency follows from an algorithm’s parallel overhead, its serial fraction,
and the load balancing. A good parallel algorithm must deal with each of these, but
sometimes balancing the load is so difficult that it dominates the design. Problems
falling into this category usually share one or more of the following characteristics.

» The workloads associated with the tasks are highly variable and unpredictable.
If workloads are predictable, they can be sorted into equal-cost bins, stati-
cally assigned to UEs, and parallelized using the SPMD or Loop Parallelism
patterns. But if they are unpredictable, static distributions tend to produce
suboptimal load balance.

The program structure for the computationally intensive portions of the prob-
lem doesn’t map onto simple loops. If the algorithm is loop-based, one can
usually achieve a statistically near-optimal workload by a eyclic distribu-
tion of iterations or by using a dynamic schedule on the loop (for exam-
ple, in OpenMP, by using the schedule(dynamic) clause). But if the control
structure in the program is more complex than a simple loop, more general
approaches are required.

The capabilities of the PEs available for the parallel computation vary across
the parallel system, change over the course of the computation, or are
unpredictable.

In some cases, tasks are tightly coupled (that is, they communicate or share
read-and-write data) and must be active at the same time. In this case, the Master/
Worker pattern is not applicable: The programmer has no choice but to explicitly
size or group tasks onto UEs dynamically (that is, during the computation) to
achieve an effective load balance. The logic to accomplish this can be difficult to
implement, and if one is not careful, can add prohibitively large parallel overhead.

If the tasks are independent of each other, however, or if the dependencies
can somehow be pulled out from the concurrent computation, the programmer has
much greater flexibility in how to balance the load. This allows the load balancing
to be done automatically and is the situation we address in this pattern.

This pattern is particularly relevant for problems using the Task Paral-
lelism pattern when there are no dependencies among the tasks
(embarrassingly parallel problems). It can also be used with the Fork/Join
pattern for the cases where the mapping of tasks onto UFEs is indirect.
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Forces

e The work for each task, and in some cases even the capabilities of the PEs,
varies unpredictably in these problems. Hence, explicit predictions of the run-
time for any given task are not possible and the design must balance the load
without them.

e Operations to balance the load impose communication overhead and can be
very expensive. This suggests that scheduling should revolve around a smaller
number of large tasks. However, large tasks reduce the number of ways tasks
can be partitioned among the PEs, thereby making it more difficult to achieve
good load balance.

e Logic to produce an optimal load can be convoluted and require error-prone
changes to a program. Programmers need to make trade-offs between the
desire for an optimal distribution of the load and code that is easy to maintain.

Solution

The well-known Master/Worker pattern is a good solution to this problem. This
pattern is summarized in Fig. 5.14. The solution consists of two logical elements: a
master and one or more instances of a worker. The master initiates the computation
and sets up the problem. It then creates a bag of tasks. In the classic algorithm, the
master then waits until the job is done, consumes the results, and then shuts down
the computation.

A straightforward approach to implementing the bag of tasks is with a single
shared queue as described in the Shared Queue pattern. Many other mechanisms
for creating a globally accessible structure where tasks can be inserted and re-
moved are possible, however. Examples include a tuple space [CG91,FHA99], a dis-
tributed queue, or a monotonic counter (when the tasks can be specified with a set of
contiguous integers).

Meanwhile, each worker enters a loop. At the top of the loop, the worker takes
a task from the bag of tasks, does the indicated work, tests for completion, and then
goes to fetch the next task. This continues until the termination condition is met, at
which time the master wakes up, collects the results, and finishes the computation.

Master /worker algorithms automatically balance the load. By this, we mean
the programmer does not explicitly decide which task is assigned to which UE. This
decision is made dynamically by the master as a worker completes one task and
accesses the bag of tasks for more work.

Discussion. Master /worker algorithms have good scalability as long as the num-
ber of tasks greatly exceeds the number of workers and the costs of the individual
tasks are not so variable that some workers take drastically longer than the others.
Management. of the bag of tasks can require global communication, and the
overhead for this can limit efficiency. This effect is not a problem when the work
associated with the tasks on average is much greater than the time required for
management. In some cases, the designer might need to increase the size of each
task to decrease the number of times the global task bag needs to be accessed.
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Figure 5.14: The two elements of the Master/Worker pattern are the master and the worker.
There is only one master, but there can be one or more workers. Logically, the master sets up the
calculation and then manages a bag of tasks. Each worker grabs a task from the bag, carries out
the work, and then goes back to the bag, repeating until the termination condition is met.

The Master/Worker pattern is not tied to any particular hardware environ-
ment. Programs using this pattern work well on everything from clusters to SMP
machines. It is, of course, beneficial if the programming environment provides sup-
port for managing the bag of tasks.

Detecting completion. One of the challenges in working with master/
worker programs is to correctly determine when the entire problem is complete.
This needs to be done in a way that is efficient but also guarantees that all of the
work is complete before workers shut down.

e In the simplest case, all tasks are placed in the bag before the workers begin.
Then each task continues until the bag is empty, at which point the workers
terminate.

e Another approach is to use a queue to implement the task bag and arrange
for the master or a worker to check for the desired termination condition.
When it is detected, a poison pill, a special task that tells the workers to
terminate, is created. The poison pill must be placed in the bag in such a way
that it will be picked up on the next round of work. Depending on how the
set of shared tasks are managed, it may be necessary to create one poison pill
for each remaining worker to ensure that all workers receive the termination
condition.
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e Problems for which the set of tasks is not known initially produce unique
challenges. This occurs, for example, when workers can add tasks as well as
consume them (such as in applications of the Divide and Conquer pattern).
In this case, it is not necessarily true that when a worker finishes a task and
finds the task bag empty that there is no more work to do—another still-
active worker could generate a new task. One must therefore ensure that the
task bag is empty and all workers are finished. Further, in systems based
on asynchronous message passing, it must be determined that there are no
messages in transit that could, on their arrival, result in the creation of a new
task. There are many known algorithms that solve this problem. For example,
suppose the tasks are conceptually organized into a tree, where the root is
the master task, and the children of a task are the tasks it generates. When
all of the children of a task have terminated, the parent task can terminate.
When all the children of the master task have terminated, the computation
has terminated. Algorithms for termination detection are described in [BT89,
Mat87,DS80].

Variations. There are several variations on this pattern. Because of the simple
way it implements dynamic load balancing, this pattern is very popular, especially
in embarrassingly parallel problems (as described in the Task Parallelism pattern).
Here are a few of the more common variations.

e The master may turn info a worker after it has created the tasks. This is an
effective technique when the termination condition can be detected without
explicit action by the master (that is, the tasks can detect the termination
condition on their own from the state of the bag of tasks).

o When the concurrent tasks map onto a simple loop, the master can be im-
plicit and the pattern can be implemented as a loop with dynamic iteration
assignment as described in the Loop Parallelism pattern.

e A centralized task queue can become a bottleneck, especially in a distributed-
memory environment. An optimal solution [FLR98] is based on random work
stealing. In this approach, each PE maintains a separate double-ended task
queue. New tasks are placed in the front of the task queue of the local PE.
When a task is completed, a subproblem is removed from the front of the
local task queune. If the local task queue is empty, then another PE is cho-
sen randomly, and a subproblem from the back of its task queue is “stolen”.
If that queue is also empty, then the PE tries again with another randomly
chosen PE. This is particularly effective when used in problems based on
the Divide and Conguer pattern. In this case, the tasks at the back of the
queue were inserted earlier and hence represent larger subproblems. Thus, this
approach tends to move large subproblems while handling the finer-grained
subproblems at the PE where they were created. This helps the load bal-
ance and reduces overhead for the small tasks created in the deeper levels of
recursion.
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e The Master/Worker pattern can be modified to provide a modest level of fault
tolerance [BDK95]. The master maintains two queues: one for tasks that still
need to be assigned to workers and another for tasks that have already been
assigned, but not completed. After the first queue is empty. the master can
redundantly assign tasks from the “not completed” queue. Hence, if a worker
dies and therefore can’t complete its tasks, another worker will cover the
unfinished tasks.

Examples

We will start with a generic description of a simple master/worker problem and
then provide a detailed example of using the Master/Worker pattern in the parallel
implementation of a program to generate the Mandelbrot set. Also see the Examples
section of the Shared Queue pattern, which illustrates the use of shared quetes
by developing a master/worker implementation of a simple Java framework for
programs using the Fork/Join pattern.

Generic solutions. The key to the master/worker program is the structure that
holds the bag of tasks. The code in this section uses a task queue. We implement
the task queue as an instance of the Shared Queue pattern.

The master process, shown in Fig. 5.15, initializes the task queue, representing
each task by an integer. It then uses the Fork/Join pattern to create the worker

Int const Ntasks // Number of tasks
Int const Nworkers // Number of workers

SharedQueue :: task_queue; // task gueue
SharedQueue :: global_results; // queue to hold results

void master()
void worker()
// Create and initialize shared data structures
task_queue = new SharedQueue()

global_results = new SharedQueue()

for (int i = 0; 1 < N; i++)
enqueue (task_queue, i)

// Create Nworkers threads ezecuting function Werker()
ForkJoin (Nworkers, Worker)

consume_the_results (Ntasks)

Figure 5.15: Master process for a master/worker program. This assumes a shared address space
so the task and results queues are visible to all UEs. In this simple version, the master initializes
the queue, launches the workers, and then waits for the workers to finish (that is, the ForkJoin
command launches the workers and then waits for them to finish before returning). At that point,
results are consumed and the computation completes,
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void worker()
{
Int :: i
Result :: res

while (!empty(task_queue) {
i = dequeune(task_queue)
res = do_lots_of_work(i)
enqueue(global_results, res)

Figure 5.16: Worker process for a master/worker program. We assume a shared address space
thereby making task_queue and global_results available to the master and all workers., A worker
loops over the task_queue and exits when the end of the queue is encountered.

processes or threads and wait for them to complete. When they have completed, it
consumes the results.

The worker, shown in Fig. 5.16, loops until the task queue is empty. Every
time through the loop, it takes the next task and does the indicated work, storing
the results in a global results queue. When the task queue is empty, the worker
terminates.

Note that we ensure safe access to the key shared variables (task_queue and
global_results) by using instances of the Shared Queue pattern.

For programs written in Java, a thread-safe queue can be used to hold
Runnable objects that are executed by a set of threads whose run methods be-
have like the worker threads described previously: removing a Runnable object
from the queue and executing its run method. The Executor interface in the
java.util.concurrent package in Java 2 1.5 provides direct support for the
Master/Worker pattern. Classes implementing the interface provide an execute
method that takes a Runnable object and arranges for its execution. Different im-
plementations of the Executor interface provide different ways of managing the
Thread objects that actually do the work. The ThreadPoolExecutor implements
the Master/Worker pattern by using a fixed pool of threads to execute the com-
mands. To use Executor, the program instantiates an instance of a class implement-
ing the interface, usually using a factory method in the Executors class. For exam-
ple, the code in Fig. 5.17 sets up a ThreadPoolExecutor that creates num_threads
threads. These threads execute tasks specified by Runnable objects that are placed
in an unbounded queue.

After the Executor has been created, a Runnable object whose run method
specifies the behavior of the task can be passed to the execute method, which

/#create a ThreadPoolEzecutor with an unbounded queue+/
Executor exec = new Executors.newFixedThreadPool (num_threads);

Figure 5.17: Instantiating and initializing a pooled executor
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arranges for its execution. For example, assume the Runnable object is referred to
by a variable task. Then for the executor defined previously, exec.execute (task) ;
will place the task in the queue, where it will eventually be serviced by one of the
executor’s worker threads.

The Master/Worker pattern can also be used with SPMD programs and MPI.
Maintaining the global queues is more challenging, but the overall algorithm is the
same. A more detailed description of using MPI for shared queues appears in the
Implementation Mechanisms design space.

Mandelbrot set generation. Generating the Mandelbrot set is described in
detail in the Examples section of the SPMD pattern. The basic idea is to explore
a quadratic recurrence relation at each point in a complex plane and color the
point based on the rate at which the recursion converges or diverges. Each point
in the complex plane can be computed independently and hence the problem is
embarrassingly parallel (see the Tusk Parallelism pattern).

In Fig. 5.18, we reproduce the pseudocode given in the SPMD pattern for a
sequential version of this problem. The program loops over the rows of the image
displaying one row at a time as they are computed.

On homogeneouns clusters or lightly-loaded shared-memory multiprocessor
computers, approaches based on the SPMD or Loop Parallelism patterns are most
effective. On a heterogeneous cluster or a multiprocessor system shared among
many users (and hence with an unpredictable load on any given PE at any given
time), a master/worker approach will be more effective.

We will create a master/worker version of a parallel Mandelbrot program
based on the high-level structure described earlier. The master will be responsible
for graphing the results. In some problems, the results generated by the workers
interact and it can be important for the master to wait until all the workers have

Int const Nrows // number of rows in the image

Int const RowSize // number of pizels in a row

Int const M // number of colors in color map

Real :: conv // divergence rate for a pizel

Array of Int :: color_map (M) // pizmel color based on Conv rate
Array of Int :: row (RowSize) // Pizmels to draw

Array of real :: ranges(2) // ranges in X and Y dimensions

manage_user_input(ranges, color_map) // input ranges, color map
initialize_graphics(RowSize, Nrows, M, ranges, color_map)

for (int i = 0; i<Nrows; i++){
compute_Row (RowSize, ranges, row)
graph(i, RowSize, M, color_map, ranges, row)

} // end loop [i] over rows

Figure 5.18: Pseudocode for a sequential version of the Mandelbrot set generation program
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completed before consuming results. In this case, however, the results do not inter-
act, so we split the fork and join operations and have the master plot results as they
become available. Following the Fork, the master must wait for results to appear on
the global_results queue. Because we know there will be one result per row, the
master knows in advance how many results to fetch and the termination condition
is expressed simply in terms of the number of iterations of the loop. After all the re-
sults have been plotted, the master waits at the Join function until all the workers
have completed, at which point the master completes. Code is shown in Fig. 5.19.

Int const Ntasks // number of tasks
Int const Nworkers // number of workers
Int const Nrows // number of rows in the image
Int const RowSize // number of pizels in a row
Int const M // number of colors in color map
typedef Row :: struct of {
int :: index
array of int :: pixels (RowSize)
} temp_row;
Array of Int :: color_map (M) // pizel color based on conv rate
Array of Real :: ranges(2) // ranges in X and ¥ dimensions
SharedQueue of Int :: task_queue; // task gqueue
Sharedfueve of Row :: global_results; // queue to hold results
void master()
{
void worker();
manage_user_input(ranges, Color_map) // input ranges, color map
initialize_graphics(RowSize, Nrows, M, ranges, color_map)
// Create and initialize shared data structures
task_queue = new SharedQueue();
global_results = new SharedQueue();
for (int i = 0; i < Nrows; i++)
enqueue (task_quene, i);
// Create Nworkers threads ezecuting function worker()
Fork (Nworkers, worker);
// Wait for results and graph them as they appear
for (int i = 0; i< Nrows; i++) {
while (empty(task_queue) { // wait for results
wait
}
temp_row = dequeue(global_results)
graph(temp_row.index, RowSize, M, color_map, ranges, Row.pixels)
1
// Terminate the worker UEs
Join (Nworkers);
}

Figure 5.19: Master process for a master/worker parallel version of the Mandelbrot set
generation program

5.5 The Master/Worker Pattern 151

void worker()

Int i, irow;
Row temp_row;

while (!empty(task_queue) {
irow = dequeue(task_queue);
compute_Row (RowSize, ranges, irow, temp_row.pixels)
temp_row.index = irow
enqueue(global _results, temp_row);

Figure 5.20: Worker process for a master/worker parallel version of the Mandelbrot set generation
program. We assume a shared address space thereby making task_queue, global_results, and
ranges available to the master and the workers.

Notice that this code is similar to the generic case discussed earlier, except that we
have overlapped the processing of the results with their computation by splitting
the Fork and Join. As the names imply, Fork launches UEs running the indicated
function and Join causes the master to wait for the workers to cleanly terminate.
See the Shared Queue pattern for more details about the queue.

The code for the worker is much simpler and is shown in Fig 5.20. First, note
that we assume the shared variables such as the queues and computation parameters
are globally visible to the master and the workers. Because the queue is filled by
the master before forking the workers, the termination condition is simply given
by an empty queue. Each worker grabs a row index, does the computation, packs
the row index and the computed row into the result queue, and continues until the
queue is empty.

Known uses. This pattern is extensively used with the Linda programming en-
vironment. The tuple space in Linda is ideally suited to programs that use the
Master/Worker pattern, as described in depth in [CG91] and in the survey pa-
per [CGMS94].

The Master/Worker pattern is used in many distributed computing environ-
ments because these systems must deal with extreme levels of unpredictability in the
availability of resources. The SETI@home project [SET] uses the Master/Worker
pattern to utilize volunteers’ Internet-connected computers to download and an-
alyze radio telescope data as part of the Search for Extraterrestrial Intelligence
(SETI). Programs constructed with the Calypso system [BDK95], a distributed
computing framework which provides system support for dynamic changes in the
set of PEs, also use the Master/Worker pattern. A parallel algorithm for detecting
repeats in genomic data [RHBO3| uses the Master/Worker pattern with MPI on a
cluster of dual-processor PCs.

Related Patterns

This pattern is closely related to the Loop Parallelism pattern when the loops utilize
some form of dynamic scheduling (such as when the schedule (dynamic) clause is
used in OpenMP).
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Implementations of the Fork/Join pattern sometimes use the Master/Worker
pattern behind the scenes. This pattern is also closely related to algorithms that
make use of the nextval function from TCGMSG [Har01, WSG95, LDSH95]. The
nextval function implements a monotonic counter. If the bag of tasks can be
mapped onto a fixed range of monotonic indices, the counter provides the bag
of tasks and the function of the master is implied by the counter.

Finally, the owner-computes filter discussed in the molecular dynamics exam-
ple in the SPMD pattern is essentially a variation on the master/worker theme. In
such an algorithm, all the master would do is set up the bag of tasks (loop iter-
ations) and assign them to UEs, with the assignment of tasks to UEs defined by
the filter. Because the UEs can essentially perform this assignment themselves (by
examining each task with the filter), no explicit master is needed.

THE LOOP PARALLELISM PATTERN

Problem

Given a serial program whose runtime is dominated by a set of computationally
intensive loops, how can it be translated into a parallel program?

Context

The overwhelming majority of programs used in scientific and engineering appli-
cations are expressed in terms of iterative constructs; that is, they are loop-based.
Optimizing these programs by focusing strictly on the loops is a tradition dating
back to the older vector supercomputers. Extending this approach to modern par-
allel computers suggests a parallel algorithm strategy in which concurrent tasks are
identified as iterations of parallelized loops.

The advantage of structuring a parallel algorithm around parallelized loops is
particularly important in problems for which well-accepted programs already exist.
In many cases, it isn’t practical to massively restructure an existing program to
gain parallel performance. This is particularly important when the program (as is
frequently the case) contains convoluted code and poorly understood algorithms.

This pattern addresses ways to structure loop-based programs for paralle]
computation. When existing code is available, the goal is to “evolve” a sequential
program into a parallel program by a series of transformations on the loops. Ideally,
all changes are localized to the loops with transformations that remove loop-carried
dependencies and leave the overall program semantics unchanged. (Such transfor-
mations are called semantically neutral transformations).

Not all problems can be approached in this loop-driven manner. Clearly, it will
only work when the algorithm structure has most, if not all, of the computationally
intensive work buried in a manageable number of distinct loops. Furthermore, the
body of the loop must result in loop iterations that work well as parallel tasks
(that is, they are computationally intensive, express sufficient concurrency, and are
mostly independent).

Not all target computer systems align well with this style of parallel pro-
gramming. If the code cannot be restructured to create effective distributed data
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structures, some level of support for a shared address space is essential in all but
the most trivial cases. Finally, Amdahl’s law and its requirement to minimize a
program’s serial fraction often means that loop-based approaches are only effective
for systems with smaller numbers of PEs.

Even with these restrictions, this class of parallel algorithms is growing rapidly.
Because loop-based algorithms are the traditional approach in high-performance
computing and are still dominant in new programs, there is a large backlog of loop-
based programs that need to be ported to modern parallel computers. The OpenMP
API was created primarily to support parallelization of these loop-driven problems.
Limitations on the scalability of these algorithms are serious, but acceptable, given
that there are orders of magnitude more machines with two or four processors than
machines with dozens or hundreds of processors.

This pattern is particularly relevant for OpenMP programs running on
shared-memory computers and for problems using the Task Parallelism
and Geometric Decomposition patterns.

Forces

¢ Sequential equivalence. A program that yields identical results (except
for round-off errors) when executed with one thread or many threads is said
to be sequentially equivalent (also known as serially equivalent). Sequentially
equivalent code is easier to write, easier to maintain, and lets a single program
source code work for serial and parallel machines.

Incremental parallelism (or refactoring). When parallelizing an existing
program, it is much easier to end up with a correct parallel program if (1) the
parallelization is introduced as a sequence of incremental transformations,
one loop at a time, and (2) the transformations don’t “break” the program,
allowing testing to be carried out after each transformation.

e Memory utilization. Good performance requires that the data access pat-
terns implied by the loops mesh well with the memory hierarchy of the system.
This can be at odds with the previous two forces, causing a programmer to
massively restructure loops.

Solution

This pattern is closely aligned with the style of parallel programming implied by
OpenMP. The basic approach consists of the following steps.

¢ Find the bottlenecks. Locate the most computationally intensive loops
either by inspection of the code, by understanding the performance needs
of each subproblem, or through the use of program performance analysis
tools. The amount of total runtime on representative data sets contained by
these loops will ultimately limit the scalability of the parallel program (see
Amdahl’s law).
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e Eliminate loop-carried dependencies. The loop iterations must be nearly
independent. Find dependencies between iterations or read /write accesses and
transform the code to remove or mitigate them. Finding and removing the
dependencies is discussed in the Task Parallelism pattern, while protecting
dependencies with synchronization constructs is discussed in the Shared Data
pattern.

e Parallelize the loops. Split up the iterations among the UEs. To maintain
sequential equivalence, use semantically neutral directives such as those pro-
vided with OpenMP (as described in the OpenMP appendix, Appendix A).
Ideally, this should be done to one loop at a time with testing and careful
inspection carried out at each point to make sure race conditions or other
errors have not been introduced.

e Optimize the loop schedule. The iterations must be scheduled for execu-
tion by the UEs so the load is evenly balanced. Although the right schedule
can often be chosen based on a clear understanding of the problem, frequently
it is necessary to experiment to find the optimal schedule.

This approach is only effective when the compute times for the loop iterations
are large enough to compensate for parallel loop overhead. The number of iterations
per loop is also important, because having many iterations per UE provides greater
scheduling flexibility. In some cases, it might be necessary to transform the code to
address these issues.

Two transformations commonly used are the following:

e Merge loops. If a problem consists of a sequence of loops that have consistent
loop limits, the loops can often be merged into a single loop with more complex
loop iterations, as shown in Fig. 5.21.

e Coalesce nested loops. Nested loops can often be combined into a single
loop with a larger combined iteration count, as shown in Fig. 5.22. The larger
number of iterations can help overcome parallel loop overhead, by (1) creating
more concurrency to better utilize larger numbers of UEs, and (2) providing
additional options for how the iterations are scheduled onto UEs.

Parallelizing the loops is easily done with OpenMP by using the omp parallel
for directive. This directive tells the compiler to create a team of threads (the UEs
in a shared-memory environment) and to split up loop iterations among the team.
The last loop in Fig. 5.22 is an example of a loop parallelized with OpenMP. We
describe this directive at a high level in the Implementation Mechanisms design
space. Syntactic details are included in the OpenMP appendix, Appendix A.

Notice that in Fig. 5.22 we had to direct the system to create copies of the
indices i and j local to each thread. The single most common error in using this
pattern is to neglect to “privatize” key variables. If 1 and j are shared, then updates
of i and j by different UEs can collide and lead to unpredictable results (that is, the
program will contain a race condition). Compilers usually will not detect these er-
rors, so programmers must take great care to make sure they avoid these situations.
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#define N 20
#define Npoints 512

void FFT(); // a function to apply an FFT

void invFFT(); // a function to apply an inverse FFT
void filter(); // a frequency space filter

void setH(); // Set wvalues of filter, H

int main() {
int i, j;
double A[Npoints], B[Npoints], C[Npoints], H[Npeints];

setH(Npoints, H);
// do a bunch of work resulting tn values for 4 and C

// method one: distinct loops to compute 4 and C
for(i=0; i<N; i++){
FFT (Npoints, A, B)}; // B = transformed 4
filter(Npoints, B, H); // B = B filtered with H
invFFT(Npoints, B, A); // 4 = inv transformed B
}
for(i=0; i<N; i++){
FFT (Npoints, C, B); // B = transformed C
filter(Npoints, B, H); // B = B filtered with H
invFFT(Npoints, B, C); // C = inv transformed B
}

// method two: the above pair of loops combined into

// a single loop

for(i=0; i<N; i++){
FFT (Npoints, A, B); // B = transformed A
filter(Npoints, B, H); // B = B filtered with H
invFFT(Npoints, B, A); // 4 = inv transformed B
FFT (Npoints, C, B); // B = transformed C
filter(Npoints, B, H); // B = B filtered with H
invFFT(Npoints, B, C); // C = inv transformed B

T

return 0;

Figure 5.21: Program fragment showing merging loops to increase the amount of work
per iteration

The key to the application of this pattern is to use semantically neutral mod-
ifications to produce sequentially equivalent code. A semantically neutral modi-
fication doesn’t change the meaning of the single-threaded program. Techniques
for loop merging and coalescing of nested loops described previously, when used
appropriately, are examples of semantically neutral modifications. In addition, most
of the directives in OpenMP are semantically neutral. This means that adding the
directive and running it with a single thread will give the same result as running
the original program without the OpenMP directive.

Two programs that are semantically equivalent (when run with a single thread)
need not both be sequentially equivalent. Recall that sequentially equivalent means
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#define N 20
#define M 10

extern double work(); // a time-consuming function
int main() {

int 4, j, ij;
double A[N][M];

// method one: nested loops

for(j=0; j<N; j++){
for(i=0; i<M; i++){
A[11[3] = work(i,j);

}

// method two: the above pair of nested loops combined into
// a single loop.

for(ij=0; ij<NsM; ij++){
J = 13/N;
i=4jiM;

ATi1[3] = work(di,j);

// method three: the above loop parallelized with OpenMP.

// The omp pragma creates a team of threads and maps

// loop iterations onto them. The private clause

// tells each thread to maintain local copies of ij, 7, and 1.

#pragma omp parallel for private(ij, j, i)
for(ij=0; ij<N+M; ij++){
Jo=4ij/m;
i=ij%M;

A[i1[§] = work(i,j);

return 0;

¥

Figure 5.22: Program fragment showing coalescing nested loops to produce a single loop with a
larger number of iterations

that the program will give the same result (subject to round-off errors due to chang-
ing the order of floating-point operations) whether run with one thread or many.
Indeed, the (semantically neutral) transformations that eliminate loop-carried
dependencies are motivated by the desire to change a program that is not se-
quentially equivalent to one that is. When transformations are made to improve
performance, even though the transformations are semantically neutral, one must
be careful that sequential equivalence has not been lost.

It is much more difficult to define sequentially equivalent programs when
the code mentions either a thread ID or the number of threads. Algorithms that
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reference thread IDs and the number of threads tend to favor particular threads or
even particular numbers of threads, a situation that is dangerous when the goal is
a sequentially equivalent program.

When an algorithm depends on the thread ID, the programmer is using the
SPMD pattern. This may be confusing. SPMD programs can be loop-based. In
fact, many of the examples in the SPMD pattern are indeed loop-based algorithms.
But they are not instances of the Loop Parallelism pattern, because they display
the hallmark trait of an SPMD program—namely, they use the UE ID to guide the
algorithm.

Finally, we've assumed that a directive-based system such as OpenMP is avail-
able when using this pattern. It is possible, but clearly more difficult, to apply this
pattern without such a directive-based programming environment. For example, in
object-oriented designs, one can use the Loop Parallelism pattern by making clever
use of anonymous classes with parallel iterators. Because the parallelism is buried
in the iterators, the conditions of sequential equivalence can be met.

Performance considerations. In almost every application of this pattern,
especially when used with OpenMP, the assumption is made that the program
will execute on a computer that has multiple PEs sharing a single address space.
This address space is assumed to provide equal-time access to every element of
memory.

Unfortunately, this is usually not the case. Memories on modern computers are
hierarchical. There are caches on the PEs, memory modules packaged with subsets
of PEs, and other complications. While great effort is made in designing shared-
memory multiprocessor computers to make them act like symmetric multiprocessor
(SMP) computers, the fact is that all shared-memory computers display some de-
gree of nonuniformity in memory access times across the system. In many cases,
these effects are of secondary concern, and we can ignore how a program’s mem-
ory access patterns match up with the target system’s memory hierarchy. In other
cases, particularly on larger shared-memory machines, programs must be explicitly
organized according to the needs of the memory hierarchy. The most common trick
is to make sure the data access patterns during initialization of key data struc-
tures match those during later computation using these data structures. This is
discussed in more detail in [Mat03, NAO1] and later in this pattern as part of the
mesh computation example.

Another performance problem is false sharing. This occurs when variables are
not shared between UEs, but happen to reside on the same cache line. Hence, even
though the program semantics implies independence, each access by each UE re-
quires movement of a cache line between UEs. This can create huge overheads as
cache lines are repeatedly invalidated and moved between UEs as these supposedly
independent variables are updated. An example of a program fragment that would
incur high levels of false sharing is shown in Fig. 5.23. In this code, we have a pair
of nested loops. The outermost loop has a small iteration count that will map onto
the number of UEs (which we assume is four in this case). The innermost loop
runs over a large number of time-consuming iterations. Assuming the iterations
of the innermost loop are roughly equal, this loop should parallelize effectively.
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#include <omp.h>
#define N 4 // Assume this equals the number of UEs
#define M 1000

extern double work(int, int); // a time-consuming function
int main() {

int i, j;
double A[N] = {0.0}; // Initialize the array to zero

// method one: a loop with false sharing from A since the elements
/7 of A are likely to reside in the same cache line.

#pragma omp parallel for private(j,i)
for(j=0; j<N; j++){
for(i=0; i<M; i++}{
A[j] += work(i,j);
}
1

/7 method twoe: remove the false sharing by using a temporery
// private variable in the innermost loop

double temp;
#pragma omp parallel for privata(j.i, temp)
for(j=0; j<N; j++){
temp = 0.0;
for(i=0; i<M; i++){
temp += work(i,j);
}
A[j] += temp;

return 0;

Figure 5.23: Program fragment showing an example of false sharing. The small array 4 is held
in one or two cache lines. As the UEs access A inside the innermost loop, they will need to take
ownership of the cache line back from the other UEs. This back-and-forth movement of the cache
lines destroys performance. The solution is to use a temporary variable inside the innermost loop.

But the updates to the elements of the A array inside the innermost loop mean
each update requires the UE in question to own the indicated cache line. Although
the elements of A are truly independent between UEs, they likely sit in the same
cache line. Hence, every iteration in the innermost loop incurs an expensive cache
line invalidate-and-movement operation. It is not uncommon for this to not only
destroy all parallel speedup, but to even cause the parallel program to become slower
as more PEs are added. The solution is to create a temporary variable on each
thread to accumulate values in the innermost loop. False sharing is still a factor,
but only for the much smaller outermost loop where the performance impact is
negligible.
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Examples

As examples of this pattern in action, we will briefly consider the following:

o Numerical integration to estimate the value of a definite integral using the
trapezoid rule

e Molecular dynamics, nonbonded energy computation

Mandelbrot set computation

Mesh computation

Each of these examples has been described elsewhere in detail. We will restrict
our discussion in this pattern to the key loops and how they can be parallelized.

Numerical integration. Consider the problem of estimating the value of 7
using Eq. 5.5.

g

We use trapezoidal integration to numerically solve the integral. The idea is to
fill the area under a curve with a series of rectangles. As the width of the rectangles
approaches 0, the sum of the areas of the rectangles approaches the value of the
integral.

A program to carry out this calculation on a single processor is shown in
Fig. 5.24. To keep the program as simple as possible, we fix the number of steps to

#include <stdie.h>
#include <math.h>

int main () {
int i;
int num_steps = 1000000;
double x, pi, step, sum = 0.0;

step = 1.0/(double) num_steps;
for (i=0;i< num_steps; i++)

x = (i+0.5)*step;

sum = sum + 4.0/(1.0+x*x);
}
pi = step * sum;
printf("pi %1lf\n",pi);
return 0;

Figure 5.24: Sequential program to carry out a trapezoid rule integration to compute J,-01 ﬁ, dx
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use in the integration at 1,000,000. The variable sum is initialized to 0 and the step
size is computed as the range in x (equal to 1.0 in this case) divided by the number
of steps. The area of each rectangle is the width (the step size) times the height
(the value of the integrand at the center of the interval). The width is a constant,
so we pull it out of the summation and multiply the sum of the rectangle heights
by the step size, step, to get our estimate of the definite integral.

Creating a parallel version of this program using the Loop Parallelism pattern
is simple. There is only one loop, so the inspection phase is trivial. To make the
loop iterations independent, we recognize that (1) the values of the variable x are
local to each iteration, so this variable can be handled as a thread-local or private
variable and (2) the updates to sum define a reduction. Reductions are supported
by the OpenMP APIL Other than adding #include <omp.h>?, only one additional
line of code is needed to create a parallel version of the program. The following is
placed above the for loop:

#pragma omp parallel for private(x) reduction(+:sum)

The pragma tells an OpenMP compiler to (1) create a team of threads, (2) cre-
ate a private copy of x and sum for each thread, (3) initialize sum to 0 (the identity
operand for addition), (4) map loop iterations onto threads in the team, (5) com-
bine local values of sum into a single global value, and (6) join the parallel threads
with the single master thread. Each of these steps is described in detail in the Im-
plementation Mechanisms design space and the OpenMP appendix, Appendix A.
For a non-OpenMP compiler, this pragma is ignored and therefore has no effect on
the program’s behavior.

Molecular dynamics. Throughout this book, we have used molecular dynam-
ics as a recurring example. Molecular dynamiecs simulates the motions of a large
molecular system. It uses an explicit time-stepping methodology where at each time
step the force on each atom is computed and standard techniques from classical me-
chanics are used to compute how the forces change atomic motions.

The core algorithm, including pseudocode, was presented in Sec. 3.1.3 and in
the SPMD pattern. The problem comes down to a collection of computationally
expensive loops over the atoms within the molecular system. These are embedded
in a top-level loop over time.

The loop over time cannot be parallelized because the coordinates and veloci-
ties from time step £ — 1 are the starting point for time step t. The individual loops
over atoms, however, can be parallelized. The most important case to address is the
nonbonded energy calculation. The code for this computation is shown in Fig. 5.25.
Unlike the approach used in the examples from the SPMD pattern, we assume that
the program and its data structures are unchanged from the serial case.

2The OpenMP include file defines function prototypes and opaque data types used by OpenMP.

5.6  The Loop Parallelism Pattern 161

function non_bonded_forces (N, Atoms, neighbors, Forces)
Int N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff volume
Real :: forceX, forceY, forceZ

loop [i] over atoms

loop [j] over neighbors(i)
forceX = non_bond_force(atoms(1,i), atoms(1,j))
forceY = non_bond_force(atoms(2,i), atoms(2,j))
forceZ = non_bond_force(atoms(3,i), atoms(3,j))
force{l,i) += forceX; force{l,j) -= forceX;
force(2,i) += forceY; force{2,j) -= forceY;
force{3,i) += forceZ; force{3,j) -= forceZ;

end loop [jl

end loop [i]
end function non_bonded_forces

Figure 5.25: Pseudocode for the nonbonded computation in a typical parallel molecular dyn‘amic_s
code. This is code is almost identical to the sequential version of the function shown previously
in Fig. 4.4.

We will parallelize the loop [i] over atoms. Notice that the variables
forceX, forceY, and forceZ are temporary variables used inside an iteration. We
will need to create local copies of these private to each UE. The updates to the
force arrays are reductions. Parallelization of this function would therefore require
adding a single directive before the loop over atoms:

#pragma omp parallel for private(j, forceX, forceY, forceZ) \
reduction (+ : force)

The work associated with each atom varies unpredictably depending on how
many atoms are in “its neighborhood”. Although the compiler might be able to
guess an effective schedule, in cases such as this one, it is usually best to try different
schedules to find the one that works best. The work per atom is unpredictable,
so one of the dynamic schedules available with OpenMP (and described in the
OpenMP appendix, Appendix A) should be used. This requires the addition of a
single schedule clause. Doing so gives us our final pragma for parallelizing this
program:

#pragma omp parallel for private(j, forceX, force¥, forceZ) \
reduction (+ : force) schedule (dynamic,10)
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This schedule tells the compiler to group the loop iterations into blocks of size
10 and assign them dynamically to the UEs. The size of the blocks is arbitrary and
chosen to balance dynamic scheduling overhead versus how effectively the load can
be balanced.

OpenMP 2.0 for C/C++ does not support reductions over arrays so the
reduction would need to be done explicitly. This is straightforward and is shown
in Fig. 5.11. A future release of OpenMP will correct this deficiency and support
reductions over arrays for all languages that support OpenMP.

The same method used to parallelize the nonbonded force computation could
be used throughout the molecular dynamics program. The performance and
scalability will lag the analogous SPMD version of the program. The problem is
that each time a parallel directive is encountered, a new team of threads is in
principle created. Most OpenMP implementations use a thread pool, rather than
actually creating a new team of threads for each parallel region, which minimizes
thread creation and destruction overhead. However, this method of parallelizing
the computation still adds significant overhead. Also, the reuse of data from caches
tends to be poor for these approaches. In principle, each loop can access a differ-
ent pattern of atoms on each UE. This eliminates the capability for UEs to make
effective use of values already in cache.

Even with these shortcomings, however, these approaches are commonly used
when the goal is extra parallelism on a small shared-memory system [BBET99]. For
example, one might use an SPMD version of the molecular dynamics program across
a cluster and then use OpenMP to gain extra performance from dual processors or
from microprocessors utilizing simultaneous multithreading [MPS02].

Mandelbrot set computation. Consider the well-known Mandelbrot set
[Dou86]. We discuss this problem and its parallelization as a task-parallel prob-
lem in the Task Parallelism and SPMD patterns. Each pixel is colored based on
the behavior of the quadratic recurrence relation in Eq. 5.6.

Znpn=22+C (5.6)

C and Z are complex numbers and the recurrence is started with Zy = C. The image
plots the imaginary part of C' on the vertical axis (—1.5 to 1.5) and the real part
on the horizontal axis (—1 to 2). The color of each pixel is black if the recurrence
relation converges to a stable value or is colored depending on how rapidly the
relation diverges.

Pseudocode for the sequential version of this code is shown in Fig. 5.26. The
interesting part of the problem is hidden inside the routine compute_Row(). The
details of this routine are not important for understanding the parallel algorithm,
however, so we will not show them here. At a high level, the following happens for
each point in the row.

e Each pixel corresponds to a value of C in the quadratic recurrence. We com-
pute this value based on the input range and the pixel indices.
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Int const Nrows // number of rows in the image

Int const RowSize // number of pizels in a Tow

Int const M // number of colors in color map

Real :: conv // divergence rate for & pizel

Array of Int :: color_map (M) // pizel color based on conv rate
Array of Int :: row (RowSize) // Pizels to draw

Array of Real :: ranges(2) // ranges in X and Y dimensions

manage_user_input{ranges, color_map) // input ranges, color map
initialize_graphics(RowSize, Nrows, M, ranges, color_map)

for (int i = 0; i<Nrows; i++)}{
compute_Row (RowSize, ranges, row)
graph(i, RowSize, M, color_map, ranges, row)

} // end loop [i] over rous

Figure 5.26: Pseudocode for a sequential version of the Mandelbrot set generation program

e We then compute the terms in the recurrence and set the value of the pixel
based on whether it converges to a fixed value or diverges. If it diverges, we
set the pixel value based on the rate of divergence.

Once computed, the rows are plotted to make the well-known Mandelbrot set
images. The colors used for the pixels are determined by mapping divergence rates
onto a color map.

Creating a parallel version of this program using the Loop Parallelism pattern
is trivial. The iterations of the loop over rows are independent. All we need to do
is make sure each thread has its own row to work on. We do this with the single
pragma:

#pragma omp parallel for private(row)

The scheduling can be a bit tricky because work associated with each row
will vary considerably depending on how many points diverge. The programmer
should try several different schedules, but a cyclic distribution is likely to provide
an effective load balance. In this schedule. the loop iterations are dealt out like a
deck of cards. By interleaving the iterations among a set of threads, we are likely
to get a balanced load. Because the scheduling decisions are static, the overhead
incurred by this approach is small.

#pragma omp parallel for private(Row) schedule(static, 1)
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For more information about the schedule clause and the different options
available to the parallel programmer, see the OpenMP appendix, Appendix A.

Notice that we have assumed that the graphics package is thread-safe. This
means that multiple threads can simultaneously call the library without causing any
problems. The OpenMP specifications require this for the standard I /O library, but
not for any other libraries. Therefore, it may be necessary to protect the call to the
graph function by placing it inside a critical section:

#pragma critical
graph(i, RowSize, M, color_map, ranges, row)

We describe this construct in detail in the Implementation Mechanisms design
space and in the OpenMP appendix, Appendix A. This approach would work well,
but it could have serious performance implications if the rows took the same time
to compute and the threads all tried to graph their rows at the same time.

Mesh computation.  Consider a simple mesh computation that solves the 1D
heat-diffusion equation. The details of this problem and its solution using OpenMP
are presented in the Geometric Decomposition pattern. We reproduce this solution
in Fig. 5.27.

This program would work well on most shared-memory computers. A care-
ful analysis of the program performance, however, would expose two performance
problems. First, the single directive required to protect the swapping of the shared
pointers adds an extra barrier, thereby greatly increasing the synchronization over-
head. Second, on NUMA computers, memory access overhead is likely to be high
because we've made no effort to keep the arrays near the PEs that will be manip-
ulating them.

We address both of these problems in Fig. 5.28. To eliminate the need for
the single directive, we modify the program so each thread has its own copy of
the pointers uk and ukpi. This can be done with a private clause, but to be
useful, we need the new, private copies of uk and ukpl to point to the shared arrays
comprising the mesh of values. We do this with the £ irstprivate clause applied
to the parallel directive that creates the team of threads.

The other performance issue we address, minimizing memory access overhead,
is more subtle. As discussed earlier, to reduce memory traffic in the system, it is
important to keep the data close to the PEs that will work with the data. On NUMA
computers, this corresponds to making sure the pages of memory are allocated and
“owned” by the PEs that will be working with the data contained in the page. The
most common NUMA page-placement algorithm is the “first touch” algorithm, in
which the PE first referencing a region of memory will have the page holding that
memory assigned to it. So a very common technique in OpenMP programs is to
initialize data in parallel using the same loop schedule as will be used later in the
computations.
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#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#define NX 100
#define LEFTVAL 1.0
#define RIGHTVAL 10.0
#define NSTEPS 10000

void initialize(double uk[], double ukpi[]) {
uk([0] = LEFTVAL; uk[NX-1] = RIGHTVAL;
for (int i = 1; i < NX-1; ++i)

uk[i] = 0.0;
for (int i = 0; i < NX; ++i)
ukpl[i] = uk[i];

void printValues(double uk[], int step) { /» NOT SHOWN */ }

int main(void) {
/* pointers to arrays for two iterations of algorithm +/
double *uk = malloc(sizeof(double) * NX);
double *ukpl = malloc(sizeof(double) * NX);
double *temp;
int i,k;

double dx = 1.0/NX; double dt = 0.5*dx#dx;
#pragma omp parallel private (k, i)
{
initialize(uk, ukpl);

for (k = 0; k < NSTEPS; ++k) {
#pragma omp for schedule(static)
for (1 = 1; i < NX-1; ++i) {
ukpl[i]=uk[il+ (dt/(dx*dx))*(uk([i+1]-2%uk[i]+uk[i-1]);

/* "copy" ukpl to uk by swapping pointers +/
#pragma omp single
{temp = ukpl; ukpl = uk; uk = temp;}
¥
}

return 0;

Figure 5.27: Parallel heat-diffusion program using OpenMP. This program is described in the
Examples section of the Geometric Decomposition pattern.

We do this by first changing the initialization slightly so the initialization
loop is identical to the computation loop. We then use the same loop paralleliza-
tion directive on the initialization loop as on the computational loop. This doesn’t
guarantee an optimal mapping of memory pages onto the PEs, but it is a portable
way to improve this mapping and in many cases come quite close to an optimal
solution.
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#include <stdio.h>
#include <stdlib.h>
#include <omp.h>
#define NX 100
#define LEFTVAL 1.0
#define RIGHTVAL 10.0
#define NSTEPS 10000

void initialize(double uk[], double ukpi[l) {
int i;
uk[0] = LEFTVAL; uk[NX-1] = RIGHTVAL;
ukpl [NX-1] = 0.0;
#pragma omp for schedule(static)
for (i = 1; i < NX-1; ++i){
uk[i] = 0.0;
ukpi[i] = 0.0;
}
}

void printValues(double uk[], int step) { /* NOT SHOWN +/ }

int main(veid) {
/* pointers to arrays for two iterations of algorithm =/
double *uk = malloc(sizeof (double) * NX);
double *ukpl = malloc(sizeof(double) * NX);
double *temp;
int i,k;

double dx = 1.0/NX; double dt = 0.S5*dx*dx;
#pragma omp parallel private (k, i, temp) firstprivate(uk, ukpl)
{
initialize(uk, ukpl);

for (k = 0; k < NSTEPS; ++k) {
#pragma omp for schedule(static)
for (i = 1; i < NX-1; ++i) {
ukpl[i]=uk[i]+ (dt/(dx*dx)})#*(uk[i+1]-2*uk[i]+uk[i-1]);

/* "copy" ukpl to uk by swapping pointers */
temp = ukpl; ukpl = uk; uk = temp;
}
}

return 0;

Figure 5.28: Parallel heat-diffusion program using OpenMP, with reduced thread management
overhead and memory management more appropriate for NUMA computers

Known uses. The Loop Parallelism pattern is heavily used by OpenMP pro-
grammers. Annual workshops are held in North America (Wompat: Workshop
on OpenMP Applications and Tools), Europe (EWOMP: European Workshop on
OpenMP), and Japan (WOMPEIL Workshop on OpenMP Experiences and Im-
plementations) to discuss OpenMP and its use. Proceedings from many of these
workshops are widely available [VJKTO00, Sci03, EV01] and are full of examples of
the Loop Parallelism pattern.
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Most of the work on OpenMP has been restricted to shared-memory multi-
processor machines for problems that work well with a nearly flat memory hier-
archy. Work has been done to extend OpenMP applications to more complicated
memory hierarchies, including NUMA machines [NAO1, SSGF00] and even clus-
ters [HLCZ99, SHTS01].

Related Patterns

The concept of driving parallelism from a collection of loops is general and used
with many patterns. In particular, many problems using the SPMD pattern are
loop-based. They use the UE ID, however, to drive the parallelization of the loop
and hence don’t perfectly map onto this pattern. Furthermore, problems using the
SPMD pattern usually include some degree of parallel logic in between the loops.
This allows them to decrease their serial fraction and is one of the reasons why
SPMD programs tend to scale better than programs using the Loop Parallelism
pattern.

Algorithms targeted for shared-memory computers that use the Task Paral-
lelism or Geometric Decomposition patterns frequently use the Loop Parallelism
pattern.

5.7 THE FORK/JOIN PATTERN

Problem

In some programs, the number of concurrent tasks varies as the program executes,
and the way these tasks are related prevents the use of simple control structures
such as parallel loops. How can a parallel program be constructed around such
complicated sets of dynamic tasks?

Context

In some problems, the algorithm imposes a general and dynamic parallel control
structure. Tasks are created dynamically (that is, forked) and later terminated
(that is, joined with the forking task) as the program continues to execute. In most
cases, the relationships between tasks are simple, and dynamic task creation can
be handled with parallel loops (as described in the Loop Parallelism pattern) or
through task queues (as described in the Master/Worker pattern). In other cases,
relationships between the tasks within the algorithm must be captured in the way
the tasks are managed. Examples include recursively generated task structures,
highly irregular sets of connected tasks, and problems where different functions are
mapped onto different concurrent tasks. In each of these examples, tasks are forked
and later joined with the parent task (that is, the task that executed the fork)
and the other tasks created by the same fork. These problems are addressed in the
Fork/Join pattern.

As an example, consider an algorithm designed using the Divide and Conguer
pattern. As the program execution proceeds, the problem is split into subproblems
and new tasks are recursively created (or forked) to concurrently execute subprob-
lems; each of these tasks may in turn be further split. When all the tasks created
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to handle a particular split have terminated and joined with the parent task, the
parent task continues the computation.

This pattern is particularly relevant for Java programs running on shared-
memory computers and for problems using the Divide and Conquer and
Recursive Data patterns. OpenMP can be used effectively with this pat-
tern when the OpenMP environment supports nested parallel regions.

Forces

e Algorithms imply relationships between tasks. In some problems, there are
complex or recursive relations between tasks, and these relations need to be
created and terminated dynamically. Although these can be mapped onto
familiar control structures, the design in many cases is much easier to under-
stand if the structure of the tasks is mimicked by the structure of the UEs.

e A one-to-one mapping of tasks onto UEs is natural in these algorithms, but
that must be balanced against the number of UEs a system can handle.

o UE creation and destruction are costly operations. The algorithm might need
to be recast to decrease these operations so they don't adversely affect the
program'’s overall performance.

Solution

In problems that use the Fork/Join pattern, tasks map onto UEs in different ways.
We will discuss two different approaches to the solution: (1) a simple direet mapping
where there is one task per UE, and (2) an indirect mapping where a pool of UEs
work on sets of tasks.

Direct task/UE mapping. The simplest case is one where we map each sub-
task to a UE. As new subtasks are forked, new UEs are created to handle them.
This will build up corresponding sets of tasks and UEs. In many cases, there is a
synchronization point where the main task waits for its subtasks to finish. This is
called a join. After a subtask terminates, the UE handling it will be destroyed. We
will provide an example of this approach later using Java.

The direct task/UE mapping solution to the Fork/Join pattern is the stan-
dard programming model in OpenMP. A program begins as a single thread (the
master thread). A parallel construct forks a team of threads, the threads execute
within a shared address space, and at the end of the parallel construct, the threads
join back together. The original master thread then continues execution until the
end of the program or until the next parallel construct.® This structure underlies

3In principle, nested parallel regions in OpenMP programs also map onto this direct-mapping
solution. This approach has been successfully used in [AML*99]. The OpenMP specification,
however, lets conforming OpenMP implementations “serialize” nested parallel regions (that is,
execute them with a team of size one). Therefore, an OpenMP program cannot depend on nested
parallel regions actually forking additional threads, and programmers must be cautious when using
OpenMP for all but the simplest fork/join programs.
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the implementation of the OpenMP parallel loop constructs described in the Loop
Parallelism pattern.

Indirect task/UE mapping. Thread and process creation and destruction is
one of the more expensive operations that occur in parallel programs. Thus, if a
program contains repeated fork and join sections, the simple solution, which would
require repeated destruction and creation of UEs, might not be efficient enough.
Also, if at some point there are many more UEs than PEs, the program might incur
unacceptable overhead due to the costs of context switches.

In this case, it is desirable to avoid the dynamic UE creation by implementing
the fork/join paradigm using a thread pool. The idea is to create a (relatively)
static set of UEs before the first fork operation. The number of UEs is usually
the same as the number of PEs. The mapping of tasks to UEs then occurs dy-
namically using a task queue. The UEs themselves are not repeatedly created and
destroyed, but simply mapped to dynamically created tasks as the need arises. This
approach, although complicated to implement, usually results in efficient programs
with good load balance. We will discuss a Java program that uses this approach in
the Examples section of this pattern.

In OpenMP, there is some controversy over the best approach to use with this
indirect-mapping approach [Mat03]. An approach gaining credibility is one based
on a new, proposed OpenMP workshare construct called a taskqueue [SHPTOO].
The proposal actually defines two new constructs: a taskqueue and a task. As the
name implies, the programmer uses a taskqueue construct to create the task queue.
Inside the taskqueue construct, a task construct defines a block of code that will
be packaged into a task and placed on the task queue. The team of threads (as
usually created with a parallel construct), playing the role of a thread pool, pulls
tasks off the quene and executes them until the queue is empty.

Unlike OpenMP parallel regions, taskqueues can be dependably nested to
produce a hierarchy of task queues. The threads work across task queues using
work-stealing to keep all threads fully occupied until all of the queues are empty.
This approach has been shown to work well [SHPTO00] and is likely to be adopted
in a future OpenMP specification.

Examples

As examples of this pattern, we will consider direct-mapping and indirect-mapping
implementations of a parallel mergesort algorithm. The indirect-mapping solution
makes use of a Java package FJTasks [Lea00b]. The Examples section of the Shared
Queue pattern develops a similar, but simpler, framework.

Mergesort using direct mapping. As an example, consider the straightforward
implementation of a method to performs a mergesort in Java shown in Fig. 5.29.
The method takes a reference to the array to be sorted and sorts the elements with
indices ranging from lo (inclusive) to hi (exclusive). Sorting the entire array A is
done by invoking sort(4,0,A.length).
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static void sort(final int[] A,final int lo, final int hi)
{ int n = hi - 1lo;

//if not large enough to do in parallel, sort sequentially
if (n <= THRESHOLD){ Arrays.sort(A,lo,hi); returm; }
else
{ //split array
final int pivot = (hi+lo)/2;

//create and start new thread to sort lower half
Thread t = new Thread()
{ public void run()
{ sort(A, lo, pivot); }
i H
t.start();

//sort upper half in current thread
sort(A,pivot,hi);

//wait for other thread
try{t.join(;}
catch (InterruptedException e){Thread.dumpStack();}

//merge sorted arrays
int[] ws = new int[n];
System.arraycopy(A,lo,ws,0,n);
int wpivet = pivot - lo;
int wlo = 0;
int whi = wpivot;
for (int i = lo; i != hi; i++)
{ if((wlo < wpivot) &k (whi >= n || ws[wle] <= ws[whil))
{ A[1) = ws[wlo++]; }
else { A[i] = ws[whi++]; }
}
}
}

Figure 5.29: Parallel mergesort where each task corresponds to a thread

The first step of the method is to compute the size of the segment of the array
to be sorted. If the size of the problem is too small to make the overhead of sorting
it in parallel worthwhile, then a sequential sorting algorithm is used (in this case,
the tuned quicksort implementation provided by the Arrays class in the java.util
package). If the sequential algorithm is not used, then a pivot point is computed
to divide the segment to be sorted. A new thread is forked to sort the lower half
of the array, while the parent thread sorts the upper half. The new task is specified
by the run method of an anonymous inner subclass of the Thread class. When
the new thread has finished sorting, it terminates. When the parent thread finishes
sorting, it performs a join to wait for the child thread to terminate and then merges
the two sorted segments together.

This simple approach may be adequate in fairly regular problems where ap-
propriate threshold values can easily be determined. We stress that it is crucial that
the threshold value be chosen appropriately: If too small, the overhead from too
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int groupSize = 4; //number of threads
FJTaskRunnerGroup group = new FJTaskRunnerGroup(groupSize);
group.invoke(new FJTask()
{ public woid run()
{ synchronized(this)
{ sort(A,0, A.length); }

}
IO N

Figure 5.30: Instantiating FJTaskRunnerGroup and invoking the master task

many UEs can make the program run even slower than a sequential version. If too
large, potential concurrency remains unexploited.

Mergesort using indirect mapping. This example uses the FJTask frame-
work included as part of the public-domain package EDU.oswego.cs.dl.util.
concurrent [Lea00bl.? Instead of creating a new thread to execute each task, an
instance of a (subclass of) FJTask is created. The package then dynamically maps
the FJTask objects to a static set of threads for execution. Although less general
than a Thread, an FJTask is a much lighter-weight object than a thread and is thus
much cheaper to create and destroy. In Fig. 5.30 and Fig. 5.31, we show how to
modify the mergesort example to use FJTasks instead of Java threads. The needed
classes are imported from package EDU.oswego.cs.dl.util.concurrent. Before
starting any FJTasks, a FJTaskRunnerGroup must be instantiated, as shown in
Fig. 5.30. This creates the threads that will constitute the thread pool and takes
the number of threads (group size) as a parameter. Once instantiated, the master
task is invoked using the invoke method on the FJTaskRunnerGroup.

The sort routine itself is similar to the previous version except that the dy-
namically created tasks are implemented by the run method of an FJTask sub-
class instead of a Thread subclass. The fork and join methods of FJTask are
used to fork and join the task in place of the Thread start and join methods.
Although the underlying implementation is different, from the programmer’s view-
point, this indirect method is very similar to the direct implementation shown
previously.

A more sophisticated parallel implementation of mergesort is provided with
the FJTask examples in the util.concurrent distribution. The package also in-
cludes functionality not illustrated by this example.

Known uses. The documentation with the FJTask package includes several ap-
plications that use the Fork/Join pattern. The most interesting of these include
Jacobi iteration, a parallel divide-and-conquer matrix multiplication, a standard

4This package was the basis for the new facilities to support concurrency introduced via JSR166
in Java 2 1.5. Its author, Doug Lea, was a lead in the JSR effort. The FJTask framework is not
part of Java 2 1.5, but remains available in [Lea00b].
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static void sort(final int[] A,final int leo, final int hi) {
int n = hi - lo;
if (n <= THRESHOLD){ Arrays.sort(A,lo,hi); return; }
alse {
//split array
final int pivot = (hi+lo)/2;

//override run method in FJTask to ezecute run method
FJTask t = new FJTask()
{ public veid run()
{ sort(A, lo, pivet); }
H

A/fork new task to sort lower half of array
t.fork();

//perform sort on upper half in current task
sort(A,pivet,hi);

//join with forked task
t.join();

//merge sorted arrays as before, code omitted

Figure 5.31: Mergesort using the FlTask framework

parallel-processing benchmark program that simulates heat diffusion across a mesh,
LU matrix decomposition, integral computation using recursive Gaussian Quadra-
ture, and an adaptation of the Microscope game.®

Because OpenMP is based on a fork/join programming model, one might
expect heavy use of the Fork/Join pattern by OpenMP programmers. The reality
is, however, that most OpenMP programmers use either the Loop Parallelism or
SPMD patterns because the current OpenMP standard provides poor support for
true nesting of parallel regions. One of the few published accounts of using the
Fork/Join pattern with standard OpenMP is a paper where nested parallelism
was used to provide fine-grained parallelism in an implementation of LAPACK
[ARv03].

Extending OpenMP so it can use the Fork/Join pattern in substantial appli-
cations is an active area of research. We've mentioned one of these lines of investi-
gation for the case of the indirect-mapping solution of the Fork/Join pattern (the
task queue [SHPTO00]). Another possibility is to support nested parallel regions with
explicit groups of threads for the direct-mapping solution of the Fork/Join pattern
(the Nanos OpenMP compiler [GAM*00]).

5According to the documentation for this application, this is the game that is played while
looking through the microscope in the laboratory in The 7Tth Guest (T7G; A CD-ROM game for
PCs). It is a board game in which two players compete to fill spaces on the board with their tiles,
something like Reversi or Othello.

b Tk
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Related Patterns

Algorithms that use the Divide and Conguer pattern use the Fork/Join pattern.
The Loop Parallelism pattern, in which threads are forked just to handle a
single parallel loop, is an instance of the Fork/Join pattern.
The Master/Worker pattern, which in turn uses the Shared Queue pattern,
can be used to implement the indirect-mapping solution.

"% 5.8 THE SHARED DATA PATTERN

Problem

How does one explicitly manage shared data inside a set of concurrent tasks?

Context

Most of the Algorithm Structure patterns simplify the handling of shared data by
using techniques to “pull” the shared data “outside” the set of tasks. Examples
include replication plus reduction in the Task Parallelism pattern and alternat-
ing computation and communication in the Geometric Decomposition pattern. For
certain problems, however, these techniques do not apply, thereby requiring that
shared data be explicitly managed inside the set of concurrent tasks.

For example, consider the phylogeny problem from molecular biology, as de-
scribed in [YWCT96]. A phylogeny is a tree showing relationships between organ-
isms. The problem consists of generating large numbers of subtrees as potential
solutions and then rejecting those that fail to meet the various consistency cri-
teria. Different sets of subtrees can be examined concurrently, so a natural task
definition in a parallel phylogeny algorithm would be the processing required for
each set of subtrees. However, not all sets must be examined—if a set S is re-
jected, all supersets of S can also be rejected. Thus, it makes sense to keep track
of the sets still to be examined and the sets that have been rejected. Given that
the problem naturally decomposes into nearly independent tasks (one per set), the
solution to this problem would use the Task Parallelism pattern. Using the pattern
is complicated, however, by the fact that all tasks need both read and write access
to the data structure of rejected sets. Also, because this data structure changes
during the computation, we cannot use the replication technique described in the
Task Parallelism pattern. Partitioning the data structure and basing a solution
on this data decomposition, as described in the Geometric Decomposition pattern,
might seem like a good alternative, but the way in which the elements are re-
jected is unpredictable, so any data decomposition is likely to lead to a poor load
balance.

Similar difficulties can arise any time shared data must be explicitly managed
inside a set of concurrent tasks. The common elements for problems that need the
Shared Data pattern are (1) at least one data structure is accessed by multiple tasks
in the course of the program’s execution, (2) at least one task modifies the shared
data structure, and (3) the tasks potentially need to use the modified value during
the concurrent computation.
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Forces

e The results of the computation must be correct for any ordering of the tasks
that could occur during the computation.

e Explicitly managing shared data can incur parallel overhead, which must be
kept small if the program is to run efficiently.

e Techniques for managing shared data can limit the number of tasks that can
run concurrently, thereby reducing the potential scalability of an algorithm.

o If the constructs used to manage shared data are not easy to understand, the
program will be more difficult to maintain.

Solution

Explicitly managing shared data can be one of the more error-prone aspects of
designing a parallel algorithm. Therefore, a good approach is to start with a solution
that emphasizes simplicity and clarity of abstraction and then try more complex
solutions if necessary to obtain acceptable performance. The solution reflects this
approach.

Be sure this pattern is needed. The first step is to confirm that this pattern
is truly needed; it might be worthwhile to revisit decisions made earlier in the de-
sign process (the decomposition into tasks, for example) to see whether different
decisions might lead to a solution that fits one of the Algorithm Structure pat-
terns without the need to explicitly manage shared data. For example, if the Task
Parallelism pattern is a good fit, it is worthwhile to review the design and see if
dependencies can be managed by replication and reduction.

Define an abstract data type. Assuming this pattern must indeed be used,
start by viewing the shared data as an abstract data type (ADT) with a fixed
set of (possibly complex) operations on the data. For example, if the shared data
structure is a queue (see the Shared Queue pattern), these operations would consist
of put (enqueue), take (dequeue), and possibly other operations, such as a test for an
empty queue or a test to see if a specified element is present. Each task will typically
perform a sequence of these operations. These operations should have the property
that if they are executed serially (that is, one at a time, without interference from
other tasks), each operation will leave the data in a consistent state.

The implementation of the individual operations will most likely involve a
sequence of lower-level actions, the results of which should not be visible to other
UEs. For example, if we implemented the previously mentioned queue using a linked
list, a “take” operation actually involves a sequence of lower-level operations (which
may themselves consist of a sequence of even lower-level operations):

1. Use variable first to obtain a reference to the first object in the list.
2. From the first object, get a reference to the second object in the list.
3. Replace the value of first with the reference to the second object.
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4. Update the size of the list.
5. Return the first element.

If two tasks are executing “take” operations concurrently, and these lower-level
operations are interleaved (that is, the “take” operations are not being executed
atomically), the result could easily be an inconsistent list.

Implement an appropriate concurrency-control protocol. After the ADT
and its operations have been identified, the objective is to implement a COnCurrency-
control protocol fo ensure that these operations give the same results as if they were
executed serially. There are several ways to do this; start with the first technique,
which is the simplest, and then try the other more complex techniques if it does not
yield acceptable performance. These more complex techniques can be combined if
more than one is applicable.

One-at-a-time execution. The easiest solution is to ensure that the op-
erations are indeed executed serially.

In a shared-memory environment, the most straightforward way to do this is
to treat each operation as part of a single critical section and use a mutual-exclusion
protocol to ensure that only one UE at a time is executing its critical section. This
means that all of the operations on the data are mutually exclusive. Exactly how
this is implemented will depend on the facilities of the target programiming environ-
ment. Typical choices include mutex locks, synchronized blocks, critical sections.
and semaphores. These mechanisms are described in the Implementation Mecha-
nisms design space. If the programming language naturally supports the implemen-
tation of abstract data types, it is usually appropriate to implement each operation
as a procedure or method, with the mutual-exclusion protocol implemented in the
method itself.

In a message-passing environment, the most straightforward way to ensure
serial execution is to assign the shared data structure to a particular UE. Each
operation should correspond to a message type; other processes request operations
by sending messages to the UE managing the data structure, which processes them
serially.

In either environment, this approach is usually not difficult to implement,
but it can be overly conservative (that is, it might disallow concurrent execution of
operations that would be safe to execute simultaneously), and it can produce a bot-
tleneck that negatively affects the performance of the program. If this is the case, the
remaining approaches described in this section should be reviewed to see whether
one of them can reduce or eliminate this bottleneck and give better performance.

Noninterfering sets of operations. One approach to improving perfor-
mance begins by analyzing the interference between the operations. We say that
operation A interferes with operation B if A writes a variable that B reads. Notice
that an operation may interfere with itself, which would be a concern if more than
one task executes the same operation (for example, more than one task executes
“take” operations on a shared queune). It may be the case, for example, that the
operations fall into two disjoint sets, where the operations in different sets do not
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interfere with each other. In this case, the amount of concurrency can be increased
by treating each of the sets as a different critical section. That is, within each
set, operations execute one a time, but operations in different sets can proceed
concurrently.

Readers/writers. If there is no obvious way to partition the operations
into disjoint sets, consider the type of interference. It may be the case that some of
the operations modify the data, but others only read it. For example, if operation A
is a writer (both reading and writing the data) and operation B is a reader (reading,
but not writing, the data), A interferes with itself and with B, but B does not
interfere with itself. Thus, if one task is performing operation A, no other task
should be able to execute either A or B, but any number of tasks should be able
to execute B concurrently. In such cases, it may be worthwhile to implement a
readers,/ writers protocol that will allow this potential concurrency to be exploited.
The overhead of managing the readers/writers protocol is greater than that of
simple mutex locks, so the length of the readers’ computation should be long enough
to make this overhead worthwhile. In addition, there should generally be a larger
number of concurrent readers than writers.

The java.util.concurrent package provides read/write locks to support
the readers/writers protocol. The code in Fig. 5.32 illustrates how these locks

class X {
ReadWriteLock rw = new ReentrantReadWriteLock();

/o

Sroperation A is o writers/
public void A() throws InterruptedException {
rw.writeLock() .lock(}; //lock the write lock
try {
/7 ... do operation 4
}
finally {
rw.writelock() .unlock(); /funlock the write lock

¥

/*operation B 15 a readers/
public void B() throws InterruptedException {
rw.readLock() .lock(); //lock the read lock
try {
// ... do operation B
¥
finally {
ru.readLock() .unlock(); //unlock the read lock
}
1
}

Figure 5.32: Typical use of read/write locks. These locks are defined in the java.util.
concurrent.locks package. Putting the unlock in the finally block ensures that the lock will
be unlocked regardless of how the try block is exited (normally or with an exception) and is a
standard idiom in Java programs that use locks rather than synchronized blocks.
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are typically used: First instantiate a ReadWriteLock, and then obtain its read and
write locks. ReentrantReadWriteLock is a class that implements the
ReadWriteLock interface. To perform a read operation, the read lock must be
locked. To perform a write operation, the write lock must be locked. The semantics
of the locks are that any number of UEs can simultaneously hold the read lock, but
the write lock is exclusive; that is, only one UE can hold the write lock, and if the
write lock is held, no UEs can hold the read lock either.

Readers/writers protocols are discussed in [And00] and most operating sys-
tems texts.

Reducing the size of the critical section. Another approach to improv-
ing performance begins with analyzing the implementations of the operations in
more detail. It may be the case that only part of the operation involves actions
that interfere with other operations. If so, the size of the critical section can be
reduced to that smaller part. Notice that this sort of optimization is very easy to
get wrong, so it should be attempted only if it will give significant performance im-
provements over simpler approaches, and the programmer completely understands
the interferences in question.

Nested locks. This technique is a sort of hybrid between two of the previous
approaches, noninterfering operations and reducing the size of the critical section.
Suppose we have an ADT with two operations. Operation A does a lot of work
both reading and updating variable x and then reads and updates variable y in a
single statement. Operation B reads and writes y. Some analysis shows that UEs
executing A need to execlude each other, UEs executing B need to exclude each
other, and because both operations read and update y, technically, A and B need to
mutually exclude each other as well. However, closer inspection shows that the two
operations are almost noninterfering. If it weren’t for that single statement where A
reads and updates y, the two operations could be implemented in separate critical
sections that would allow one A and one B to execute concurrently. A solution is
to use two locks, as shown in Fig. 5.33. A acquires and holds lockA for the entire
operation. B acquires and holds lockB for the entire operation. A acquires lockB
and holds it only for the statement updating y.

Whenever nested locking is used, the programmer should be aware of the po-
tential for deadlocks and double-check the code. (The classic example of deadlock,
stated in terms of the previous example, is as follows: A acquires lockA and B ac-
quires lockB. A then tries to acquire lockB and B tries to acquire lockA. Neither
operation can now proceed.) Deadlocks can be avoided by assigning a partial or-
der to the locks and ensuring that locks are always acquired in an order that re-
spects the partial order. In the previous example, we would define the order to be
lockA < lockB and ensure that lockA is never acquired by a UE already holding
lockB.

Application-specific semantic relaxation. Yet another approach is to
consider partially replicating shared data (the software caching described
in [YWC*96]) and perhaps even allowing the copies to be inconsistent if this
can be done without affecting the results of the computation. For example, a
distributed-memory solution to the phylogeny problem described earlier might give
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class Y {
Dbject lockA = new Dbject();
Object lockB = new ODbject();

void AQ)
{ synchronized(lockA)

+++.COmpute. ...

synchronized(lockB)
{ ....read and update y....
}

}

}

void B() throws InterruptedException
{ synchronized(lockB)
{ ...compute....
}
}
is

Figure 5.33: Example of nested locking using synchronized blocks with dummy objects lockA
and lockB

each UE its own copy of the set of sets already rejected and allow these copies
to be out of synch; tasks may do extra work (in rejecting a set that has already
been rejected by a task assigned to a different UE), but this extra work will not
affect the result of the computation, and it may be more efficient overall than the
communication cost of keeping all copies in synch.

Review other considerations

Memory synchronization. Make sure memory is synchronized as required:
Caching and compiler optimizations can result in unexpected behavior with respect
to shared variables. For example, a stale value of a variable might be read from a
cache or register instead of the newest value written by another task, or the latest
value might not have been flushed to memory and thus would not be visible to other
tasks. In most cases, memory synchronization is performed implicitly by higher-level
synchronization primitives, but it is still necessary to be aware of the issue. Unfortu-
nately, memory synchronization techniques are very platform-specific. In OpenMP,
the flush directive can be used to synchronize memory explicitly; it is implicitly
invoked by several other directives. In Java, memory is implicitly synchronized
when entering and leaving a synchronized block, and, in Java 2 1.5, when locking
and unlocking locks. Also, variables marked volatile are implicitly synchronized

with respect to memory. This is discussed in more detail in the Implementation

Mechanisms design space.

Task scheduling. Consider whether the explicitly managed data dependen-
cies addressed by this pattern affect task scheduling. A key goal in deciding how to
schedule tasks is good load balance; in addition to the considerations described in
the Algorithm Structure pattern being used, one should also take into account that
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tasks might be suspended waiting for access to shared data. It makes sense to try
to assign tasks in a way that minimizes such waiting, or to assign multiple tasks to
each UE in the hope that there will always be one task per UE that is not waiting
for access to shared data.

Examples

Shared queues. The shared queue is a commonly used ADT and an excellent ex-
ample of the Shared Data pattern. The Shared Queue pattern discusses concurrency-
control protocols and the techniques used to achieve highly efficient shared-queue
prograins.

Genetic algorithm for nonlinear optimization. Consider the GAFORT pro-
gram from the SPEC OMP2001 benchmark suite [ADET01]. GAFORT is a small
Fortran program (around 1,500 lines) that implements a genetic algorithm for non-
linear optimization. The calculations are predominantly integer arithmetic, and the
program’s performance is dominated by the cost of moving large arrays of data
through the memory subsystem.

The details of the genetic algorithm are not important for this discussion. We
are going to focus on a single loop within GAFORT. Pseudocode for the sequential
version of this loop, based on the discussion of GAFORT in [EM], is shown in
Fig. 5.34. This loop shuffles the population of chromosomes and consumes on the
order of 36 percent of the runtime in a typical GAFORT job [AE03].

Int const NPOP // number of chromosomes (~40000)
Int const NCHROME // length of each chromosome

Real :: tempScalar

Array of Real :: temp(NCHROME)

Array of Int :: iparent(NCHROME, NPOP)
Array of Int :: fitness(NPOP)

Int :: j, iother

loop [j] over NPOP
iother = rand(j) // returns random value greater
// than or equal to zero but not
// equal to j and less than NPOP

/7 Swap Chromosomes

temp(1:NCHROME) = iparent(1:NCHROME, iother)
iparent (1:NCHROME, iother) = iparent(1:NCHROME, j)
iparent (1:NCHROME, j) = temp(1:NCHROME)

/7 Swap fitness metrics
tempScalar = fitness(iother)
fitness(iother) = fitness(j)
fitness(j) = tempScalar

end loop [3]

Figure 5.34: Pseudocode for the population shuffle loop from the genetic algorithm
program GAFORT
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A parallel version of this program will be created by parallelizing the loop,
using the Loop Parallelism pattern. In this example, the shared data consists of the
iparent and fitness arrays. Within the body of the loop, calculations involving
these arrays consist of swapping two elements of iparent and then swapping the
corresponding elements of fitness. Examination of these operations shows that
two swap operations interfere when at least one of the locations being swapped is
the same in both operations.

Thinking about the shared data as an ADT helps us to identify and analyze
the actions taken on the shared data. This does not mean, however, that the im-
plementation itself always needs to reflect this structure. In some cases, especially
when the data structure is simple and the programming language does not support
ADTs well, it can be more effective to forgo the encapsulation implied in an ADT
and work with the data directly. This example illustrates this.

As mentioned earlier, the chromosomes being swapped might interfere with
each other; thus the loop over j cannot safely execute in parallel. The most straight-
forward approach is to enforce a “one at a time” protocol using a critical section,
as shown in Fig. 5.35. It is also necessary to modify the random number generator

#include <omp.h>
Int const NPOP // number of chromosomes (~40000)
Int const NCHROME // length of each chromosome

Real :: tempScalar

Array of Real :: temp(NCHROME)

Array of Int :: iparent(NCHROME, NPOP)
Array of Int :: fitness(NPOP)

Int :: j, iother

#pragma omp parallel for
loop [j] over NPOP
iother = par_rand(j) // returns random value greater
// than or equal to zero but not
// equal to j and less than NPOP

#pragma omp critical

// Swap Chromosomes

temp(1:NCHROME) = iparent(1:NCHROME, iother)
iparent(1:NCHROME, iother) = iparent(1:NCHROME, j)
iparent (1:NCHROME, j) = temp(1:NCHROME)

// Swap fitness metrics
tempScalar = fitness(iother)
fitness(iother) = fitness(j)
fitness(j) = tempScalar

end loop [j]

Figure 5.35: Pseudocode for an ineffective approach to parallelizing the population shuffle in the
genetic algorithm program GAFORT
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s0 it produces a consistent set, of pseudorandom numbers when called in parallel by
many threads. The algorithms to accomplish this are well understood [Mas97], but
will not be discussed here.

The program in Fig. 5.35 can safely execute with multiple threads, but it will
not run any faster as more threads are added. In fact, this program will slow down
as more threads are added because the threads will waste system resources as they
wait for their turn to execute the critical section. In essence. the concurrency-control
protocol eliminates all of the available concurrency.

The solution to this problem is to take advantage of the fact that the swap
operations on the shared data only interfere when at least one of the locations being
swapped is the same in both operations. Hence, the right concurrency-control pro-
tocol uses pairwise synchronization with nested locks, thereby adding only modest
overhead when loop iterations do not interfere. The approach used in [ADE*01] is
to create an OpenMP lock for each chromosome. Pseudocode for this solution is
shown in Fig. 5.36. In the resulting program, most of the loop iterations do not ac-
tually interfere with each other. The total number of chromosomes, NPOP (40,000 in
the SPEC OMP2001 benehmark), is much larger than the number of UEs, so there
is only a slight chance that loop iterations will happen to interfere with another
loop iteration.

OpenMP locks are described in the OpenMP appendix, Appendix A. The
locks themselves use an opaque type, omp_lock_t, defined in the omp.h header
file. The lock array is defined and later initialized in a separate parallel loop. Once
inside the chromosome-swapping loop, the locks are set for the pair of swapping
chromosomes, the swap is carried out, and the locks are unset. Nested locks are
being used, so the possibility of deadlock must be considered. The solution here is
to order the locks using the value of the indices of the array element associated with
the lock. Always acquiring locks in this order will prevent deadlock when a pair of
loop iterations happen to be swapping the same two elements at the same time.
After the more efficient concurrency-control protocol is implemented, the program
runs well in parallel.

Known uses. A solution to the phylogeny problem described in the Context
section is presented in [YWCT96]. The overall approach fits the Task Parallelism
pattern; the rejected-sets data structure is explicitly managed using replication and
periodic updates to reestablish consistency among copies.

Another problem presented in [YWC*96] is the Grébner basis program. Omit-
ting most of the details, in this application the computation consists of using pairs
of polynomials to generate new polynomials, comparing them against a master set
of polynomials, and adding those that are not linear combinations of elements of
the master set to the master set (where they are used to generate new pairs). Dif-
ferent pairs can be processed concurrently, so one can define a task for each pair
and partition them among UEs. The solution described in [YWC196] fits the Task
Parallelism pattern (with a task queue consisting of pairs of polynomials), plus
explicit management of the master set using an application-specific protocol called
software caching.
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#include <omp.h>
Int const NPOP // number of chromosomes (“40000)
Int const NCHROME // length of each chromosome

Array of omp_lock_t :: lck(NPOP)

Real :: tempScalar

Array of Real :: temp(NCHROME)

Array of Int :: iparent(NCHROME, NPOP)
Array of Int :: fitness(NPOP)

Int :: j, iother

/7 Initialize the locks
#pragma omp parallel for
for (j=0; j<NPOP; j++){ omp_init_lock (&lck(j)) }

#pragma omp parallel for
for (j=0; j<NPOP; j++){
iother = par_rand(j) // returns random value >= 0, /= j,
// < NPOP
if (j < iother) {
set_omp_lock (lck(j)); set_omp_lock (lck(iother))

else {
set_omp_lock (lck(iother)); set_omp_lock (1lck(j))
¥

/7 Swap Chromosomes

temp(1:NCHROME) = iparent(1:NCHROME, iother);
iparent (1:NCHROME, iother) = iparent(1:NCHROME, j);
iparent(1:NCHROME, j) = temp(1:NCHROME);

// Suwap fitness metrics
tempScalar = fitness(iother)
fitness(iother) = fitness(j)
fitness(j) = tempScalar

if (j < iother) {

unset_omp_lock (lck(iother)); unset_omp_lock (lck(j))
}
else {

unset_omp_lock (lck(j)); unset_omp_lock (lck(iother))

3
} // end loap (5]

Figure 5.36: Pseudocode for a parallelized loop to carry out the population shuffle in the genetic
algorithm program GAFORT. This version of the loop uses a separate lock for each chromosome
and runs effectively in parallel.

Related Patterns

The Shared Queue and Distributed Array patterns discuss specific types of shared
data structures. Many problems that use the Shared Data pattern use the Task
Parallelism pattern for the algorithm structure.
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E 5.9 THE SHARED QUEUE PATTERN

Problem

How can concurrently-executing UEs safely share a queue data structure?

Context

Effective implementation of many parallel algorithms requires a queue that is to
be shared among UEs. The most common situation is the need for a task queue in
programs implementing the Master/Worker pattern.

Forces

e Simple concurrency-control protocols provide greater clarity of abstraction
and make it easier for the programmer to verify that the shared queue has
been correctly implemented.

o Concurrency-control protocols that encompass too much of the shared quene
in a single synchronization construct increase the chances UEs will remain
blocked waiting to access the queue and will limit available concurrency.

e A concurrency-control protocol finely tuned to the queue and how it will
be used increases the available concurrency, but at the cost of much more
complicated, and more error-prone, synchronization constructs.

e Maintaining a single queue for systems with complicated memory hierarchies
(as found on NUMA machines and clusters) can cause excess communication
and increase parallel overhead. Solutions may in some cases need to break
with the single-queue abstraction and use multiple or distributed queues.

Solution

Ideally the shared queue would be implemented as part of the target programming
environment, either explicitly as an ADT to be used by the programmer, or im-
plicitly as support for the higher-level patterns (such as Master/Worker) that use
it. In Java 2 1.5, such quenes are available in the java.util.concurrent package.
Here we develop implementations from scratch to illustrate the concepts.

Implementing shared queues can be tricky. Appropriate synchronization must
be utilized to avoid race conditions, and performance considerations—especially for
problems where large numbers of UEs access the queue—can require sophisticated
synchronization. In some cases, a noncentralized quene might be needed to eliminate
performance bottlenecks.

However, if it is necessary to implement a shared queue, it can be done as
an instance of the Shared Data pattern: First, we design an ADT for the queue by
defining the values the queue can hold and the set of operations on the queue. Next,
we consider the concurrency-control protocols, starting with the simplest “one-at-
a-time execntion” solution and then applying a series of refinements. To make this
discussion more concrete, we will consider the queue in terms of a specific problem:
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a queue to hold tasks in a master /worker algorithm. The solutions presented here,
however, are general and can be easily extended to cover other applications of a
shared queue.

The abstract data type (ADT). An ADT is a set of values and the operations
defined on that set of values. In the case of a queue, the values are ordered lists
of zero or more objects of some type (for example, integers or task IDs). The
operations on the queue are put (or engueue) and take (or dequeue). In some
situations, there might be other operations, but for the sake of this discussion,
these two are sufficient.

We must also decide what happens when a take is attempted on an empty
queue. What should be done depends on how termination will be handled by the
master /worker algorithm. Suppose, for example, that all the tasks will be created
at startup time by the master. In this case, an empty task queue will indicate that
the UE should terminate, and we will want the take operation on an empty queue
to return immediately with an indication that the queue is empty—that is, we
want a nonblocking queue. Another possible situation is that tasks can be created
dynamically and that UEs will terminate when they receive a special poison-pill
task. In this case, appropriate behavior might be for the take operation on an
empty queue to wait until the queune is nonempty—that is, we want a block-on-
empty queue.

Queue with “one at a time” execution

Nonblocking queue. Because the queue will be accessed concurrently, we
must define a concurrency-control protocol to ensure that interference by multiple
UEs will not occur. As recommended in the Shared Data pattern, the simplest
solution is to make all operations on the ADT exclude each other. Becanse none of
the operations on the queue can block, a straightforward implementation of mutual
exclusion as described in the Implementation Mechanisms design spaces suffices.
The Java implementation shown in Fig. 5.37 uses a linked list to hold the tasks in the
queue. (We develop our own list class rather than using an unsynchronized library
class such as java.util.LinkedList or a class from the java.util.concurrent
package to illustrate how to add appropriate synchronization.) head refers to an
always-present dummy node.%

The first task in the queue (if any) is held in the node referred to by head . next.
The isEmpty method is private, and only invoked inside a synchronized method.
Thus, it need not be synchronized. (If it were public, it would need to be synchro-
nized as well.) Of course, numerous ways of implementing the structure that holds
the tasks are possible.

Block-on-empty queue. The second version of the shared queue is shown
in Fig. 5.38. In this version of the queue, the take operation is changed so that

9The code for take makes the old head node into a dummy node rather than simply manip-
ulating next pointers to allow us to later optimize the code so that put and get can execute
concurrently.
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public class SharedQueuel
{

class Node //inner class defines list nodes
{ Object task;
Node next;

Node(Object task)
{this.task = task; next = null;}

private Node head = new Node(null); //dummy node
private Node last = head;

public synchronized void put(Object task)

{ assert task != null: "Cannot insert null task";
Node p = new Node(task);
last.next = p;
last = p;

public synchronized Object take()
{ //returns first task in queue or null if queue is empty
Object task = null;
if (lisEmpty())
{ Node first = head.next;
task = first.task;
first.task = null;
head = first;

return task;

private boolean isEmpty(){return head.next == null;}

Figure 5.37: Queue that ensures that at most one thread can access the data structure at one time.
If the queue is empty, null is immediately returned.

a thread trying to take from an empty queue will wait for a task rather than
returning immediately. The waiting thread needs to release its lock and reacquire it
before trying again. This is done in Java using the wait and notify methods. These
are described in the Java appendix, Appendix C. The Java appendix also shows the
queue implemented using locks from the java.util,concurrent.locks package
introduced in Java 2 1.5 instead of wait and notify. Similar primitives are available
with POSIX threads (Pthreads) [But97,IEE], and techniques for implementing this
functionality with semaphores and other basic primitives can be found in [And00].

In general, to change a method that returns immediately if a condition is false
to one that waits until the condition is true, two changes need to be made: First,
we replace a statement of the form

if (condition){do_something;}
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public class SharedQueue2
1

class Node
{ Object task;
Node next;

Node(Object task)
{this.task = task; next = null;}
1

private Node head = new Node(null);
private Node last = head;

public synchronized void put(Object task)
{ assert task != null: "Cannot insert null task";
Node p = new Node(task);
last.next = p;
last = p;
notifyAll();

public synchronized Object take()
{ //returns first task in queue, waits if queue is empty
Object task = null;
while (isEmpty())
{try{wvait();}catch(InterruptedException ignore){}}
{ Node first = head.next;
task = first.task;
first.task = null;
head = first;

return task;

private boolean isEmpty(){return head.next == null;}

Figure 5.38: Queue that ensures at most one thread can access the data structure at one time.
Unlike the first shared queue example, if the queue is empty, the thread waits. When used in a
master/worker algorithm, a poison pill would be required to signal termination to a thread.

with a loop”

while{ !condition){wait();} do_something;

Second, we examine the other operations on the shared queue and add a notifyAll
to any operations that might establish condition. The result is an instance of

"The fact that wait can throw an InterruptedException must be dealt with; it is ignored here
for clarity, but handled properly in the code examples.
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the basic idiom for using wait, described in more detail in the Java appendix,
Appendix C.

Thus, two major changes are made in moving to the code in Fig. 5.38. First,
we replace the code

if (tisEmpty()3)}{....}

with

while(isEmpty{))
{try{vait () }catch{InterruptedException ignore}{}}{....}

Second, we note that the put method will make the queue not empty, so we add to
it a call to notifyAll.

This implementation has a performance problem in that it will generate ex-
traneous calls to notifyAll. This does not affect the correctness, but it might
degrade the performance. One way this implementation could be optimized would
be to minimize the number of invocations of notifyAll in put. One way to do this
is to keep track of the number of waiting threads and only perform a notifyall
when there are threads waiting. We would have, for int w indicating the number
of waiting threads:

while( !condition){w++; wait(); w--} do_something;

and

if (w>0) notifyAll();

In this particular example, because only one waiting thread will be able to consume
a task, notifyAll could be replaced by notify, which notifies only one waiting
thread. We show code for this refinement in a later example (Fig. 5.40).

Concurrency-control protocols for noninterfering operations. If the per-
formance of the shared queue is inadequate, we must look for more efficient
concurrency-control protocols. As discussed in the Shared Data pattern, we need to
look for noninterfering sets of operations in our ADT. Careful examination of the
operations in our nonblocking shared queue (see Fig. 5.37 and Fig. 5.38) shows that
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public class SharedQueue3

class Node
{ Object task;
Node next;

Node(Object task)
{this.task = task; next = null;}
}

private Node head = new Node(null);
private Node last = head;

private Object putLock = new Dbject();
private Object takeLock = new Object();

public veid put(Object task)
{ synchronized(putLock)
{ assert task != null: "Cannot insert null task";
Node p = new Node(task);
last.next = p;
last = p;
}
}

public Object take()

{ Object task = null;
synchronized(takeLock)
{ if (1isEmpty())

{ Node first = head.next;
task = first.task;
first.task = null;
head = first;

}

return task;

Figure 5.39: Shared queue that takes advantage of the fact that put and take are noninterfering
and uses separate locks so they can proceed concurrently

the put and take are noninterfering because they do not access the same variables.
The put method modifies the reference last and the next member of the object
referred to by last. The take method modifies the value of the task member in
the object referred to by head.next and the reference head. Thus, put modifies
last and the next member of some Node object. The take method modifies head
and the task member of some object. These are noninterfering operations, so we
can use one lock for put and a different lock for take. This solution is shown in
Fig. 5.39.

Concurrency-control protocols using nested locks. The approach shown in
Fig. 5.39 isn’t as easy to apply to a block-on-empty queue, however. First of all, the
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wait, notify, and notifyAll methods on an object can only be invoked within
a block synchronized on that object. Also, if we have optimized the invocations of
notify as described previously, then w, the count of waiting threads, is accessed
in both put and take. Therefore, we use putLock both to protect w and to serve
as the lock on which a taking thread blocks when the queue is empty. Code is
shown in Fig. 5.40. Notice that putLock.wait () in get will release only the lock

pubic class SharedQueued

{
class Node
{ Object task;
Node next;
Node(Object task)
{this.task = task; next = null;}
1

private Node head = new Node(null);
private Node last = head;

private int w;

private Object putLock = new Object();
private Object takeLock = new Object();

public void put(Object task)
{ synchronized(putLock)
{ assert task != null: "Cannot insert null task";
Node p = new Node(task);
last.next = p;
last = p;
if (w>0){putLlock.notify();}
}
}

public Object take()
{ Object task = null;
synchronized (takeLock)
{ //returns first task in queue, waits if queue is empty
while (isEmpty())
{ try{synchronized(putLock){w++; putLock.wait();w--;} }
catch(InterruptedException error){assert false;}}
{ Node first = head.next;
task = first.task;
first.task = null;
head = first;
}
}
return task;

}

private boolean isEmpty(){return head.next == null;}

Figure 5.40: Blocking queue with multiple locks to allow concurrent put and take on a
nonempty queue
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on putLock, so a blocked thread will continue to block other takers from the outer
block synchronized on takeLock. This is okay for this particular problem. This
scheme continues to allow putters and takers to execute concurrently; the only
exception being when the queue is empty.

Another issue to note is that this solution has nested synchronized blocks
in both take and put. Nested synchronized blocks should always be examined for
potential deadlocks. In this case, there will be no deadlock because put only acquires
one lock, putLock. More generally, we would define a partial order over all the locks
and ensure that the locks are always acquired in an order consistent with our partial
order. For example, here, we could define takeLock < putLock and make sure that
the synchronized blocks are entered in a way that respects that partial order,

As mentioned earlier, several Java-based implementations of queues are in-
cluded in Java 2 1.5 in the java.util.concurrent package, some based on the
simple strategies discussed here and some based on more complex strategies that
provide additional flexibility and performance.

Distributed shared queues. A centralized shared queue may cause a hot spot,
indicating that performance might be improved by a more distributed implementa-
tion. As an example, we will develop a simple package to support fork /join programs
using a pool of threads and a distributed task queue in the underlying implemen-
tation. The package is a much simplified version of the FJTask package [LeaO0b],
which in turn uses ideas from [BJK*96]. The idea is to create a fixed pool of threads
to execute the tasks that are dynamically created as the program executes. Instead
of a single central task queue, we associate a nonblocking queue with each thread.
When a thread generates a new task, it is placed in its own queue. When a thread
is able to execute a new task, it first tries to obtain a task from its own queue. If
its own queue is empty, it randomly chooses another thread and attempts to steal
a task from that thread’s queue and continues checking the other queunes until a
task is found. (In [BJK*06], this is called random work stealing.)

A thread terminates when it receives a poison-pill task. For the fork/join
programs we have in mind, this approach has been shown to work well when threads
remove tasks from their own queue in LIFO (last in, first out) order and from other
queues in FIFO (first in, first out) order. Therefore, we will add to the ADT an
operation that removes the last element, to be used by threads to remove tasks
from their own queues. The implementation can then be similar to Fig. 5.40, but
with an additional method takeLast for the added operation. The result is shown
in Fig. 5.41.

The remainder of the package comprises three classes.

¢ Task is an abstract class. Applications extend it and override its run method
to indicate the functionality of a task in the computation. Methods offered
by the class include fork and join.

e TaskRunner extends Thread and provides the functionality of the threads in
the thread pool. Each instance contains a shared task quene. The task-stealing
code is in this class.
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public class SharedQueueS
{
class Node
{ Object task;
Node next;
Node prev;

Node(Object task, Node prev)
{this.task = task; next = null; this.prev = prev;}

¥

private Node head = new Node(null, null);
private Node last = head;

public synchronized void put(Object task)

{ assert task != null: "Cannot insert null task";
Node p = new Node(task, last);
last.next = p;
last = p;

public synchronized Object take()
{ //returns first task in queue or null if queue is empty
Object task = null;
if (lisEmpty())
{ Node first = head.next;
task = first.task;
first.task = null;
head = first;
}

return task;

public synchronized Object takeLast()

{ //returns last task in queue or null if queue is empty
Object task = null;
if (!isEmpty())
{ task = last.task; last = last.prev; last.next = null;}
return task;

private boolean isEmpty(){return head.next == null;}

Figure 5.41: Nonblocking shared queue with takeLast operation

e TaskRunnerGroup manages the TaskRunners. It contains methods to initialize
and shut down the thread pool. It also has a method executeAndWait that
starts a task running and waits for its completion. This method is used to
get the computation started. (It is needed because the fork method in class
Task can only be invoked from within a Task. We describe the reason for this
restriction later.)
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public abstract class Task implements Runnable
{
//done indicates whether the task is finished
private volatile boclean done;
public final void setDone(){done = true;}
public boolean isDone(){return done;}

//returns the currently ezecuting TaskRunner thread
public static TaskRunner getTaskRunner()
{ return (TaskRunner)Thread.currentThread(); }

//push this task on the local gqueue af current thread
public void fork()

{ getTaskRunner().put(this);

}

//wait until this task is dome
public void join()

{ getTaskRunner().taskJoin(this);
}

//ezecute the run method of this task
public void invoke()
{ if (!isDone(}){run(); setDone(); }
}

¥

Figure 5.42: Abstract base class for tasks

We will now discuss these classes in more detail. Task is shown in Fig. 5.42.
The only state associated with the abstract class is done, which is marked volatile
to ensure that any thread that tries to access it will obtain a fresh value.

The TaskRunner class is shown in Fig. 5.43, Fig. 5.44, and Fig. 5.45. The
thread, as specified in the run method, loops until the poison task is encountered.
First it tries to obtain a task from the back of its local queue. If the local queue is
empty, it attempts to steal a task from the front of a queue belonging to another
thread.

The code for the TaskRunnerGroup class is shown in Fig. 5.46. The constructor
for TaskRunnerGroup initializes the thread pool, given the number of threads as a
parameter. Typically, this value would be chosen to match the number of processors
in the system. The executeAndWait method starts a task by placing it in the task
queue of thread 0.

One use for this method is get a computation started. Something like this
is needed because we can’t just fork a new Task from a main or other non-
TaskRunner thread—this is what was meant by the earlier remark that the fork
and join methods of Task can only be invoked from within another Task. This is
because these methods require interaction with the TaskRunner thread executing
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import java.util.*;

class TaskRunner extends Thread

{

private final TaskRunnerGroup g; //managing group

private final Random chooseToStealFrom; //random number generator
private final Task poison; //poison task

protected volatile boolean active; //state of thread

final int id; //index of task in the TaskRunnerGroup

private final SharedQueueS gq; //Nonblocking shared queue

/Soperations relayed to queue

public void put(Task t){q.put(t);}

public Task take(){return (Task)q.take();}

public Task takeLast(){return (Task)q.takeLast();}

//constructor
TaskRunner (TaskRunnerGroup g, int id, Task poison)
{ this.g = g;
this.id = id;
this.poison = poison;
chooseToStealFrom = new Random(System.identityHashCode(this));
setDaemon (true) ;
q = new SharedQueue5();
}

protected final TaskRunnerGroup getTaskRunnerGroup(){return g;}
protected final int getID(){return id;}
/* continued in next figure »/

Figure 5.43: Class defining behavior of threads in the thread pool (continued in Fig. 5.44 and
Fig. 5.45)

the task (for example, fork involves adding the task to the thread’s task queue);
we find the appropriate TaskRunner using Thread.getCurrentThread, thus fork
and join must be invoked only in code being executed by a thread that is a
TaskRunner.

We normally also want the program that creates the initial task to wait until it
completes before going on. To accomplish this and also meet the restriction on when
fork can be invoked on a task, we create a “wrapper” task whose function is to
start the initial task, wait for it to complete, and then notify the main thread (the
one that called executeAndWait). We then add this wrapper task to thread 0's
task queue, making it eligible to be executed, and wait for it to notify us (with
notifyAll) that it has completed.

All of this may be clearer from the usage of fork, join, and executeAndWait
in the Fibonacci example in the Examples section.
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/* continued from previous figure */
//Attempts to steal a task from another thread. First chooses a
S/random victim, then continues with other threads uniil etther
//a task has been found or all have been checked. If a task
//is found, it is invoked. The parameter waitingFor is a task
//on which this thread is waiting for a join. If steal is not
//called as part of a join, use waitingFor = null.
void steal(final Task waitingFor)
{ Task task = null;

TaskRunner[] runners = g.getRunners();
int victim = chcoaeToStaalFrom.next[nt(runners,length):
for (int i = 0; i != runners.length; ++i)
{ TaskRunner tr = runners[victim];
if (waitingFor != null && waitingFor.isDone()){break;}
else
{ if (tr != null && tr != this)
task = (Task)tr.q.take();
if(task != null) {break;}
yield();
victim = (victim + 1)Yrunners.length;

}

} //have either found a task or have checked all other queues

//if have a task, invoke it
if(task != null && ! task.isDone())
{ task.invoke(); }

}

/* continued in next figure

Figure 5.44: Class defining behavior of threads in the thread pool (continued from Fig. 5.43 and
continued in Fig. 5.45)

Examples

Computing Fibonacci numbers. We show in Fig. 547 and Fig. 5.48 code
that uses our distributed queue package.® Recall that

Fib(0) = 0 (5.7)
Fib(1) = 1 (5.8)
Fib(n + 2) = Fib(n) + Fib(n + 1) (5.9)

This is a classic divide-and-conquer algorithm. To use our task package, we
define a class Fib that extends Task. Each Fib task contains a member number that

8This code is essentially the same as the class to compute Fibonacci numbers that is provided
as a demo with the FJTask package, except for the slight modification necessary to use the classes
described previously.
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/* continued from previous figure #/
//Main loop of thread. First attempts to find a task on local
//queue and exzecute it. If not found, then tries to steal a task
//from another thread. Performance may be improved by modifying
//this method to back off using sleep or lowered priorities if the
//thread repeatedly iterates without finding a task. The run
//method, and thus the thread, terminates when it retrieves the
A/poison task from the task queue.
public void run()
{ Task task = null;
try
{ while (!poison.equals(task))
{ task = (Task)q.takelast();
if (task != null) { if (!task.isDone()){task.invoke();}}
else { steal(null); }

} finally { active = false; }

//Looks for another task to run and continues when Task w is done.
protected final void taskJoin(final Task w)
{ while(!w.isDone())
{ Task task = (Task)q.takelast();
if (task != null) { if (!task.isDone()){ task.invoke();}}
else { steal(w);}

Figure 5.45: Class defining behavior of threads in the thread pool (continued from Fig. 5.43
and Fig. 5.44)

initially contains the number for which the Fibonacei number should be computed
and later is replaced by the result. The getAnswer method returns the result after
it has been computed. Because this variable will be accessed by multiple threads,
it is declared volatile.

The run method defines the behavior of each task. Recursive parallel decom-
position is done by creating a new Fib object for each subtask, invoking the fork
method on each subtask to start their computation, calling the join method for
each subtask to wait for the subtasks to complete, and then computing the sum of
their results.

The main method drives the computation. It first reads proc (the number
of threads to create), num (the value for which the Fibonacci number should be
computed), and optionally the sequentialThreshold. The value of this last, op-
tional parameter (the default is 0) is used to decide when the problem is too small
to bother with a parallel decomposition and should therefore use a sequential
algorithm. After these parameters have been obtained, the main method creates
a TaskRunnerGroup with the indicated number of threads, and then creates a Fib
object, initialized with num. The computation is initiated by passing the Fib ob-
ject to the TaskRunnerGroup's invokeAndWait method. When this returns, the
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class TaskRunnerGroup public class Fib extends Task
{ protected final TaskRunner[] threads; { .
protected final int groupSize; volatile int number; // number holds value to compute initially,
protected final Task poison; //after computation is replaced by answer
Fib(int n) { number = n; } //task constructor, initislizes number
public TaskRunnerGroup(int groupSize) .
{ this.groupSize = groupSize; //behavior of task
threads = new TaskRunner [groupSize]; public void run() {
poison = new Task(){public void run(){assert false;l}}; int n = number;
poison.setDone() ;
for (int i = 0; il!= groupSize; i++) // Handle base cases:
{threads[i] = new TaskRunner(this,i,poison);} if (n <= 1) { // Do nothing: fib(0) = 0; fib(1) =1 }
for(int i=0; i!= groupSize; i++){ threads([il.start(); } // Use sequential code for small problems:
) else if (n <= sequentialThreshold) {
number = seqFib(n);
S/start ezecuting task t and wait for its completion. }
//The wrapper task is used in order to start t from within // Dtheruwise use recursive parallel decomposition:
//a Task (thus ellowing fork and join to be used) else {
public void executeAndWait(final Task t) // Construct subtasks:
{ final TaskRunnerGroup thisGroup = this; Fib £1 = new Fib(n - 1);
Task wrapper = new Task() Fib £2 = new Fib(n - 2);
{ public void run()
{ t.fork(); // Run them in parallel:
t.join(); f1.fork();f2.fork();
setDone () ; // Await completion;
synchronized(thisGroup) f1.join();£2.join();
{ thisGroup.notifyAl1();} //notify waiting thread
} // Combine results:
3 number = f1.number + f2.number;
//add wrapped task to queue of thread[0] /7 (We know numbers are ready, so directly access them.)
threads [0] . put (wrapper) ; }
//wait for notification that it has finished. }
synchronized (thisGroup)
{ try{thisGroup.wait();} // Sequential version for arguments less than threshold
catch(InterruptedException e){return;} static int seqFib(int n) {
} if (n <= 1) return n;
} else return seqFib(n-1) + seqFib(n-2);
//cause all threads to terminate. The programmer is responsible
//for ensuring that the computation is complete. //method to retrieve answer after checking to make sure
public void cancel() //computation has finished, note that done and isDone are
{ for(int i=0; i!= groupSize; i++) //inherited from the Task class. done is set by the ezecuting
{ threads[i].put(poisen); } //(TaskRunner) thread when the run method is finished.
int getAnswer() {
if (!isDone()) throw new Error("Not yet computed");
public TaskRunner[] getRunners(){return threads;} 3 return number;
r /% continued in next figure »/
Figure 5.46: The TaskRunnerGroup class. This class initializes and manages the threads in the
thread pool. Figure 5.47: Program to compute Fibonacci numbers (continued in Fig. 5.48)
computation is finished. The thread pool is shut down with the TaskRunnerGroup’s
cancel method. Finally, the result is retrieved from the Fib object and displayed. It can also be used to support thread-pool-based implementations of the Fork/Join
pattern.
Related Patterns Note that when the tasks in a task queue map onto a consecutive sequence of
The Shared Queue pattern is an instance of the Shared Data pattern. It is often used mntegers, a monotonic shared counter, which would be much more efficient, can be
to represent the task queues in algorithms that use the Master/Worker pattern. used in place of a queue.
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/% continued from previous figure +/
//Performance-tuning constant, sequential algorithm is used to
//find Fibonacei numbers for values <= this threshold
static int sequentialThreshold = 0;

public static void main(String[] args) {
int procs; //number of threads
int num; //Fibonacei number to compute
try {
//read parameters from command line
procs = Integer.parselnt(args[0]);
num = Integer.parselnt(args[1]);
if (args.length > 2)
sequentialThreshold = Integer.parselnt(args[2]);
}
catch (Exception e) {
System.out.println("Usage: java Fib <threads> <number> "+
" [<sequentialThreshold>]");
return;

¥

//initialize thread pool
TaskRunnerGroup g = new TaskRunnerGroup(procs);

Slereate first task
Fib f = new Fib(num);

Slezecute it
g.executeAndWait (f);

//computation has finished, shutdoum thread pool
g.cancel();

//show result

long result;

{result = f.getAnswer();}

System.out.println("Fib: Size: " + num + " Answer: " + result);

Figure 5.48: Program to compute Fibonacci numbers (continued from Fig. 5.47)

E 5.10 THE DISTRIBUTED ARRAY PATTERN

Problem

Arrays often need to be partitioned between multiple UEs. How can we do this so
the resulting program that is both readable and efficient?

Context

Large arrays are fundamental data structures in scientific computing problems.
Differential equations are at the core of many technical computing problems, and
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solving these equations requires the use of large arrays that arise naturally when
a continuous domain is replaced by a collection of values at discrete points. Large
arrays also arise in signal processing, statistical analysis, global optimization, and a
host of other problems. Hence, it should come as no surprise that dealing effectively
with large arrays is an important problem.

If parallel computers were built with a single address space that was large
enough to hold the full array yet provided equal-time access from any PE to any
array element, we would not need to invest much time in how these arrays are han-
dled. But processors are much faster than large memory subsystems, and networks
connecting nodes are much slower than memory buses. The end result is usually a
system in which access times vary substantially depending on which PE is accessing
which array element.

The challenge is to organize the arrays so that the elements needed by each
UE are nearby at the right time in the computation. In other words, the arrays
must be distributed about the computer so that the array distribution matches the
flow of the computation.

This pattern is important for any parallel algorithm involving large arrays
in a parallel algorithm. It is particularly important when the algorithm uses the
Geometric Decomposition pattern for its algorithm structure and the SPMD pattern
for its program structure. Although this pattern is in some respects specific to
distributed-memory environments in which global data structures must be somehow
distributed among the ensemble of PEs, some of the ideas of this pattern apply if
the single address space is implemented on a NUMA platform, in which all PEs
have access to all memory locations, but access time varies. For such platforms,
it is not necessary to explicitly decompose and distribute arrays, but it is still
important to manage the memory hierarchy so that array elements stay close® to
the PEs that need them. Because of this, on NUMA machines, MPI programs can
sometimes outperform similar algorithms implemented using a native multithreaded
APIL Further, the ideas of this pattern can be used with a multithreaded API to
keep memory pages close to the processors that will work with them. For example, if
the target system uses a first touch page-management scheme, efficiency is improved
if every array element is initialized by the PE that will be working with it. This
strategy, however, breaks down if arrays need to be remapped in the course of the
computation.

Forces

¢ Load balance. Because a parallel computation is not finished until all UEs
complete their work, the computational load among the UEs must be dis-
tributed so each UE takes nearly the same time to compute.

INUMA computers are usually built from hardware modules that bundle together processors
and a subset of the total system memory. Within one of these hardware modules, the processors
and memory are “close” together and processors can access this “close” memaory in much less time
than for remote memory.
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¢ Effective memory management. Modern microprocessors are much faster
than the computer’s memory. To address this problem, high-performance
computer systems include complex memory hierarchies. Good performance
depends on making good use of this memory hierarchy, and this is done by
ensuring that the memory references implied by a series of calculations are
close to the processor making the calculation (that is, data reuse from the
caches is high and needed pages stay accessible to the processor).

e Clarity of abstraction. Programs involving distributed arrays are easier to
write, debug, and maintain if it is clear how the arrays are divided among
UEs and mapped to local arrays.

Solution

Overview. The solution is simple to state at a high level; it is the details that
make it complicated. The basic approach is to partition the global array into blocks
and then map those blocks onto the UEs. This mapping onto UEs should be done
so that, as the computation unfolds, each UE has an equal amount of work to carry
out (that is, the load must be well balanced). Unless all UEs share a single address
space, each UE’s blocks will be stored in an array that is local to a single UE.
Thus, the code will access elements of the distributed array using indices into a
local array. The mathematical description of the problem and solution, however, is
based on indices into the global array. Thus, it must be clear how to move back
and forth between two views of the array, one in which each element is referenced
by global indices and one in which it is referenced by a combination of local indices
and UE identifier. Making these translations clear within the text of the program
is the challenge of using this pattern effectively.

Array distributions. Over the years, a small number of array distributions have
become standard.

e One-dimensional (1D) block. The array is decomposed in one dimension
only and distributed one block per UE. For a 2D matrix, for example, this
corresponds to assigning a single block of contiguous rows or columns to
each UE. This distribution is sometimes called a column block or row block
distribution depending on which single dimension is distributed among the
UEs. The UEs are conceptually organized as a 1D array.

e Two-dimensional (2D) block. As in the 1D block case, one block is as-
signed to each UE, but now the block is a rectangular subblock of the original
global array. This mapping views the collection of UEs as a 2D array.

¢ Block-cyclic. The array is decomposed into blocks (using a 1D or 2D par-
tition) such that there are more blocks than UEs. These blocks are then
assigned round-robin to UEs, analogous to the way a deck of cards is dealt
out. The UEs may be viewed as either a 1D or 2D array.
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Qgp | @1 | Go2 | @03 | Bo4 | Q05 | Pos | FoT

Qo | @11 | G1z | G13 | @14 | @15 | Q16 | BT

Gg0 | @21 | G232 | 23 | G24 | Q25 | Q25 | C27

G3p | @31 | @32 | @33 | B34 | Gas | Y36 | Fa7

Gap | Q4 | @42 | Qg3 | Qa4 | G455 | B46 | Qa7

asp | @51 | @52 | @53 | A54 | G55 | F56 | T57

ago | @61 | @62 | @63 | U64 | D65 | F66 | L7

Qg | @71 | @72 | @73 | @74 | Q75 | G16 | Q17

Figure 5.49: Original square matrix A

Next, we explore these distributions in more detail. For illustration, we use a square
matrix A of order 8, as shown in Fig. 5.49.10

1D block. Fig. 5.50 shows a column block distribution of A onto a linear
array of four UEs. The matrix is decomposed along the column index only; the
number of columns in each block, MB (2 here), is the matrix order divided by the
number of UEs. Matrix element (i, j) is assigned to UE(j\MB)."!

Mapping to UEs. More generally, we could have an N X M matrix where the
number of UEs, P, need not divide the number of columns evenly. In this case,
MB is the maximum number of columns mapped to a UE, and all UEs except
UE(P — 1) contain MB blocks. Then, MB = [M/P], and elements of column j
are mapped to UE(|j/MB]).'? (This reduces to the formula given earlier for the

101 this and the other figures in this pattern, we will use the following notational conventions:
A matrix element will be represented as a lowercase letter with subscripts representing indices; for
example, aj 2 is the element in row 1 and column 2 of matrix A. A submatrix will be represented
as an uppercase letter with subscripts representing indices; for example, Ap o is a submatrix
containing the top-left corner of A. When we talk about assigning parts of A to UEs, we will
reference different UEs using UE and an index or indices in parentheses; for example, if we are
regarding UEs as forming a 1D array, UE(0) is the conceptually leftmost UE, while if we are
regarding UEs as forming a 2D array, UE(0,0) is the conceptually top-left UE. Indices are all
assumed to be zero-based (that is, the smallest index is 0).

11yWe will use the notation “\" for integer division, and “/" for normal division. Thus
a\b= |a/b]. Also, |z| (floor) is the largest integer at most x, and [x] (ceiling) is the smallest
integer at least x. For example, |4/3] = 1, and [4/2] = 2.

12Notice that this is not the only possible way to distribute columns among UEs when the
number of UEs does not evenly divide the number of columns. Another approach, more com-
plex to define but producing a more balanced distribution in some cases, is to first define the
minimum number of columns per UE as [M/P], and then increase this number by one for the
first (M mod P) UEs. For example, for M = 10 and P = 4, UE(0) and UE(1) would have three
columns each and UE(2) and UE(3) would have two columns each.
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g0 | @o,1 gz | Bpgs apg4 | Bos Qg6 | Qo7
a0 | @11 @12 | G138 Q14 | G5 Q16 | Q17
Agp | Gz1 Gg2 | Q23 Qg4 | Gop Qg | G237
g0 | 031 @32 | @33 O34 | B35 Q38 | G371
@y | G40 G40 | G435 Q44 | By5 Q46 | B47
Qg0 | 85,1 52 | @s3 954 | 25,56 G5 | 357
g | Gg,1 g2 | B3 g4 | P55 Gge | @67
agp | 87,1 Qg2 | G13 274 | @75 Q56 | @77
UE(0) UE(1) UE(2) UE(3)

Figure 5.50: 1D distribution of A onto four UEs

example, because in the special case where P evenly divides M, [M/P] = M/P
and [j/MB| = j/MB.) Analogous formulas apply for row distributions.

Mapping to local indices. In addition to mapping the columns to UEs, we also
need to map the global indices to local indices. In this case, matrix element (i, )
maps to local element (7, j mod MB). Given local indices (z,y) and UE(w), we can
recover the global indices (z,wMB + y). Again, analogous formulas apply for row
distributions.

2D block. Fig. 5.51 shows a 2D block distribution of A onto a two-by-
two array of UEs. Here, A is being decomposed along two dimensions, so for each
subblock, the number of columns is the matrix order divided by the number of
columns of UEs, and the number of rows is the matrix order divided by the number
of rows of UEs. Matrix element (¢, j) is assigned to UE(i\2, 7\2).

Mapping to UEs. More generally, we map an N X M matrix to a Pp X Pe matrix
of UEs. The maximum size of a subblock is NB X MB, where NB = [N/Py] and
MB = [M/P¢]. Then, element (7, j) in the global matrix is stored in UE(|i/NB|,

Li/MB].

Mapping to local indices. Global indices (i,7) map to local indices (i mod NB,
j mod MB). Given local indices (z, y) on UE(z,w) the corresponding global indices
are (zNB + z,wMB + y).

Block-cyclic. The main idea behind the block-cyclic distribution is to cre-
ate more blocks than UEs and allocate them in a cyclic manner, similar to dealing
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UE0, 0) UE(0, 1)
Qoo | @01 | Qo2 | Qo3 Qg4 | Bos | Bog | Do
10 | @11 | @12 | B13 Q14 | A5 | G165 | B9
Qzp |Gz [ Qg2 | Ga3 Q24 | G25 | G | Qa7
Q30 | Q3 | @32 | G33 O34 | Q35 | @36 | Q37
Q40 | B41 | @42 | B43 Qg4 | Q45 | By | Ga7
G50 | G51 | 952 | B53 54 | G55 | G55 | @57
Ggo | g | @62 | Bea g4 | B65 | Bg6 | Fg7
@70 | @71 | @72 | G173 Q74 | Q75 | G16 | Q77

UE(1, 0) UEQ,1)

Figure 5.51: 2D distribution of A onto four UEs

out a deck of cards. Fig. 5.52 shows a 1D block-cyclic distribution of A onto a linear
array of four UEs, illustrating how columns are assigned to UEs in a round-robin
fashion. Here, matrix element (i,;) is assigned to UE(j mod 4) (where 4 is the
number of UEs).

Bg0 | P04 g1 | Bos Qo2 | Goe g3 | Qo7
@10 | G14 a1 | 815 @y | a16 a3 | @17
Qg | Go g4 g1 | G25 Qg9 | Qg6 Ggs | @g7
A30 | B34 @31 | @35 Q32 | G36 233 | 837
Qg0 | Qyq @41 | Q45 Q42 | Qgg Q43 | Q47
50 | G54 Qg1 | G55 Q52 | 55 G513 | @57
Ggo | BG4 Gg1 | Bg5 Qgo | Ugg Ggg | Qg7
Q70 | Q74 Q71 | Q75 Q72 | G a13 | @7
UE(0) UE(1) UE(2) UE(3)

Figure 5.52: 1D block-cyclic distribution of A onto four UEs
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0,0 | @01 @2 | @pg Qo4 | Gos Qpg | @p
@10 | @11 32 | @13 @14 | C15 @18 | 17
Ago Agy Apa Ags
Qgp | Gz Q32 | G23 Q24 | @25 Ggp | @27
G30 | 831 Q33 | B33 Q34 | Q35 Qae | @37
Ay Ay App Ara
Q40 | B4 G4z | B43 Qg4 | B4 Qg5 | 47
Q50 | @5,1 @52 | @53 G54 | O55 55 | 35,7
Agg Agy Agg Agg
G50 | %61 Qg2 | G632 T4 | g5 G55 | 357
G70 | 871 G7g | G173 Q74 | Q75 76 | @77
Az Agy Az Agg

Figure 5.53: 2D block-cyclic distribution of A onto four UEs, part 1: Decomposing A

Fig. 5.53 and Fig. 5.54 show a 2D block-cyclic distribution of A onto a two-
by-two array of UEs: Fig. 5.53 illustrates how A is decomposed into two-by-two
submatrices. (We could have chosen a different decomposition, for example one-
by-one submatrices, but two-by-two illustrates how this distribution can have both
block and cyclic characteristics.) Fig. 5.54 then shows how these submatrices are
assigned to UEs. Matrix element (i, ) is assigned to UE(i mod 2, j mod 2).

UE(0, 0) UE(0, 1)

Ago | Aoz Ap1 | Aos

Agg | Ags Agy [Azs

Ao | A1z A | As

Agp | Asg Ay |Agg

UE(1,0) UE(1,1)

Figure 5.54: 2D block-cyclic distribution of A onto four UEs, part 2: Assigning submatrices to UEs
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LAgg LAy,

o0 | @py | %4 | Gos

(o) | (o,1) | (Y00 | (Fo) |

@10 | Ay a5

(51:0) (111) ("11.;;‘) (b))

Qo | G4 | ag4 | Qg5

(f0,0) (50:1) (o) | (fo1)

50 | @51 | G54 | Cs5

(o) | (1) | (10) | (1)
LAI.O : LAI.I

Figure 5.55: 2D block-cyclic distribution of A onto four UEs: Local view of elements of A assigned to
UE(0,0). LA; ,, is the block with block indices (1, m). Each element is labeled both with its original
global indices (a; ;) and its indices within block LA m (e y).

Mapping to UEs. In the general case, we have an N X M matrix to be mapped
onto a Pp X Pe array of UEs. We choose block size NB X MB. Element (4,7)
in the global matrix will be mapped to UE(z,w), where z = |¢/NB] mod P and
w = |j/MB]| mod Pg.

Mapping to local indices. Because multiple blocks are mapped to the same UE, we
can view the local indexing blockwise or elementwise.

In the blockwise view, each element on a UE is indexed locally by block
indices (I,m) and indices (z,7) into the block. To restate this: In this scheme, the
global matrix element (i, j) will be found on the UE within the local (1, m) block at
the position (2, y) where (I,m) = (|i/(Pg NB)|, |j/(Pc MB)|) and (z,y) = (i mod
NB, j mod MB). Fig. 5.55 illustrates this for UFE(0,0).

For example, consider global matrix element as,1. Because Pp = Po = NB =
MB = 2, this element will map to UE(0,0). There are four two-by-two blocks on
this UE. From the figure, we see that this element appears in the block on the
bottom left, or block LA, and indeed, from the formulas, we obtain (I,m) =
(15/(2 % 2)],|1/(2 % 2)]) = (1,0). Finally, we need the local indices within the
block. In this case, the indices within block are (x, y) = (5 mod 2, 1 mod 2) = (1,1).

In the elementwise view (which requires that all the blocks for each UE form
a contiguous matrix), global indices (i, j) are mapped elementwise to local indices
(INB + z,mMB + y), where | and m are defined as before. Fig. 5.56 illustrates
this for UE(0,0).

Again, looking at global matrix element as ;, we see that viewing the data as a
single matrix, the element is found at local indices (1 X 2 + 1,0 X 2 + 1) = (3,1).
Local indices (x,y) in block (I,m) on UE(z,w) correspond to global indices
((Pr + z)NB + x,(mPc + w)MB + y).
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Qo Qg4 | Ggs

Gy,1
(Loo) | (1) | (lo2) | (Yo,3)

Q10 | @11 | %14 | O15

(h0) | () | (h2) | (3)

Qa0 | @41 | Cq4 | Q45

(120) | (t21) | (22) | (23)

G50 | 351 | %54 | 955

(I30) | Us1) | (s2) | (Isg)

Figure 5.56: 2D block-cyclic distribution of A onto four UEs: Local view of elements of A assigned
to UE(0,0). Each element is labeled both with its original global indices a; ; and its local indices
I, .. Local indices are with respect to the contiguous matrix used to store all blocks assigned to
this UE.

Choosing a distribution. To select which distribution to use for a problem,
consider how the computational load on the UEs changes as the computation pro-
ceeds. For example, in many single-channel signal-processing problems, the same set
of operations is performed on each column of an array. The work does not vary as
the computation proceeds, so a column block decomposition will produce both clar-
ity of code and good load balance. If instead the amount of work varies by column,
with higher-numbered columns requiring more work, a column block decomposition
would lead to poor load balance, with the UEs processing lower-numbered columns
finishing ahead of the UEs processing higher-numbered columns. In this case, a
cyclic distribution would produce better load balance, because each UE is assigned
a mix of low-numbered and high-numbered columns.

This same approach applies to higher dimensions as well. ScaLAPACK [Sca,
BCC*97], the leading package of dense linear algebra software for distributed-
memory computers, requires a 2D block-cyclic distribution. To see why this choice
was made, consider Gaussian elimination, one of the more commonly used of the
ScaLAPACK routines. In this algorithm, also known as LU decomposition, a dense
square matrix is transformed into a pair of triangular matrices, an upper matrix U
and a lower matrix L. At a high level, the algorithm proceeds from the upper-
left corner and works its way down the diagonal of the global matrix, eliminating
elements below the diagonal and transforming the remaining blocks to the right as
needed. A block distribution would result in idle UEs as the processing marches
down the diagonal. But with a 2D block-cyclic distribution such as the one shown
in Fig. 5.54, each UE contains elements used both early and late in the algorithm,
resulting in excellent load balance.

Mapping indices. The examples in the preceding section illustrate how each
element of the original (global) array is mapped to a UE and how each element
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in the global array, after distribution, is identified by both a set of global indices
and a combination of UE identifier and local information. The original problem is
typically stated in terms of global indices, but computation within each UE must
be in terms of local indices. Applying this pattern effectively requires that the
relationship between global indices and the combination of UE and local indices
be as transparent as possible. In a quest for program efficiency, it is altogether too
easy to bury these index mappings in the code in a way that makes the program
painfully difficult to debug. A better approach is to use macros and inline functions
to capture the index mappings; a human reader of the program then only needs
to master the macro or function once. Such macros or functions also contribute to
clarity of abstraction. The Examples section illustrates this strategy.

Aligning computation with locality. One of the cardinal rules of performance-
oriented computing is to maximize reuse of data close to a UE. That is, the loops
that update local data should be organized in a way that gets as much use as
possible out of each memory reference. This objective can also influence the choice
of array distribution.

For example, in linear algebra computations, it is possible to organize com-
putations on a matrix into smaller computations over submatrices. If these subma-
trices fit into cache, dramatic performance gains can result. Similar effects apply to
other levels of the memory hierarchy: minimizing misses in the translation lookaside
buffer (TLB), page faults, and so on. A detailed discussion of this topic goes well
beyond the scope of this book. An introduction can be found in [PH98|.

Examples

Transposing a matrix stored as column blocks. As an example of
organizing matrix computations into smaller computations over submatrices, con-
sider transposing a square matrix distributed with a column block distribution.
For simplicity, we will assume that the number of UEs evenly divides the number
of columns, so that all blocks are the same size. Our strategy for transposing the
matrix will be based on logically decomposing the matrix into square submatrices,
as shown in Fig. 5.57. Each of the labeled blocks in the figure represents a square
submatrix; labels show how the blocks of the transpose relate to the blocks of the

A AT
Agp Agy Az Agg (A00)"  1(A10)"  [(Az0)]  |(As0)”
App Ay A Aig (Ao )" (AL (A0 (A"
Az Agy Apa Aza (Ao2)"]  [(A12)T]  |(A22)|  |(As2)”
Az Ay, Agg Agg (Aoa)"]  |(A1a)")  |(A22)T]  |(Ass)”
UE(0) UEQ) UE2) UE(@3) UE(W0) UE(1) UE(2) UE(3)

Figure 5.57: Matrix A and its transpose, in terms of submatrices, distributed among four UEs
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original matrix. (For example, the block labeled (Ag ;)" in the transpose is the
transpose of the block labeled Ag; in the original matrix.) The algorithm proceeds
in phases; the number of phases is the number of submatrices per UE (which is also
the number of UEs). In the first phase, we transpose the submatrices on the diago-
nal of A, with each UE transposing one submatrix and no communication required.
In successive phases, we transpose the submatrices one below the diagonal, then
two below the diagonal, and so forth, wrapping around to the top of the matrix
as necessary. In each of these phases, each UE must transpose one of its subma-
trices, send it to another UE, and receive a submatrix. For example, in the second
phase, the UE labeled UE(1) must compute (Ag )7, send it to UE(2), and receive
(Ap,1)T from UE(0). Figs. 5.58 and 5.59 show code to transpose such a matrix.
This code represents a function that will transpose a square column-blocked array.
We assume the blocks are distributed contiguously with one column block per UE.
This function is intended as part of a larger program, so we assume the array has
already been distributed prior to calling this function.

The program represents each local column block (one for A and one for
the transposed result) as a 1D array. These arrays in turn consist of Num_procs
submatrices each, each of size block_size = Block_order * Block_order, where

/' AR AR *
NAME: trans_isend_ircu

PURPOSE: This function uses MPI Isend and Irecv to transpose
a column-block distributed matriz.

RN o #re/

#include "mpi.h"
#include <stdio.h>

/
*# This function transposes a local block of a matriz. We don’t
*+ display the tezxt of this function as it 95 not relevant to the
** point of this ezample.

RN **/

void transpose(
double* A, int Acols, /* input matriz +/
doublex B, int Becols, /* itransposed mat */
int sub_rows, int sub_cols); /¥ size of slice to iranspose +/

/ HRERA FHRFNE wER
#+ Define macros to compute process source and destinations and

#+ local indices

*¥ ExEREERNS
#define TO(ID, PHASE, NPROC) ((ID + PHASE ) } NPROC)

#define FROM(ID, PHASE, NPROC) ((ID + NPROC - PHASE) % NPROC)
#define BLOCK(BUFF, ID) (BUFF + (ID * block_size))

/* continued in next figure =/

Figure 5.58: Code to transpose a matrix (continued in Fig. 5.59)
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/% continued from previous figure »/

void trans_isnd_ircv(double *buff, double *trans, int Block_order,
double *work, int my_ID, int num_procs)
{

int iphase;

int block_size;

int send_to, recv_from;

double *bblock; /* pointer to current location in buff »/
double *tblock; /# pointer to current location in trans =/
MPI_Status status;

MPI_Request send_req, recv_req;

block_size = Block_order * Block_order;

/ e

*# Do the transpose in num_procs phases.

Lt d

** In the first phase, do the diagonal block. Then move out

** from the diagonal copying the local matriz into a communication
** buffer (while doing the local transpose) and send to process

*+ (diag+phase)inum_procs.

bblock = BLOCK(buff, my_ID);
tblock = BLOCK(trans, my_ID);

transpose(bblock, Block_order, tblock, Block_order,
Block_order, Block_order);

for (iphase=1; iphase<num_procs; iphase++){
recv_from = FROM(my_ID, iphase, num_procs);
tblock = BLOCK(trans, recv_from);
MPI_Irecv (tblock, block_size, MPI_DOUBLE, recv_from,
iphase, MPI_COMM_WORLD, &recv_req);

send_to = TO(my_ID, iphase, num_procs);
bblock = BLOCK(buff, send_to);
transpose(bblock, Block_order, work, Block_order,
Block_order, Block_order);
MPI_Isend (work, block_size, MPI_DOUBLE, send_to,
iphase, MPI_COMM_WORLD, &send_req);

MPI_Wait(&recv_req, &status);
MPI_Wait(ksend_req, kstatus);

Figure 5.59: Code to transpose a matrix (continued from Fig. 5.58)

Block_order is the number of columns per UE. We can therefore find the block
indexed ID using the BLOCK macro:

#define BLOCK(BUFF, ID) (BUFF + (ID * block_size))

BUFF is the start of the 1D array (buff for the original array, trans for the trans-
pose) and ID is the second index of the block. So for example, we find the diagonal
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block of both arrays as follows:

bbleck = BLOCK(buff, my_ID);
tblock = BLOCK(trans, my_ID);

In succeeding phases of the algorithm, we must determine two things: (1) the
index of the block we should transpose and send and (2) the index of the block we
should receive. We do this with the TD and FROM macros:

#define TO(ID, PHASE, NPROC) ((ID + PHASE ) % NPROC)
#define FROM(ID, PHASE, NPROC) ((ID + NPROC - PHASE) % NPROC)

The TO index shows the progression through the off-diagonal blocks, working
down from the diagonal and wrapping back to the top at the bottom of the matrix.
At each phase of the algorithm, we compute which UE is to receive the block and
then update the local pointer (bblock) to the block that will be sent:

send_to = TO(my_ID, iphase, num_procs);
bbleck = BLOCK(buff, send_to);

Likewise, we compute where the next block is coming from and which local index
corresponds to that block:

recy_from = FROM(my_ID, iphase, num_procs);
tblock = BLOCK(trans, recv_from);

This continues until all of the blocks have been transposed.

We use immediate (nonblocking) sends and receives in this example. (These
primitives are described in more detail in the MPI appendix, Appendix B.) Dur-
ing each phase, each UE first posts a receive and then performs a transpose on
the block it will send. After that transpose is complete, the UE sends the now-
transposed block to the UE that should receive it. At the bottom of the loop and
before moving to the next phase, functions are called to force the UE to wait until
both the sends and receives complete. This approach lets us overlap communication
and computation. More importantly (because in this case there isn’t much computa-
tion to overlap with communication), it prevents deadlock: A more straightforward
approach using regular sends and receives would be to first transpose the block to
be sent, then send it, and then (wait to) receive a block from another UE. How-
ever, if the blocks to be sent are large, a regular send might block because there is
insufficient buffer space for the message; in this case, such blocking could produce
deadlock. By instead using nonblocking sends and receives and posting the receives
first, we avoid this situation.
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Known uses. This pattern is used throughont the scientific-computing literature.
The well-known ScaLAPACK package [Sca, BCC*97] makes heavy use of the 2D
block-cyclic distribution, and the documentation gives a thorough explanation of
mapping and indexing issues for this distribution.

Several different array distributions were embedded into the HPF langnage
[HPF97] definition.

Some of the most creative uses of this pattern can be found in quantum
chemistry, particularly in the area of post Hartree Fock computations. The Global
Arrays or GA package [NHL94, NHL96, NHK+02, Gloa] was created specifically to
address distributed-array problems in post Hartree Fock algorithms. A more recent
approach is described in [NHL96, LDSH95).

The PLAPACK package [ABE*97,PLA,vdG97] takes a different approach to
array distribution. Rather than focusing on how to distribute the arrays, PLAPACK
considers how the vectors operated upon by the arrays are organized. From these
distributed vectors, the corresponding array distributions are derived. In many
problems, these vectors correspond to the physical quantities in the problem do-
main, so the PLAPACK team refers to this as the physically based distribution.

Related Patterns

The Distributed Array pattern is often used together with the Geometrie Decom-
position and SPMD patterns.

5.11 OTHER SUPPORTING STRUCTURES

5.11.1

This pattern language (and hence the Supporting Structures patterns) is based on
common practice among OpenMP, MPI, and Java programmers writing code for
both shared-memory and distributed-memory MIMD computers. Parallel applica-
tion programmers will in most cases find the patterns they need within this pattern
language.

There are, however, additional patterns (with their own supporting structures)
that have at various times been important in parallel programming. They are only
rarely used at this time, but it is still important to be aware of them. They can
provide insights into different opportunities for finding and exploiting concurrency.
And it is possible that as parallel architectures continue to evolve, the parallel
programming techniques suggested by these patterns may become important.

In this section, we will briefly describe some of these additional patterns and
their supporting structures: SIMD, MPMD, Client-Server, and Declarative Pro-
gramming. We close with a brief discussion of problem-solving environments, These
are not patterns, but they help programmers work within a targeted set of problems.

SIMD

A SIMD computer has a single stream of instructions operating on multiple streams
of data. These machines were inspired by the belief that programmers would find it
too difficult to manage multiple streams of instructions. Many important problems
are data parallel; that is, the concurrency can be expressed in terms of concurrent
updates across the problem’s data domain. Carried to its logical extreme, the SIMD
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approach assumes that it is possible to express all parallelism in terms of the
data. Programs would then have single-thread semantics, making understanding
and hence debugging them much easier. The basic idea behind the SIMD pattern
can be summarized as follows.

¢ Define a network of virtual PEs to be mapped onto the actual PEs. These
virtual PEs are connected according to a well-defined fopology. Ideally the
topology is (1) well-aligned with the way the PEs in the physical machine
are connected and (2) effective for the communication patterns implied by
the problem being solved.

e Express the problem in terms of arrays or other regular data structures that
can be updated concurrently with a single stream of instructions.

e Associate these arrays with the local memories of the virtual PEs.

¢ Create a single stream of instructions that operates on slices of the regular
data structures. These instructions may have an associated mask so they
can be selectively skipped for subsets of array elements. This is critical for
handling boundary conditions or other constraints.

When a problem is truly data parallel, this is an effective pattern. The result-
ing programs are relatively easy to write and debug [DKK90].

Unfortunately, most data problems contain subproblems that are not data
parallel. Setting up the core data structures, dealing with boundary conditions,
and post-processing after a core data parallel algorithm can all introduce logic that
might not be strictly data parallel. Furthermore, this style of programming is tightly
coupled to compilers that support data-parallel programming. These compilers have
proven difficult to write and result in code that is difficult to optimize because it can
be far removed from how a program runs on a particular machine, Thus, this style of
parallel programming and the machines built around the SIMD concept have largely
disappeared, except for a few special-purpose machines used for signal-processing
applications.

The programming environment most closely associated with the SIMD pat-
tern is High Performance Fortran (HPF) [HPF97]. HPF is an extension of the
array-based constructs in Fortran 90. It was created to support portable parallel
programming across SIMD machines, but also to allow the SIMD programming
model to be used on MIMD computers. This required explicit control over data
placement onto the PEs and the capability to remap the data during a caleulation.
Its dependence on a strictly data-parallel, SIMD model, however, doomed HPF by
making it difficult to use with complex applications. The last large community of
HPF users is in Japan [ZJS*02], where they have extended the language to relax
the data-parallel constraints [HPF99].

MPMD

The Multiple Program, Multiple Data (MPMD) pattern, as the name implies, is
used in a parallel algorithm when different programs run on different UEs. The
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basic approach is the following.

e Decompose the problem into a set of subproblems, where each subproblem
maps onto a subset of UEs. Often each subset of UEs corresponds to the nodes
of a different parallel computer.

e Create independent programs solving the appropriate subproblems and tuned
to the relevant target UEs.

e Coordinate the programs running on distinct UEs as needed, typically throngh
a message-passing framework.

In many ways, the MPMD approach is not too different from an SPMD pro-
gram using MPL In fact, the runtime environments associated with the two most
common implementations of MPI, MPICH [MPI| and LAM/MPI [LAM], support
simple MPMD programming,.

Applications of the MPMD pattern typically arise in one of two ways. First,
the architecture of the UEs may be so different that a single program cannot be used
across the full system. This is the case when using parallel computing across some
type of computational grid [Glob, FK03] using multiple classes of high-performance
computing architectures. The second (and from a parallel-algorithim point of view
more interesting) case occurs when completely different simulation programs are
combined into a coupled simulation.

For example, climate emerges from a complex interplay between atmospheric
and ocean phenomena. Well-understood programs for modeling the ocean and the
atmosphere independently have been developed and highly refined over the years.
Although an SPMD program could be created that implements a coupled ocean/
atmospheric model directly, a more effective approach is to take the separate, vali-
dated ocean and atmospheric programs and couple them through some intermedi-
ate layer, thereby producing a new coupled model from well-understood component
models.

Although both MPICH and LAM/MPI provide some support for MPMD
programming, they do not allow different implementations of MPI to interact, so
only MPMD programs using a common MPI implementation are supported. To
address a wider range of MPMD problems spanning different architectures and
different MPT implementations, a new standard called interoperable MPI (iMPI)
was created. The general idea of coordinating UEs through the exchange of messages
is common to MPI and iMPI, but the detailed semantics are extended in iMPI to
address the unique challenges arising from programs running on widely differing
architectures. These multi-architecture issues can add significant communication
overhead, so the part of an algorithm dependent on the performance of iMPI must
be relatively coarse-grained.

MPMD programs are rare. As increasingly complicated coupled simulations
grow in importance, however, use of the MPMD pattern will increase. Use of this
pattern will also grow as grid technology becomes more robust and more widely
deployed.
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Client-Server Computing

Client-server architectures are related to MPMD. Traditionally, these systems have
comprised two or three tiers where the front end is a graphical user interface exe-
cuted on a client’s computer and a mainframe back end (often with multiple proces-
sors) provides access to a database. The middle tier, if present, dispatches requests
from the clients to (possibly multiple) back ends. Web servers are a familiar ex-
ample of a client-server system. More generally, a server might offer a variety of
services to clients, an essential aspect of the system being that services have well-
defined interfaces. Parallelism can appear at the server (which can service many
clients concurrently or can use parallel processing to obtain results more quickly
for single requests) and at the client (which can initiate requests at more than one
server simultaneously).

Techniques used in client-server systems are especially important in heteroge-
neous systems. Middleware such as CORBA [COR] provides a standard for service
interface specifications, enabling new programs to be put together by composing
existing services, even if those services are offered on vastly different hardware plat-
forms and implemented in different programming languages. CORBA also provides
facilities to allow services to be located. The Java J2EE (Java 2 Platform, Enter-
prise Edition) [Javb] also provides significant support for client-server applications.
In both of these cases, interoperability was a major design force.

Client-server architectures have traditionally been used in enterprise rather
than scientific applications. Grid technology, which is heavily used in scientific com-
puting, borrows from client-server technology, extending it by blurring the distinc-
tion between clients and servers. All resources in a grid, whether they are computers,
instruments, file systems, or anything else connected to the network, are peers and
can serve as clients and servers. The middleware provides standards-based interfaces
to tie the resources together into a single system that spans multiple administrative
domains.

Concurrent Programming with Declarative Languages

The overwhelming majority of programming is done with imperative languages such
as C++, Java, or Fortran, This is particularly the case for traditional applications
in science and engineering. The artificial intelligence community and a small subset
of academic computer scientists, however, have developed and shown great success
with a different class of languages, the declarative languages. In these languages, the
programmer describes a problem, a problem domain, and the conditions solutions
must satisfy. The runtime system associated with the language then uses these to
find valid solutions.

Declarative semantics impose a different style of programming that overlaps
with the approaches discussed in this pattern language, but has some significant
differences. There are two important classes of declarative languages: functional
languages and logic programming languages.

Logic programming languages are based on formal rules of logical inference.
The most common logic programming language by far is Prolog [SS94], a program-
ming language based on first-order predicate calculus. When Prolog is extended
to support expression of concurrency, the result is a concurrent logic programming
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language. Concurrency is exploited in one of three ways with these Prolog exten-
sions: and-parallelism (execute multiple predicates), or-parallelism (execute mul-
tiple guards), or through explicit mapping of predicates linked together through
single-assignment variables [CGS6).

Concurrent logic programming languages were a hot area of research in the
late 1980s and early 1990s. They ultimately failed because most programmers were
deeply committed to more traditional imperative languages. Even with the advan-
tages of declarative semantics and the value of logic programming for symbolic
reasoning, the learning curve associated with these languages proved prohibitive.

The older and more established class of declarative programming languages
is based on functional programming models [Hud89]. LISP is the oldest and best
known of the functional languages. In pure functional languages, there are no side ef-
fects from a function. Therefore, functions can execute as soon as their input data is
available. The resulting algorithms express concurrency in terms of the flow of data
through the program leading, thereby resulting in “data-flow” algorithims [Jag96].

The best-known concurrent functional languages are Sisal [FCO90], Coneur-
rent ML [Rep99, Con| (an extension to ML), and Haskell [HPF]. Because mathe-
matical expressions are naturally written down in a functional notation, Sisal was
particularly straightforward to work with in science and engineering applications
and proved to be highly efficient for parallel programming. However, just as with
the logic programming languages, programmers were unwilling to part with their fa-
miliar imperative languages, and Sisal essentially died. Concurrent ML and Haskell
have not made major inroads into high-performance computing, although both
remain popular in the functional programming community.

Problem-Solving Environments

A discussion of supporting structures for parallel algorithms would not be complete
without mentioning problem-solving environments (PSE). A PSE is a programming
environment specialized to the needs of a particular class of problems. When applied
to parallel computing, PSEs also imply a particular algorithm structure as well.

The motivation behind PSEs is to spare the application programmer the low-
level details of the parallel system. For example, PETsc (Portable, Extensible,
Toolkit for Scientific Computation) [BGMS98] supports a variety of distributed
data structures and functions required to use them for solving partial differential
equations (typically for problems fitting the Geometric Decomposition pattern).
The programmer needs to understand the data structures within PETSe, but is
spared the need to master the details of how to implement them efficiently and
portably. Other important PSEs are PLAPACK [ABE*97] (for dense linear alge-
bra problems) and POOMA [RHC"96] (an object-oriented framework for scientific
computing).

PSEs have not been very well accepted. PETSc is probably the only PSE that
is heavily used for serious application programming. The problem is that by tying
themselves to a narrow class of problems, PSEs restrict their potential audience and
have a difficult time reaching a critical mass of users. We believe that over time and
as the core patterns behind parallel algorithms become better understood. PSEs
will be able to broaden their impact and play a more dominant role in parallel
programming,.



