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3.1 ABOUT THE DESIGN SPACE

The software designer works in a number of domains. The design process starts in
the problem domain with design elements directly relevant to the problem being
solved (for example, fluid flows, decision trees, atoms, etc.). The ultimate aim of the
design is software, so at some point, the design elements change into ones relevant
to a program (for example, data structures and software modules). We call this the
program domain. Although it is often tempting to move into the program domain
~ as soon as possible, a designer who moves out of the problem domain too soon may
miss valuable design options.

This is particularly relevant in parallel programming. Parallel programs at-
tempt to solve bigger problems in less time by simultaneously solving different parts
of the problem on different processing elements. This can only work, however, if the
problem contains exploitable concurrency, that is, multiple activities or fasks that
can execute at the same time. After a problem has been mapped onto the program
domain, however, it can be difficult to see opportunities to exploit concurrency.

Hence, programmers should start their design of a parallel solution by ana-
lyzing the problem within the problem domain to expose exploitable concurrency.
We call the design space in which this analysis is carried out the Finding Concur-
rency design space. The patterns in this design space will help identify and analyze
the exploitable concurrency in a problem. After this is done, one or more patterns
from the Algorithm Structure space can be chosen to help design the appropriate
algorithm structure to exploit the identified concurrency.
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Figure 3.1: Overview of the Finding Concurrency design space and its place in the pattern language

An overview of this design space and its place in the pattern language is shown
in Fig. 3.1.

Experienced designers working in a familiar domain may see the exploitable
concurrency immediately and could move directly to the patterns in the Algorithm
Structure design space.

Overview

Before starting to work with the patterns in this design space, the algorithm de-
signer must first consider the problem to be solved and make sure the effort to
create a parallel program will be justified: Is the problem large enough and the
results significant enough to justify expending effort to solve it faster? If so, the
next step is to make sure the key features and data elements within the problem
are well understood. Finally, the designer needs to understand which parts of the
problem are most computationally intensive, because the effort to parallelize the
problem should be focused on those parts.

After this analysis is complete, the patterns in the Finding Concurrency design
space can be used to start designing a parallel algorithm. The patterns in this design
space can be organized into three groups.

o Decomposition Patterns. The two decomposition patterns, Task Decom-
position and Data Decomposition, are used to decompose the problem into
pieces that can execute concurrently.

e Dependency Analysis Patterns. This group contains three patterns that
help group the tasks and analyze the dependencies among them: Group Tasks,
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Order Tasks, and Data Sharing. Nominally, the patterns are applied in this
order. In practice, however, it is often necessary to work back and forth
between them, or possibly even revisit the decomposition patterns.

o Design Evaluation Pattern. The final pattern in this space guides the al-
gorithm designer through an analysis of what has been done so far before
moving on to the patterns in the Algorithm Structure design space. This pat-
tern is important because it often happens that the best design is not found
on the first attempt, and the earlier design flaws are identified, the easier they
are to correct. In general, working through the patterns in this space is an
iterative process.

3.1.2 Using the Decomposition Patterns

The first step in designing a parallel algorithm is to decompose the problem into
elements that can execute concurrently. We can think of this decomposition as
ocecurring in two dimensions.

e The task-decomposition dimension views the problem as a stream of instruc-
tions that can be broken into sequences called tasks that can execute simulta-
neously. For the computation to be efficient, the operations that make up the
task should be largely independent of the operations taking place inside other
tasks.

o The data-decomposition dimension focuses on the data required by the tasks
and how it can be decomposed into distinct chunks. The computation asso-
ciated with the data chunks will only be efficient if the data chunks can be
operated upon relatively independently.

Viewing the problem decomposition in terms of two distinct dimensions is
somewhat artificial. A task decomposition implies a data decomposition and vice
versa; hence, the two decompositions are really different facets of the same fun-
damental decomposition. We divide them into separate dimensions, however, be-
cause a problem decomposition usually proceeds most naturally by emphasizing one
dimension of the decomposition over the other. By making them distinct, we make
this design emphasis explicit and easier for the designer to understand.

3.1.3 Background for Examples

In this section, we give background information on some of the examples that are
used in several patterns. It can be skipped for the time being and revisited later
when reading a pattern that refers to one of the examples.

Medical imaging. PET (Positron Emission Tomography) scans provide an im-
portant diagnostic tool by allowing physicians to observe how a radioactive sub-
stance propagates through a patient’s body. Unfortunately, the images formed from
the distribution of emitted radiation are of low resolution, due in part to the scat-
tering of the radiation as it passes through the body. It is also difficult to reason
from the absolute radiation intensities, because different pathways through the body
attenuate the radiation differently.
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To solve this problem, models of how radiation propagates through the body
are used to correct the images. A common approach is to build a Monte Carlo model,
as described by Ljungberg and King [LK98]. Randomly selected points within the
body are assumed to emit radiation (usually a gamma ray), and the trajectory of
each ray is followed. As a particle (ray) passes through the body, it is attenuated
by the different organs it traverses, continuing until the particle leaves the body
and hits a camera model, thereby defining a full trajectory. To create a statistically
significant simulation, thousands, if not millions, of trajectories are followed.

This problem can be parallelized in two ways. Because each trajectory is inde-
pendent, it is possible to parallelize the application by associating each trajectory
with a task. This approach. is discussed in the Examples section of the Task Decom-
position pattern. Another approach would be to partition the body into sections and
assign different sections to different processing elements. This approach is discussed
in the Examples section of the Data Decomposition pattern.

Linear algebra. Linear algebra is an important tool in applied mathematics:
It provides the machinery required to analyze solutions of large systems of linear
equations. The classic linear algebra problem asks, for matrix A and vector b, what
values for z will solve the equation

A-z=0b (3.1)

The matrix A in Eq. 3.1 takes on a central role in linear algebra. Many problems

. are expressed in terms of transformations of this matrix. These transformations are

applied by means of a matrix multiplication
C=T-4A (3.2)

If T, A, and C are square matrices of order N, matrix multiplication is defined such
that each element of the resulting matrix C is

N-1
Cig= Y Tik " Ak (33)
k=0

where the subscripts denote particular elements of the matrices. In other words,
the element of the product matrix C in row ¢ and column j is the dot product
of the i-th row of T' and the j-th column of A. Hence, computing each of the N?
elements of C requires N multiplications and N — 1 additions, making the overall
complexity of matrix multiplication O(N3).

There are many ways to parallelize a matrix multiplication operation. It can
be parallelized using either a task-based decomposition (as discussed in the Exam-
ples section of the Task Decomposition pattern) or a data-based decomposition (as
discussed in the Examples section of the Data Decomposition pattern).

Molecular dynamics. Molecular dynamics is used to simulate the motions of a
large molecular system. For example, molecular dynamics simulations show how a
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large protein moves around and how differently shaped drugs might interact with
the protein. Not surprisingly, molecular dynamics is extremely important in the
pharmaceutical industry. It is also a useful test problem for computer scientists
working on parallel computing: It is straightforward to understand, relevant to
science at large, and difficult to parallelize effectively. As a result, it has been the
subject of much research [Mat94, PH95, P1i95].

The basic idea is to treat a molecule as a large collection of balls connected by
springs. The balls represent the atoms in the molecule, while the springs represent
the chemical bonds between the atoms. The molecular dynamics simulation itself
is an explicit time-stepping process. At each time step, the force on each atom is
computed and then standard classical mechanics techniques are used to compute
how the force moves the atoms. This process is carried out repeatedly to step
through time and compute a trajectory for the molecular system.

The forces due to the chemical bonds (the “springs”) are relatively simple to
compute. These correspond to the vibrations and rotations of the chemical bonds
themselves. These are short-range forces that can be computed with knowledge
of the handful of atoms that share chemical bonds. The major difficulty arises
because the atoms have partial clectrical charges. Hence, while atoms only interact
with a small neighborhood of atoms through their chemical bonds, the electrical
charges cause every atom to apply a force on every other atom.

This is the famous N-body problem. On the order of N? terms must be
computed to find these nonbonded forces. Because N is large (tens or hundreds of
thousands) and the number of time steps in a simulation is huge (tens of thousands),
the time required to compute these nonbonded forces dominates the computation.
Several ways have been proposed to reduce the effort required to solve the N-body
problem. We are only going to discuss the simplest one: the cutoff method.

The idea is simple. Even though each atom exerts a force on every other atom,
this force decreases with the square of the distance between the atoms. Hence, it
should be possible to pick a distance beyond which the force contribution is so small
that it can be ignored. By ignoring the atoms that exceed this cutoff, the problem is
reduced to one that scales as O(N X n), where n is the number of atoms within the
cutoff volume, usually hundreds. The computation is still huge, and it dominates
the overall runtime for the simulation, but at least the problem is tractable.

There are a host of details, but the basic simulation can be summarized as in
Fig. 3.2.

The primary data structures hold the atomic positions (atoms), the velocities
of each atom (velocity), the forces exerted on each atom (forces), and lists of
atoms within the cutoff distance of each atoms (neighbors). The program itself is
a time-stepping loop, in which each iteration computes the short-range force terms,
updates the neighbor lists, and then finds the nonbonded forces. After the force on
each atom has been computed, a simple ordinary differential equation is solved to
update the positions and velocities. Physical properties based on atomic motions
are then updated, and we go to the next time step.

There are many ways to parallelize the molecular dynamics problem. We con-
sider the most common approach, starting with the task decomposition (discussed
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Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: velocities (3,N) //welocity vector
Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff wolume

loop over time steps
vibrational_forces (N, atoms, forces)
rotational_forces (N, atoms, forces)
neighbor_list (N, atoms, neighbors)
non_bonded_forces (N, atoms, neighbors, forces)
update_atom_positions_and_velocities(
N, atoms, velocities, forces)
physical_properties ( ... Lots of stuff ... )
end loop

Figure 3.2: Pseudocode for the molecular dynamics example

in the Task Decomposition pattern) and following with the associated data decom-
position (discussed in the Data Decomposition pattern). This example shows how
the two decompositions fit together to guide the design of the parallel algorithm.

3.2 THE TASK DECOMPOSITION PATTERN

Problem

How can a problem be decomposed into tasks that can execute concurrently?

Context

Every parallel algorithm design starts from the same point, namely a good under-
standing of the problem being solved. The programmer must understand which are
the computationally intensive parts of the problem, the key data structures, and
how the data is used as the problem’s solution unfolds.

The next step is to define the tasks that make up the problem and the
data decomposition implied by the tasks. Fundamentally, every parallel algorithm
involves a collection of tasks that can execute concurrently. The challenge is to find
these tasks and craft an algorithm that lets them run concurrently.

In some cases, the problem will naturally break down into a collection of
independent (or nearly independent) tasks, and it is easiest to start with a task-based
decomposition. In other cases, the tasks are difficult to isolate and the decomposition
of the data (as discussed in the Data Decomposition pattern) is a better starting
point. It is not always clear which approach is best, and often the algorithm designer
needs to consider both.

Regardless of whether the starting point is a task-based or a data~based de-
composition, however, a parallel algorithm ultimately needs tasks that will execute
concurrently, so these tasks must be identified.
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Forces

The main forces influencing the design at this point are flexibility, efficiency, and
simplicity.

e Flexibility. Flexibility in the design will allow it to be adapted to different
implementation requirements. For example, it is usually not a good idea to
narrow the options to a single computer system or style of programming at
this stage of the design.

o Efficiency. A parallel program is only useful if it scales efficiently with the
size of the parallel computer (in terms of reduced runtime and/or memory
utilization). For a task decomposition, this means we need enough tasks to
keep all the PEs busy, with eriough work per task to compensate for overhead
incurred to manage dependencies. However, the drive for efficiency can lead
to complex decompositions that lack flexibility.

Simplicity. The task decomposition needs to be complex enough to get the
job done, but simple enough to let the program be debugged and maintained
with reasonable effort.

Solution

The key to an effective task decomposition is to ensure that the tasks are sufficiently
independent so that managing dependencies takes only a small fraction of the pro-
gram’s overall execution time. It is also important to ensure that the execution of
the tasks can be evenly distributed among the ensemble of PEs (the load-balancing
problem).

In an ideal world, the compiler would find the tasks for the programmer.
Unfortunately, this almost never happens. Instead, it must usually be done by hand
based on knowledge of the problem and the code required to solve it. In some cases,
it might be necessary to completely recast the problem into a form that exposes
relatively independent tasks.

In a task-based decomposition, we look at the problem as a collection of
distinct tasks, paying particular attention to

e The actions that are carried out to solve the problem. (Are there enough of
them to keep the processing elements on the target machines busy?)

e Whether these actions are distinct and relatively independent.

As a first pass, we try to identify as many tasks as possible; it is much easier
to start with too many tasks and merge them later on than to start with too few
tasks and later try to split them.

Tasks can be found in many different places.

e In some cases, each task corresponds to a distinct call to a function. Defining
a task for each function call leads to what is sometimes called a functional
decomposition.
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e Another place to find tasks is in distinct iterations of the loops within an
algorithm. If the iterations are independent and there are enough of them,
then it might work well to base a task decomposition on mapping each iter-
ation onto a task. This style of task-based decomposition leads to what are
sometimes called loop-splitting algorithms.

e Tasks also play a key role in data-driven decompositions. In this case, a large
data structure is decomposed and multiple units of execution concurrently
update different chunks of the data structure. In this case, the tasks are those
updates on individual chunks.

Also keep in mind the forces given in the Forces section:

Flexibility. The design needs to be flexible in the number of tasks generated.
Usually this is done by parameterizing the number and size of tasks on some
appropriate dimension. This will let the design be adapted to a wide range of
parallel computers with different numbers of processors.

¢ Efficiency. There are two major efficiency issues to consider in the task
decomposition. First, each task must include enough work to compensate for
the overhead incurred by creating the tasks and managing their dependencies.
Second, the number of tasks should be large enough so that all the units of
execution are busy with useful work throughout the computation.

e Simplicity. Tasks should be defined in a way that makes debugging and
maintenance simple. When possible, tasks should be defined so they reuse
code from existing sequential programs that solve related problems.

After the tasks have been identified, the next step is to look at the data
decomposition implied by the tasks. The Data Decomposition pattern may help
with this analysis.

Examples

Medical imaging. Consider the medical imaging problem described in Sec. 3.1.3.
In this application, a point inside a model of the body is selected randomly, a
radioactive decay is allowed to occur at this point, and the trajectory of the emitted
particle is followed. To create a statistically significant simulation, thousands, if not
millions, of trajectories are followed.

It is natural to associate a task with each trajectory. These tasks are par-
ticularly simple to manage concurrently because they are completely independent.
TFurthermore, there are large numbers of trajectories, so there will be many tasks,
making this decomposition suitable for a large range of computer systems, from
a shared-memory system with a small number of processing elements to a large
cluster with hundreds of processing elements.

With the basic tasks defined, we now consider the corresponding data
decomposition—that is, we define the data associated with each task. Each task
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needs to hold the information defining the trajectory. But that is not all: The tasks
need access to the model of the body as well. Although it might not be apparent from
our description of the problem, the body model can be extremely large. Because
it is a read-only model, this is no problem if there is an effective shared-memory
system; each task can rcad data as needed. If the target platform is based on a
distributed-memory architecture, however, the body model will need to be repli-
cated on each PE. This can be very time-consuming and can waste a great deal of
memory. For systems with small memories per PE and/or with slow networks be-
tween PEs, a decomposition of the problem based on the body model might be more
effective.

This is a common situation in parallel programming: Many problems can be
decomposed primarily in terms of data or primarily in terms of tasks. If a task-based
decomposition avoids the need to break up and distribute complex data structures,
it will be a much simpler program to write and debug. On the other hand, if mem-
ory and/or network bandwidth is a limiting factor, a decomposition that focuses on
the data might be more effective. It is not so much a matter of one approach being
“better” than another as a matter of balancing the needs of the machine with the
needs of the programmer. We discuss this in more detail in the Data Decomposition
pattern.

Matrix multiplication. Consider the multiplication of two matrices (C = A - B),
as described in Sec. 3.1.3. We can produce a task-based decomposition of this
problem by considering the calculation of each element of the product matrix as a
separate task. Fach task needs access to one row of A and one column of B. This
decomposition has the advantage that all the tasks are independent, and because all
the data that is shared among tasks (4 and B) is read-only, it will be straightforward
to implement in a shared-memory environment.

The performance of this algorithm, however, would be poor. Consider the
case where the three matrices are square and of order N. For each element of C, N
elements from A and N elements from B would be required, resulting in 2N memory
references for N multiply/add operations. Memory access time is slow compared to
floating-point arithmetic, so the bandwidth of the memory subsystem would limit
the performance.

A better approach would be to design an algorithm that maximizes reuse
of data loaded into a processor’s caches. We can arrive at this algorithm in two
different ways. First, we could group together the elementwise tasks we defined
earlier so the tasks that use similar elements of the A and B matrices run on the
same UE (see the Group Tasks pattern). Alternatively, we could start with the
data decomposition and design the algorithm from the beginning around the way
the matrices fit into the caches. We discuss this example further in the Examples
section of the Data Decomposition pattern.

Molecular dynamics. Consider the molecular dynamics problem described in

Sec. 3.1.3. Pseudocode for this example is shown again in Fig. 3.3. .
Before performing the task decomposition, we need to better understand some

details of the problem. First, the neighbor_list () computation is time-consuming.
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Int const N // number of atoms

Array of Real :: atoms (3,N) //3D coordinates

Array of Real :: velocities (3,N) //velocity vector
Array of Real :: forces (3,N) //force in each dimension
Array of List :: neighbors(N) //atoms in cutoff wolume

loop over time steps
vibrational_forces (N, atoms, forces)
rotational_forces (N, atoms, forces)
neighbor_list (N, atoms, neighbors)
non_bonded_forces (N, atoms, neighbors, forces)
update_atom_positions_and_velocities(
N, atoms, velocities, forces)
physical_properties ( ... Lots of stuff ... )
end loop

Figure 3.3: Pseudocode for the molecular dynamics example

The gist of the computation is a loop over each atom, inside of which every other
atom is checked to determine whether it falls within the indicated cutoff volume.
Fortunately, the time steps are very small, and the atoms don’t move very much in
any given time step. Hence, this time-consuming computation is only carried out
every 10 to 100 steps.

Second, the physical_properties() function computes energies, correlation
coefficients, and a host of interesting physical properties. These computations, how-
ever, are simple and do not significantly affect the program’s overall runtime, so we
will ignore them in this discussion.

Because the bulk of the computation time will be in non_bonded_forces(),
we must pick a problem decomposition that makes that computation run efficiently
in parallel. The problem is made easier by the fact that each of the functions
inside the time loop has a similar structure: In the sequential version, each function
includes a loop over atoms to compute contributions to the force vector. Thus, a
natural task definition is the update required by each atom, which corresponds to
a loop iteration in the sequential version. After performing the task decomposition,
therefore, we obtain the following tasks.

e Tasks that find the vibrational forces on an atom
e Tasks that find the rotational forces on an atom
o Tasks that find the nonbonded forces on an atom

e Tasks that update the position and velocity of an atom

A task to update the neighbor list for all the atoms (which we will leave
sequential)

With our collection of tasks in hand, we can consider the accompanying
data decomposition. The key data structures are the neighbor list, the atomic
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coordinates, the atomic velocities, and the force vector. Every iteration that updates
the force vector needs the coordinates of a neighborhood of atoms. The computation
of nonbonded forces, however, potentially needs the coordinates of all the atoms,
because the molecule being simulated might fold back on itself in unpredictable
ways. We will use this information to carry out the data decomposition (in the
Data Decomposition pattern) and the data-sharing analysis (in the Data Sharing
pattern).

Known uses. Task-based decompositions are extremely common in parallel com-
puting. For example, the distance geometry code DGEOM [Mat96] uses a task-
based decomposition, as does the parallel WESDYN molecular dynamics program
[MR95].

THE DATA DECOMPOSITION PATTERN

Problem

How can a problem’s data be decomposed into units that can be operated on
relatively independently?

Context

The parallel algorithm designer must have a detailed understanding of the problem
being solved. In addition, the designer should identify the most computationally
intensive parts of the problem, the key data structures required to solve the problem,
and how data is used as the problem’s solution unfolds.

After the basic problem is understood, the parallel algorithm designer should
consider the tasks that make up the problem and the data decomposition implied
by the tasks. Both the task and data decompositions need to be addressed to create
a parallel algorithm. The question is not which decomposition to do. The question
is which one to start with. A data-based decomposition is a good starting point if
the following is true.

e The most computationally intensive part of the problem is organized around
the manipulation of a large data structure.

o Similar operations are being applied to different parts of the data structure,
in such a way that the different parts can be operated on relatively indepen-
dently.

For example, many linear algebra problems update large matrices, applying a
similar set of operations to each element of the matrix. In these cases, it is straight-
forward to drive the parallel algorithm design by looking at how the matrix can
be broken up into blocks that are updated concurrently. The task definitions then
follow from how the blocks are defined and mapped onto the processing elements
of the parallel computer.
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Forces

The main forces influencing the design at this point are flexibility, efficiency, and
simplicity. ) :

e Flexibility. Flexibility will allow the design to be adapted to different imple-
mentation requirements. For example, it is usually not a good idea to narrow
the options to a single computer system or style of programiming at this stage
of the design.

¢ Efficiency. A parallel program is only useful if it scales efficiently with the
size of the parallel computer (in terms of reduced runtime and/or memory
utilization).

e Simplicity. The decomposition needs to be complex enough to get the job
done, but simple enough to let the program be debugged and maintained with
reasonable effort.

Solution

In shared-memory programming environments such as OpenMP, the data decompo-
sition will frequently be implied by the task decomposition. In most cases, however,
the decomposition will need to be done by hand, because the memory is phys-
ically distributed, because data dependencies are too complex without explicitly
decomposing the data, or to achieve acceptable efficiency on a NUMA computer.

If a task-based decomposition has already been done, the data decomposition
is driven by the needs of each task. If well-defined and distinct data can be associated
with each task, the decomposition should be simple.

When starting with a data decomposition, however, we need to look not at the
tasks, but at the central data structures defining the problem and consider whether
they can they be broken down into chunks that can be operated on concurrently.
A few common examples include the following,.

e Array-based computations. Concurrency can be defined in terms of up-
dates of different segments of the array. If the array is multidimensional, it
can be decomposed in a variety of ways (rows, columns, or blocks of varying
shapes).

e Recursive data structures. We can think of, for example, decomposing
the parallel update of a large tree data structure by decomposing the data
structure into subtrees that can be updated concurrently.

Regardless of the nature of the underlying data structure, if the data decom-
position is the primary factor driving the solution to the problem, it serves as the
organizing principle of the parallel algorithm.

When considering how to decompose the problem’s data structures, keep in
mind the competing forces.
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e Flexibility. The size and number of data chunks should be flexible to sup-
port the widest range of parallel systems. One approach is to define chunks
whose size and number are controlled by a small number of parameters. These
parameters define granularity knobs that can be varied to modify the size
of the data chunks to match the needs of the underlying hardware. (Note,
however, that many designs are not infinitely adaptable with respect fo
granularity.) .

The easiest place to see the impact of granularity on the data decomposi-
tion is in the overhead required to manage dependencies between chunks. The
time required to manage dependencies must be small compared to the overall
runtime. In a good data decomposition, the dependencies scale at a lower
dimension than the computational effort associated with each chunk. For ex-
ample, in many finite difference programs, the cells at the boundaries between
chunks, that is, the surfaces of the chunks, must be shared. The size of the set
of dependent cells scales as the surface area, while the effort required in the
computation scales as the volume of the chunk. This means that the compu-
tational effort can be scaled (based on the chunk’s volume) to offset overheads
associated with data dependencics (based on the surface area of the chunk).

e Efficiency. It is important that the data chunks be large enough that the
amount of work to update the chunk offsets the overhead of managing depen-
dencies. A more subtle issue to consider is how the chunks map onto UEs.
An effective parallel algorithm must balance the load between UEs. If this
isn’t done well, some PEs might have a disproportionate amount of work,
and the overall scalability will suffer. This may require clever ways to brea.,k
up the problem. For example, if the problem clears the columns in a matrix
from left to right, a column mapping of the matrix will cause problems as
the UEs with the leftmost columns will finish their work before the others.
A row-based block decomposition or even a block-cyclic decomposition (in
which rows are assigned cyclically to PEs) would do a much better job of
keeping all the processors fully occupied. These issues are discussed in more
detail in the Distributed Array pattern.

Simplicity. Overly complex data decompositions can be very difficult t‘o de-
bug. A data decomposition will usually require a mapping of a global 1nd0.x
space onto a task-local index space. Making this mapping abstract allows it
to be easily isolated and tested.

After the data has been decomposed, if it has not already been done, the
next step is to look at the task decomposition implied by the tasks. The Tuask
Decomposition pattern may help with this analysis.

Examples

Medical imaging. Consider the medical imaging problem described in Sec. 3.1.3.
In this application, a point inside a model of the body is selected randomly, a
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radioactive decay is allowed to occur at this point, and the trajectory of the emitted
particle is followed. To create a statistically significant simulation, thousands if not
millions of trajectories are followed.

In a data-based decomposition of this problem, the body model is the large
central data structure around which the computation can be organized. The model
is broken into segments, and one or more segments are associated with each process-
ing element. The body segments are only read, not written, during the trajectory
computations, so there are no data dependencies created by the decomposition of
the body model. :

After the data has been decomposed, we need to look at the tasks associated
with each data segment. In this case, each trajectory passing through the data
segment defines a task. The trajectories are initiated and propagated within a
segment. When a segment boundary is encountered, the trajectory must be passed
between segments. It is this transfer that defines the dependencies between data
chunks. :

On the other hand, in a task-based approach to this problem (as discussed
in the Task Decomposition pattern), the trajectories for each particle drive the
algorithm design. Each PE potentially needs to access the full body model to service
its set of trajectories. In a shared-memory environment, this is easy because the
body model is a read-only data set. In a distributed-memory environment, however,
this would require substantial startup overhead as the body model is broadcast
across the system.

This is a common situation in parallel programming: Different points of view
lead to different algorithms with potentially very different performance characteris-
tics. The task-based algorithm is simple, but it only works if each processing element
has access to a large memory and if the overhead incurred loading the data into
memory is insignificant compared to the program’s runtime. An algorithm driven
by a data decomposition, on the other hand, makes efficient use of memory and
(in distributed-memory environments) less use of network bandwidth, but it incurs
more communication overhead during the concurrent part of computation and is
significantly more complex. Choosing which is the appropriate approach can be
difficult and is discussed further in the Design Evaluation pattern.

Matrix multiplication. Consider the standard multiplication of two matrices
(C = A- B), as described in Sec. 3.1.3. Several data-based decompositions are pos-
sible for this problem. A straightforward one would be to decompose the product
matrix C' into a set of row blocks (set of adjacent rows). From the definition of
matrix multiplication, computing the elements of a row block of C requires the full
A matrix, but only the corresponding row block of B. With such a data decompo-
sition, the basic task in the algorithm becomes the computation of the elements in
a row block of C.

An even more effective approach that does not require the replication of the
full A matrix is to decompose all three matrices into submatrices or blocks. The
basic task then becomes the update of a C' block, with the A and B blocks being
cycled among the tasks as the computation proceeds. This decomposition, how-
ever, is much more complex to program; communication and computation must
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be carefully coordinated during the most time-critical portions of the problem. We
discuss this example further in the Geometric Decomposition and Distributed Array
ns. .
patterOne of the features of the matrix multiplication problem is that the ram‘o
of floating-point operations (O(N?3)) to memory references (O(N?)) is small. This
implies that it is especially important to take into account the TMEmory access
patterns to maximize reuse of data from the cache. The mos.t effective approach is
to use the block (submatrix) decomposition and adjust the size of the blocks so ‘Fhe
problems fit into cache. We could arrive at the same algorithm by carefullyl grouping
together the elementwise tasks that were identified in the Exan}p.les section ‘of Fhe
Task Decomposition pattern, but starting with a data decomposition and assigning
a task to update each submatrix seems easier to understand.

Molecular dynamics. Consider the molecular dynamics problem described i.n
Sec. 3.1.3 and in the Examples section of the Task Decompois*z'tzon pattemv. This
problem naturally breaks down into a task decomposition W.Ith a ta‘sk being an
iteration of the loop over atoms in each of the force computation routines. _
Summarizing our problem and its task decomposition, we have the following:

e Tasks that find the vibrational forces on an atom

o Tasks that find the rotational forces on an atom

e Tasks that find the nonbonded forces on an atom

e Tasks that update the position and velocity of an atom

e A task to update the neighbor list for all the atoms (which we will leave
sequential)

The key data structures are

e An array of atom coordinates, one element per atom
e An array of atom velocities, one element per atom

e An array of lists, one per atom, each defining the neighborhood of atoms
within the cutoff distance of the atom

e An array of forces on atoms, one element per atom

An element of the velocity array is used only by the task owning the corre-
sponding atom. This data does not need to be shared and can ‘remain local 1:,0 t}}e
task. Every task, however, needs access to the full array of coordinates. Thus, it w1.11
make sense to replicate this data in a distributed-memory environment or share it
among UEs in a shared-memory environment. .

More interesting is the array of forces. From Newton’s third law, .the force
from atom ¢ on atom j is the negative of the force from atom j on atom . We can
exploit this symmetry to cut the amount of computation in half as we accumulate
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the force terms. The values in the force array are not in the computation until
the last steps in which the coordinates and velocities are updated. Therefore, the
approach used is to initialize the entire force array on each PE and have the tasks
accumulate partial sums of the force terms into this array. After all the partial force
terms have completed, we sum all the PEs’ arrays together to provide the final force
array. We discuss this further in the Data Sharing pattern.

Known uses. Data decompositions are very common in parallel scientific com-
puting. The parallel linear algebra library ScaLAPACK [Sca, BCC*97] uses block-
based decompositions. The PLAPACK environment [vdG97] for dense linear al-
gebra problems uses a slightly different approach to data decomposition. If, for
example, an equation of the form y = Az appears, instead of first partitioning ma-
trix A, the vectors y and z are partitioned in a natural way and then the induced
partition on A is determined. The authors report better performance and easier
implementation with this approach.

The data decomposition used in our molecular dynamics example is described
by Mattson and Ravishanker [MR95]. More sophisticated data decompositions for
this problem that scale better for large numbers of nodes are discussed by Plimpton
and Hendrickson [PH95, P1i95].

3.4 THE GROUP TASKS PATTERN

Problem

How can the tasks that make up a problem be grouped to simplify the job of
managing dependencies?

Context

This pattern can be applied after the corresponding task and data decompositions
have been identified as discussed in the Task Decomposition and Data Decomposi-
tion patterns.

This pattern describes the first step in analyzing dependencies among the
tasks within a problem’s decomposition. In developing the problem’s task decom-
position, we thought in terms of tasks that can execute concurrently. While we did
not emphasize it during the task decomposition, it is clear that these tasks do not
constitute a flat set. For example, tasks derived from the same high-level operation
in the algorithm are naturally grouped together. Other tasks may not be related
in terms of the original problem but have similar constraints on their concurrent
execution and can thus be grouped together.

In short, there is considerable structure to the set of tasks. These structures—
these groupings of tasks—simplify a problem’s dependency analysis. If a group
shares a temporal constraint (for example, waiting on one group to finish filling
a file before another group can begin reading it), we can satisfy that constraint
once for the whole group. If a group of tasks must work together on a shared data
structure, the required synchronization can be worked out once for the whole group.
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If a set of tasks are independent, combining them into a gingle group and scheduling
them for execution as a single large group can simplify the design and increase the
available concurrency (thereby letting the solution scale to more PEs).

In each case, the idea is to define groups of tasks that share constraints and
simplify the problem of managing constraints by dealing with groups rather than
individual tasks.

Solution
Constraints among tasks fall into a few major categories.

e The easiest dependency to understand is a temporal dependency——that is,
4 constraint on the order in which a collection of tasks executes. If task A
depends on the results of task B, for example, then task A must wait until
task B completes before it can execute. We can usually think of this case
in terms of data flow: Task A is blocked waiting for the data to be ready
from task B; when B completes, the data flows into A. In some cases, A can
begin computing as soon as data starts to flow from B (for example, pipeline
algorithms as described in the Pipeline pattern).

e Another type of ordering constraint occurs when a collection of tasks must
run at the same time. For example, in many data-parallel problems, the orig-
inal problem domain is divided into multiple regions that can be updated in
parallel. Typically, the update of any given region requires information about
the boundaries of its neighboring regions. If all of the regions are not pro-
cessed at the same time, the paralle]l program could stall or deadlock as some
regions wait for data from inactive regions.

e In some cases, tasks in a group are truly independent of each other. These
tasks do not have an ordering constraint among therm. This is an important
feature of a set of tasks because it means they can execute in any order,
including concurrently, and it is important to clearly note when this holds.

The goal of this pattern is to group tasks based on these constraints, because
of the following.
e By grouping tasks, we simplify the establishment of partial orders between
tasks, since ordering consfraints can be applied to groups rather than to
individual tasks.

e Grouping tasks makes it easier to identify which tasks must execute concur-

rently.

For a given problem and decomposition, there may be many ways to group
tasks. The goal is to pick a grouping of tasks that simplifies the dependency analysis.
To clarify this point, think of the dependency analysis as finding and satisfying
constraints on the concurrent. execution of a program. When tasks share a set of
constraints, it simplifies the dependency analysis to group them together.
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4 Th-ere is no single way to find task groups. We suggest the following approach
keeping in mind that while one cannot think about task groups without considerin :
the con.straints themselves, at this point in the design, it is best to do so as abstractlg
as possible—identify the constraints and group tasks to help resolve them, but t !
not to get bogged down in the details. ’ ’ v

e First, look at how the original problem was decomposed. In most cases, a high-
level operation (for example, solving a matrix) or a large iterative I;rogram
strl.lci:;ure (for example, a loop) plays a key role in defining the decomposition
This is the first place to look for grouping tasks. The tasks that corresponci
to a high-level operation naturally group together.

At this point, there may be many small groups of tasks. In the next
step, we will look at the constraints shared between the tasks within a grou
If the tasks share a constraint—usually in terms of the update of a sharffci
data structure—keep them as a distinct group. The algorithm design will
need to ensure that these tasks execute at the same time. For example, many
problems involve the coordinated update of a shared data structure b;f a set
of tasks. If these tasks do not run concurrently, the program could deadlock.

Next, we ask if any other task groups share the same constraint. If so, merge
the groups together. Large task groups provide additional concurrency ,to kegl;
more PEs busy and also provide extra flexibility in scheduling the execution
.of the tasks, thereby making it easier to balance the load between PEs (that
is, ensure that each of the PEs spends approximately the same amount of
time working on the problem).

The next step is to look at constraints between groups of tasks. This is easy
when groups have a clear temporal ordering or when a distinct chain of data
moves between groups. The more complex case, however, is when otherwise
independent task groups share constraints between groups. In these cases 'it
can‘be useful to merge these into a larger group of independent tasks—ox;ce
again because large task groups usually make for more scheduling flexibility
and better scalability. !

Examples

Molezicqlarddynamics. This problem was described in Sec. 3.1.3, and we dis-
cussed its decomposition in the Task Decompositi ) it
: position and Data Dec sit
patterns. We identified the following tasks: composttion

e Tasks that find the vibrational forces on an atom
e Tasks that find the rotational forces on an atom
e Tasks that find the nonbonded forces on an atom

o Tasks that update the position and velocity of an atom
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e A task to update the neighbor list for all the atoms (a single task because we
have decided to leave this part of the computation sequential)

Consider how these can be grouped together. As a first pass, each item in
the previous list corresponds to a high-level operation in the original problem and
defines a task group. If we were to dig deeper into the problem, however, we would
see that in each case the updates implied in the force functions are independent.
The only dependency is the summation of the forces into a single force array.

We next want to see if we can merge any of these groups. Going down the
list, the tasks in first two groups are independent but share the same constraints.
In both cases, coordinates for a small neighborhood of atoms are read and local
contributions are made to the force array, so we can merge these into a single
group for bonded interactions. The other groups have distinct temporal or ordering
constraints and therefore should not be merged.

Matrix multiplication. In the Examples section of the Task Decomposition pat-
tern we discuss decomposing the matrix multiplication C'= A - B into tasks, each
corresponding to the update of one element in C. The memory organization of most
modern computers, however, favors larger-grained tasks such as updating a block
of C, as described in the Examples section of the Data Decomposition pattern.
Mathematically, this is equivalent to grouping the elementwise update tasks into
groups corresponding to blocks, and grouping the tasks this way is well suited to
an optimum utilization of system memory.

THE ORDER TASKS PATTERN

Problem

Civen a way of decomposing a problem into tasks and a way of collecting these
tasks into logically related groups, how must these groups of tasks be ordered to
satisfy constraints among tasks?

Context

This pattern constitutes the second step in analyzing dependencies among the tasks
of a problem decomposition. The first step, addressed in the Group Tasks pattern,
is to group tasks based on constraints among them. The next step, discussed here,
is to find and correctly account for dependencies resulting from constraints on the
order of execution of a collection of tasks. Constraints among tasks fall into a few
major categories:

o Temporal dependencies, that is, constraints placed on the order in which a
collection of tasks executes. )

e Requirements that particular tasks must execute at the same time (for exam-
ple, because each requires information that will be produced by the others).
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e Lack f)f constraint,.that is, total independence. Although this is not strictly
§peak1ng a constraint, it is an important feature of a set of tasks because
.1t means they can execute in any order, including concurrently, and it is
important to clearly note when this holds.

. .The purpose of this pattern is to help find and correctly account for depen-
encies resulting from constraints on the order of execution of a collection of tasks.

Solution

There are two goal§ to be met when identifying ordering constraints among tasks
and defining a partial order among task groups.

e The ordering must be restrictive enou i
: s oS gh to satisfy all the constraints s
the resulting design is correct, T S0 that

® The. o.rdering should not be more restrictive than it needs to be. Overl con-
straining the solution limits design options and can impair program eﬁ“ic}irenc ;
the fewer the constraints, the more flexibility you have to shift tasks arounyci
to balance the computational load among PEs. B

g -
To iden 15/ order ng constraints C()nSlder the Ollowl ways task; depe d
) g S ca

e First look at the data required by a group of tasks before they can execute
After thi‘s data has been identified, find the task group that Ucreates it an(i
an or::iermg constraint will be apparent. For example, if one group of tasks
(call 1"5 A) builds a complex data structure and another group (B) uses it
there is a sequential ordering constraint between these groups. When thesé

g C
WO oups are /()ﬂlb ned in a program, 1€y must execute in sequernce ﬁ]S
u 5

e Also consi‘der whether external services can impose ordering constraints. For
example, 1f>a program must write to a file in a certain order, then these file
I/0O operations likely impose an ordering constraint.

° Flpally, it is equally important to note when an ordering constraint does nof
exist. If a number of task groups can execute independently, there is a much
greater opportunity to exploit parallelism, so we need to noté when tasks are
independent as well as when they are dependent.

. Reggxdless of the source of the constraint, we must define the constraints
f: at restrlct’the order of execution and make sure they are handled correctly
in the resulting algorithm. At the same time, it is important to note when or-

dering constraints are ab 5 ; T o e €
design, ; absent, since this will give valuable flexibility- later in the
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Neighbor list

1 Bonded forces ’ | Nonbonded forcesj
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| Update atomic positions and velocities J

Next time step

Figure 3.4: Ordering of tasks in molecular dynamics problem

Examples

Molecular dynamics. This problem was described in Sec. 3.1.3, an(.i 'we dis-
cussed its decomposition in the Task Decomposition and Dayta‘ Decomposztzqn p?;-
terns. In the Group Tasks pattern, we described how to organize the tasks for this

problem in the following groups:
e A group of tasks to find the “bonded forces” (vibrational forces and rotational

forces) on each atom

e A group of tasks to find the nonbonded forces on each atom
e A group of tasks to update the position and velocity of each atom

e A task to update the neighbor list for all the atoms (which trivially constitutes
a task group)

Now we are ready to consider ordering constraints betweet} the groups. ‘Cl‘earlj?f,
the update of the atomic positions cannot occur until the iox:ce comp.ﬁagnonr fi
complete. Also, the nonbonded forces cannot be computed until the'n(?lo % or 312
is updated. So in each time step, the groups mus"c be (.)rdered. as shown in 1(g1. 3.4.

While it is too early in the design to consider in detal.l how these ordering
constraints will be enforced, eventually we will need to provide some sort of syn-
chronization to ensure that they are strictly followed.

THE DATA SHARING PATTERN

Problem
Given a data and task decomposition for a problem, how is data shared among the
tasks?

Context
At a high level, every parallel algorithim consists of

e A collection of tasks that can execute concurrently (see the Task Decomposi-
tion pattern)
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e A data decomposition corresponding to the collection of concurrent tasks (see
the Data Decomposition pattern)

e Dependencies among the tasks that must be managed to permit safe concur-
rent execution

As addressed in the Group Tasks and Order Tasks patterns, the starting point
in a dependency analysis is to group tasks based on constraints among them and
then determine what ordering constraints apply to groups of tasks. The next step,
discussed here, is to analyze how data is shared among groups of tasks, so that
access to shared data can be managed correctly.

Although the analysis that led to the grouping of tasks and the ordering
constraints among them focuses primarily on the task decomposition, at this stage
of the dependency analysis, the focus shifts to the data decomposition, that is, the
division of the problem’s data into chunks that can be updated independently, each
associated with one or more tasks that handle the update of that chunk. This chunk
of data is sometimes called task-local data (or just local data), because it is tightly
coupled to the task(s) responsible for its update. It is rare, however, that each task
can operate using only its own local data; data may need to be shared among tasks
in many ways. Two of the most common situations are the following.

¢ In addition to task-local data, the problem’s data decomposition might define
some data that must be shared among tasks; for example, the tasks might
need to cooperatively update a large shared data structure. Such data cannot
be identified with any given task; it is inherently global to the problem. This
shared data is modified by multiple tasks and therefore serves as a source of
dependencies among the tasks.

Data dependencies can also occur when one task needs access to some por-
tion of another task’s local data. The classic example of this type of data
dependency occurs in finite difference methods parallelized using a data de-
composition, where each point in the problem space is updated using values
from nearby points and therefore updates for one chunk of the decomposition
require values from the boundaries of neighboring chunks.

This pattern discusses data sharing in parallel algorithms and how to deal
with typical forms of shared data.

Forces

The goal of this pattern is to identify what data is shared among groups of tasks
and determine how to manage access to shared data in a way that is both correct
and efficient.

Data sharing can have major implications for both correctness and efficiency.

e If the sharing is done incorrectly, a task may get invalid data due to a race
condition; this happens often in shared-address-space environments, where a
task can read from a memory location before the write of the expected data,
has completed.
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e Guaranteeing that shared data is ready for use can lead to excessive synchro-
nization overhead. For example, an ordering constraint can be enforced by
putting barrier operations' before reads of shared data. This can be unac-
ceptably inefficient, however, especially in cases where only a small subset of
the UEs are actually sharing the data. A much better strategy is to use a
combination of copying into local data or restructuring tasks to minimize the
number of times shared data must be read.

e Another source of data-sharing overhead is communication. In some parallel
systems, any access to shared data implies the passing of a message between
UEs. This problem can sometimes be mitigated by overlapping communi-
cation and computation, ‘but this isn’t always possible. Frequently, a better
choice is to structure the algorithm and tasks so that the amount of shared

" data to communicate is minimized. Another approach is to give each UE its
own copy of the shared data; this requires some care to be sure that the copies
are kept consistent in value but can be more efficient.

The goal, therefore, is to manage shared data enough to ensure correct-
ness but not so much as to interfere with efficiency.

Solution

The first step is to identify data that is shared among tasks.

This is most obvious when the decomposition is predominantly a data-based
decomposition. For example, in a finite difference problem, the basic data is de-
composed into blocks. The nature of the decomposition dictates that the data at
the edges of the blocks is shared between neighboring blocks. In essence, the data
sharing was worked out when the basic decomposition was done.

In a decomposition that is predominantly task-based, the situation is more
complex. At some point in the definition of tasks, it was determined how data is
passed into or out of the task and whether any data is updated in the body of the
task. These are the sources of potential data sharing.

After the shared data has been identified, it needs to be analyzed to see how
it is used. Shared data falls into one of the following three categories.

e Read-only. The data is read but not written. Because it is not modified,
access to these values does not need to be protected. On some distributed-
memory systems, it is worthwhile to replicate the read-only data so each unit
of execution has its own copy.

o Effectively-local. The data is partitioned into subsets, each of which is
accessed (for read or write) by only one of the tasks. (An example of this
would be an array shared among tasks in such a way that its elements are effec-
tively partitioned into sets of task-local data.) This case provides some options
for handling the dependencies. If the subsets can be accessed independently

LA barrier is a synchronization construct that defines a point in a program that a group of
UEs must all reach before any of them are allowed to proceed.
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(a.s would normally be the case with, say, array elements, but not necessarily
with list elements), then it is not necessary to worry about protecting access
tq this data. On distributed-memory systems, such data would usually be diLs—
tributed among UEs, with each UE having only the data needed by its tasks
If necessary, the data can be recombined into a single data structure at thé
end of the computation.

¢ Read-write. The data is both read and written and is accessed by more
t.han one task. This is the general case, and includes arbitrarily complicated
sltljlations in which data is read from and written to by any number of tasks
It is ?he most difficult to deal with, because any access to the data (rea&
or write) must be protected with some type of exclusive-access mechanism
(locks, semaphores, etc.), which can be very expensive.

.Two special cases of read-write data are common enough to deserve special
mention:

¢ Accumulate. The data is being used to accumulate a result (for example
when computing a reduction). For each location in the shared data, the Values’
are updated by multiple tasks, with the update taking place through some
sort of. associative accumulation operation. The most common accumulation
operaleons are sum, minimum, and maximum, but any associative operation
on pairs of operands can be used. For such data, each task (or, usually, each
UE) has a separate copy; the accumulations occur into these local c’opies
which are then accumulated into a single global copy as a final step at the;
end of the accumulation.

Multiple-read /single-write. The data is read by multiple tasks (all of
which need its initial value), but modified by only one task (which can read
and Write its value arbitrarily often). Such variables occur frequently in
alggrlthms based on data decompositions. For data of this type, at least two
copies are needed, one to preserve the initial value and one to be used by the
modifying task; the copy containing the initial value can be discarded when
no longer needed. On distributed-memory systems, typically a copy is created
for each task needing access (read or write) to the data.

Examples

Molecglar dynamics. This problem was described in Sec. 3.1.3, and we dis-
cussed its decomposition in the Task Decomposition and Data Decon;positz'on pat-
terns. We then identified the task groups (in the Group Tasks pattern) and consid-
er‘ed.tempora.l constraints among the task groups (in the Order Tasks pattern). We
will ignore the temporal constraints for now and just focus on data sharing for. the
problem’s final task groups:

° 'I"he group of tasks to find the “bonded forces” (vibrational forces and rota-
tional forces) on each atom
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Figure 3.5: Data sharing in molecular dynamics. We distinguish between sharing for reads, read-
writes, and accumulations.

e The group of tasks to find the nonbonded forces on each atom
e The group of tasks to update the position and velocity of each atom

e The task to update the neighbor list for all the atoms (which trivially consti-
tutes a task group)

The data sharing in this problem can be complicated. We summarize the data
shared between groups in Fig. 3.5. The major shared data items are the following.

e The atomic coordinates, used by each group.

These coordinates are treated as read-only data by the bonded force
group, the nonbonded force group, and the neighbor-list-update group. This
data is read-write for the position update group. Fortunately, the position
update group executes alone after the other three groups are done (based on
the ordering constraints developed using the Order Tasks pattern). Hence, in
the first three groups, we can leave accesses to the position data unprotected
or even replicate it. For the position update group, the position data belongs
to the read-write category, and access to this data will need to be controlled
carefully.

e The force array, used by each group except for the neighbor-list update.

This array is used as read-only data by the position update group and as
accumulate data for the bonded and nonbonded force groups. Because the po-
sition update group must follow the force computations (as determined using
the Order Tasks pattern), we can put this array in the accumulate category for
the force groups and in the read-only category for the position update group.

The standard procedure for molecular dynamics simulations [MR95] be-
gins by initializing the force array as a local array on each UE. Contributions
to elements of the force array are then computed by each UE, with the precise
terms computed being unpredictable because of the way the molecule folds in
space. After all the forces have been computed, the local arrays are reduced
into a single array, a copy of which is place on each UE (see the discussion of
reduction in Sec. 6.4.2 for more information.)
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e ’].."‘he neighbor list, shared between the nonbonded force group and the neighbor-
list update group.
The neighbor list is essentially local data for the neighbor-list update
group and read-only data for the nonbonded force computation. The list can
be managed in local storage on each UE.

4 3.7 THE DESIGN EVALUATION PATTERN

Problem

Is the decon.qposition and dependency analysis so far good enough to move on to
the next design space, or should the design be revisited?

Context

At this po.int, the problem has been decomposed into tasks that can execute concur-
rently (usglg the Task Decomposition and Data Decomposition patterns) and the
dependencies between them have been identified (using the Group Tasks, Order

Tasks, and Data Sharing patterns). In particular, the original problem has been
decomposed and analyzed to produce:

e A task decomposition that identifies tasks that can execute concurrently
¢ A data decomposition that identifies data local to each task

® A way of grouping tasks and ordering the groups to satisfy temporal con-
straints v I

e An analysis of dependencics among tasks

It is these four items that will guide the designer’s work in the next desien
space (the Algorithm Structure patterns). Therefore, getting these items right aréld
finding the best problem decomposition is important for producing a high-qus 1;
design. Sranaiy

In some cases, the concurrency is straightforward and there is clearly a single
best way to decompose a problem. More often, however, multiple decompoﬁtions z:re
possible. Hence, it is important before proceeding too far into the design process
to evaluate the emerging design and make sure it meets the applicatiobrﬂs needq
Remember that algorithm design is an inherently iterative process, and désigne]?si

sh0111d not expect to produce an optimum design on the first pass through the
Finding Concurrency patterns.

Forces

The design needs to be evaluated from three perspectives.

e Suitability for the target platform. Issues such as number of processors
and how data structures are shared will influence the efficiency of any design
)
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but the more the design depends on the target architecture, the less flexible
it will be. :

e Design quality. Simplicity, flexibility, and efficiency are all desirable—but
possibly conflicting—attributes.

Preparation for the next phase of the design. Are.the. tasks and de-
pendencies regular or irregular (that is, are they similar in size, or do they
vary)? Is the interaction between tasks synchronous or asynch-ronous (that
is, do the interactions occur at regular intervals or highly variable or even
random times)? Are the tasks aggregated in an effective way? Understa.nding
these issues will help choose an appropriate solution from the patterns in the
Algorithm Structure design space.

Solution

Before moving on to the next phase of the design process, it is helpful to fevaluate
the work so far from the three perspectives mentioned in the Forces sectloln. The
remainder of this pattern consists of questions and discussions to help with the
evaluation.

Suitability for target platform. Although it is desirable to delay ma}lap?ng a
program onto a particular target platform as long as possible, the charactemsth' of
the target platform do need to be considered at least minimally while evaluating
a design. Following are some issues relevant to the choice of target platform or
platforms.

How many PEs are available? With some exceptions, having many more
tasks than PEs makes it easier to keep all the PEs busy. Obviously we can’t make use
of more PEs than we have tasks, but having only one or a few tasks per PF can lea.td
to poor load balance. For example, consider the case of a Monte Carlo simulation in
which a calculation is repeated over and over for different sets of randomly Cho§en
data, such that the time taken for the calculation varies considerably depending
on the data. A natural approach to developing a parallel algorithm would be to
treat each calculation (for a separate set of data) as a task; these tasks are then
completely independent and can be scheduled however we like. But because the
time for each task can vary considerably, unless there are many more tasks than
PEs, it will be difficult to achieve good load balance. ,

The exceptions to this rule are designs in which the number of tasks can
be adjusted to fit the number of PEs in such a way that good load b.ala.mce‘ is
maintained. An example of such a design is the block-based matrix multiplication
algorithm described in the Examples section of the Data Decomposition pattern:
Tasks correspond to blocks, and all the tasks involve roughly the same amount
of computation, so adjusting the number of tasks to be equal to the number .of
PEs produces an algorithm with good load balance. (Note, however, that even in
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this case it might be advantageous to have more tasks than PEs. This might, for
example, allow overlap of computation and communication. )

How are data structures shared among PEs? A design that involves
large-scale or fine-grained data sharing among tasks will be easier to implement and
more efficient if all tasks have access to the same memory. Ease of implementation
depends on the programming environment; an environment based on a shared-
memory model (all UEs share an address space) makes it easier to implement a
design requiring extensive data sharing. Efficiency depends also on the target ma-
chine; a design involving extensive data-sharing is likely to be more efficient on a
symmetric multiprocessor (where access time to memory is uniform across proces-
sors) than on a machine that layers a shared-memory environment over physically
distributed memory. In contrast, if the plan is to use a message-passing environ-
ment running on a distributed-memory architecture, a design involving extensive
data sharing is probably not a good choice.

For example, consider the task-based approach to the medical imaging prob-
lem described in the Examples section of the Tusk Decomposition pattern. This
design requires that all tasks have read access to a potentially very large data
structure (the body model). This presents no problems in a shared-memory envi-
ronment; it is also no problem in a distributed-memory environment in which each
PE has a large memory subsystem and there is plenty of network bandwidth to han-
dle broadcasting the large data set. However, in a distributed-memory environment
with limited memory or network bandwidth, the more memory-efficient algorithm
that emphasizes the data decomposition would be required.

A design that requires fine-grained data-sharing (in which the same data
structure is accessed repeatedly by many tasks, particularly when both reads and
writes are involved) is alse likely to be more efficient on a shared-memory machine,
because the overhead required to protect each access is likely to be smaller than for
a distributed-memory machine.

The exception to these principles would be a problem in which it is easy to
group and schedule tasks in such a way that the only large-scale or fine-grained
data sharing is among tasks assigned to the same unit of execution.

What does the target architecture imply about the number of UEs
and how structures are shared among them? In essence; we revisit the
preceding two questions, but in terms of UEs rather than PEs.

This can be an important distinction to make if the target system depends on
multiple UEs per PE to hide latency. There are two factors to keep in mind when
considering whether a design using more than one UE per PE makes sense.

The first factor is whether the target system provides efficient support for
multiple UEs per PE. Some systems do provide such support, such as the Cray
MTA machines and machines built with Intel processors that utilize hyperthread-
ing. This architectural approach provides hardware support for extremely rapid
context switching, making it practical to use in a far wider range of latency-hiding
situations. Other systems do not provide good support for multiple UEs per PE.



52 Chapter 3 The Finding Concurrency Design Space

For example, an MPP system with slow context switching and/ OT One Processor per
node might run much better when there is only one UE per PE. .

The second factor is whether the design can make good use of multiple UEs
per PE. For example, if the design involves communication operationg with high
latency, it might be possible to mask that latency by assigning n}ulﬁple UE§ to
each PE so .some UEs can make progress while others are waiting on a high-
latency operation. If, however, the design involves communication o.pera,tions that
are tightly synchronized (for example, pairs of blocking send/ recenfes) and rella—
tively efficient, assigning multiple UEs to each PE is more likely to mtcrf@e with
ease of implementation (by requiring extra effort to avoid deadlock) than to improve
efficiency.

On the target platform, will the time spent doing useful work in a
task be significantly greater than the time taken to deal with depenéen—
cies? A critical factor in determining whether a design is effective is the ‘ra,tu.) of
time spent doing computation to time spent in communication or synchronization:
The higher the ratio, the more efficient the program. This ratio is a.ffected not only
by the number and type of coordination events required by the design, bpt also.by
the characteristics of the target platform. For example, a nessage-passing design
that is acceptably efficient on an MPP with a fast interconnect network and rela-
tively slow processors will likely be less efficient, perhaps unacceptably so, on an
Ethernet-connected network of powerful workstations.

Note that this critical ratio is also affected by problem size relative to the
number of available PEs, because for a fixed problem size, the time spent by each
processor doing computation decreases with the number of processors, while the
time spent by each processor doing coordination might stay the same or even
increase as the number of processors increases.

Design quality. Keeping these characteristics of the target platform in mind,
we can evaluate the design along the three dimensions of flexibility, efficiency, and
simplicity.

Flexibility. It is desirable for the high-level design to be adapt.a,ble to a
variety of different implementation requirements, and certainly all the important
ones. The rest of this section provides a partial checklist of factors that affect
flexibility.

e Is the decomposition flexible in the number of tasks generated? Such flexibility
allows the design to be adapted to a wide range of parallel computers.

e Is the definition of tasks implied by the task decomposition independent of
how they are scheduled for execution? Such independence makes the load
balancing problem easier to solve.

e Can the size and number of chunks in the data decomposition be paramn-
cterized? Such parameterization makes a design easier to scale for varying
numbers of PEs.
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e Does the algorithm handle the problem’s boundary cases? A good design
will handle all relevant cases, even unusual ones. For example, a common
operation is to transpose a matrix so that a distribution in terms of blocks
of maftrix columns becomes a distribution in terms of blocks of matrix rows.
It is easy to write down the algorithm and code it for square matrices where
the matrix order is evenly divided by the number of PEs. But what if the
matrix is not square, or what if the number of rows is much greater than
the number of columns and neither number is evenly divided by the number
of PEs? This requires significant changes to the transpose algorithm. For a
rectangular matrix, for example, the buffer that will hold the matrix block will
need to be large enough to hold the larger of the two blocks. If either the row
or column. dimension of the matrix is not evenly divisible by the number of
PEs, then the blocks will not be the same size on each PE. Can the algorithm
deal with the uneven load that will result from having different block sizes on
each PE?

Efficiency. The program should effectively utilize the available computing
resources. The rest of this section gives a partial list of important factors to check.
Note that typically it is not possible to simultaneously optimize all of these factors;
design tradeoffs are inevitable.

o Can the computational load be evenly balanced among the PEs? This is easier
if the tasks are independent, or if they are roughly the same size.

Is the overhead minimized? Overhead can come from several sources, including
creation and scheduling of the UEs, communication, and synchronization.
Creation and scheduling of UEs involves overhead, so each UE needs to have
enough work to do to justify this overhead. On the other hand, more UEs
allow for better load balance.

e Communication can also be a source of significant overhead, particularly on
distributed-memory platforms that depend on message passing. As we dis-
cussed in Sec. 2.6, the time to transfer a message has two components: latency
cost arising from operating-system overhead and message start-up costs on
the network, and a cost that scales with the length of the message. To min-
imize the latency costs, the number of messages to be sent should be kept
to a minimum. In other words, a small number of large messages is better
than a large number of small ones. The second term is related to the band-
width of the network. These costs can sometimes be hidden by overlapping
communication with computation.

e On shared-memory machines, synchronization is a major source of overhead.
When data, is shared between UEs, dependencies arise requiring one task to
wait for another to avoid race conditions. The synchronization mechanisms
used to control this waiting are expensive compared to many operations car-
ried out by a UE. Furthermore, some synchronization constructs generate
significant memory traffic as they flush caches, buffers, and other system re-
sources to make sure UEs see a consistent view of memory. This extra memory
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traffic can interfere with the explicit data movement within a computation.
Synchronization overhead can be reduced by keeping data well-localized to a
task, thereby minimizing the frequency of synchronization operations.

Simplicity. To paraphrase Einstein: Make it as simple as possible, but not
simpler.

Keep in mind that practically all programs will eventually need to be de-
bugged, maintained, and often enhanced and ported. A design—even a ger‘leraﬂy
superior design-—is not valuable if it is too hard to debug, maintain, and verify the
correctness of the final program.

The medical imaging example initially described in Sec. 3.1.3 and then dis-
cussed further in the Task Decomposition and Data Decomposition patterns is an
excellent case in point in support of the value of simplicity. In this problem, a large
database could be decomposed, but this decomposition would force the parallel al-
gorithm to include complex operations for passing trajectories between UEs and
to distribute chunks of the database. This complexity makes the resulting program
much more difficult to understand and greatly complicates debugging. The other
approach, replicating the database, leads to a vastly simpler parallel program in
which completely independent tasks can be passed out to multiple workers as they
are read. All complex communication thus goes away, and the parallel part of the
program is trivial to debug and reason about.

Preparation for next phase. The problem decomposition carried out with the
Finding Concurrency patterns defines the key components that will guide the design
in the Algorithm Structure design space:

o A task decomposition that identifies tasks that can execute concurrently
e A data decomposition that identifies data local to each task

e A way of grouping tasks and ordering the groups to satisfy temporal con-
straints

e An analysis of dependencies among tasks

Before moving on in the design, consider these components relative to the
following questions.

How regular are the tasks and their data dependencies? Regular
tasks are similar in size and effort. Irregular tasks would vary widely among them-
selves. If the tasks are irregular, the scheduling of the tasks and their sharing of
data will be more complicated and will need to be emphasized in the design. In a
regular decomposition, all the tasks are in some sense the same—roughly the same
computation (on different sets of data), roughly the same dependencies on data
shared with other tasks, etc. Examples include the various matrix multiplication
algorithms described in the Examples sections of the Task Decomposition, Data
Decomposition, and other patterns.
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In an irregular decomposition, the work done by each task and/or the data
dependencies vary among tasks. For example, consider a discrete-event simulation
of a large system consisting of a number of distinct components. We might design
a parallel algorithm for this simulation by defining a task for each component and
having them interact based on the discrete events of the simulation. This would be
a very irregular design in that there would be considerable variation among tasks
with regard to work done and dependencies on other tasks.

Are interactions between tasks (or task groups) synchronous or
asynchronous? In some designs, the interaction between tasks is also very regu-
lar with regard to time——that is, it is synchronous. For example, a typical approach
to parallelizing a linear-algebra problem involving the update of a large matrix is
to partition the matrix among tasks and have each task update its part of the ma-
trix, using data from both its and other parts of the matrix. Assuming that all the
data needed for the update is present at the start of the computation, these tasks
will typically first exchange information and then compute independently. Another
type of example is a pipeline computation (see the Pipeline pattern), in which we
perform a multi-step operation on a sequence of sets of input data by setting up
an assembly line of tasks (one for each step of the operation), with data flowing
from one task to the next as each task accomplishes its work. This approach works
best if all of the tasks stay more or less in step—that is, if their interaction is
synchronous.

In other designs, the interaction between tasks is not so chronologically regu-
lar. An example is the discrete-event simulation described previously, in which the
events that lead to interaction between tasks can be chronologically irregular.

Are the tasks grouped in the best way? The temporal relations are
easy: Tasks that can run at the same time are naturally grouped together. But an
effective design will also group tasks together based on their logical relationship in
the overall problem.

As an example of grouping tasks, consider the molecular dynamics problem
discussed in the Examples section of the Group Tasks, Order Tasks, and Data
Sharing patterns. The grouping we eventually arrive at (in the Group Tasks pat-
tern) is hierarchical: groups of related tasks based on the high-level operations
of the problem, further grouped on the basis of which ones can execute concur-
rently. Such an approach makes it easier to reason about whether the design meets
the necessary constraints (because the constraints can be stated in terms of the
task groups defined by the high-level operations) while allowing for scheduling
flexibility.

3.8 SUMMARY

Working through the patterns in the Finding Concurrency design space exposes the
concurrency in your problem. The key elements following from that analysis are

e A task decomposition that identifies tasks that can execute concurrently

o A data decomposition that identifies data local to each task
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e A way of grouping tasks and ordering the groups to satisfy temporal con-
straints

e An analysis of dependencies among tasks

A pattern language is traditionally described as a web of patterns with one
pattern logically connected to the next. The output from the Finding Concurrency
design space, however, does not fit into that picture. Rather, the goal of this design
space is to help the designer create the design elements that together will lead into
the rest of the pattern language.





