1.1

CHAPTER 1

A Pattern Language
for Parallel Programming

1.1 INTRODUCTION

1.2 PARALLEL PROGRAMMING

1.3 DESIGN PATTERNS AND PATTERN LANGUAGES

1.4 A PATTERN LANGUAGE FOR PARALLEL PROGRAMMING

INTRODUCTION

Computers are used to model physical systems in many fields of science, medicine,
and engineering. Modelers, whether trying to predict the weather or render a scene
in the next blockbuster movie, can usually use whatever computing power is avail-
able to make ever more detailed simulations. Vast amounts of data, whether cus-
tomer shopping patterns, telemetry data from space, or DNA sequences, require
analysis. To deliver the required power, computer designers combine multiple pro-
cessing elements into a single larger system. These so-called parallel computers run
multiple tasks simultaneously and solve bigger problems in less time.

Traditionally, parallel computers were rare and available for only the most
critical problems. Since the mid-1990s, however, the availability of parallel com-
puters has changed dramatically. With multithreading support built into the latest
microprocessors and the emergence of multiple processor cores on a single silicon
die, parallel computers are becoming ubiquitous. Now, almost every university com-
puter science department has at least one parallel computer. Virtually all oil com-
panies, antomobile manufacturers, drug development companies, and special effects
studios use parallel computing.

For example, in computer animation, rendering is the step where information
from the animation files, such as lighting, textures, and shading, is applied to 3D
models to generate the 2D image that makes up a frame of the film. Parallel com-
puting is essential to generate the needed number of frames (24 per second) for
a feature-length film. Toy Story, the first completely computer-generated feature-
length film, released by Pixar in 1995, was processed on a “renderfarm” consisting
of 100 dual-processor machines [PS00]. By 1999, for Toy Story 2, Pixar was using
a 1,400-processor system with the improvement in processing power fully reflected
in the improved details in textures, clothing, and atmospheric effects. Monsters,
Inc. (2001) used a system of 250 enterprise servers each containing 14 processors

1

2 Chapter1 A Pattern Language for Parallel Programming

for a total of 3,500 processors. It is interesting that the amount of time required to
generate a frame has remained relatively constant—as computing power (both the
number of processors and the speed of each processor) has increased, it has been
exploited to improve the quality of the animation.

The biological sciences have taken dramatic leaps forward with the availability
of DNA sequence information from a variety of organisms, including humans. One
approach to sequencing, championed and used with success by Celera Corp., is
called the whole genome shotgun algorithm. The idea is to break the genome into
small segments, experimentally determine the DNA sequences of the segments, and
then use a computer to construct the entire sequence from the segments by finding
overlapping areas. The computing facilities used by Celera to sequence the human
genome included 150 four-way servers plus a server with 16 processors and 64GB
of memory. The calculation involved 500 million trillion base-to-base comparisons
[Ein00].

The SETI@home project [SET, ACKT02] provides a fascinating example
of the power of parallel computing. The project seeks evidence of extraterrestrial in-
telligence by scanning the sky with the world’s largest radio telescope, the Arecibo
Telescope in Puerto Rico. The collected data is then analyzed for candidate sig-
nals that might indicate an intelligent source. The computational task is beyond
even the largest supercomputer, and certainly beyond the capabilities of the facili-
ties available to the SETI@home project. The problem is solved with public resource
computing, which turns PCs around the world into a huge parallel computer con-
nected by the Internet. Data is broken up into work units and distributed over the
Internet to client computers whose owners donate spare computing time to sup-
port the project. Each client periodically connects with the SETIGhome server,
downloads the data to analyze, and then sends the results back to the server.
The client program is typically implemented as a screen saver so that it will devote
CPU cycles to the SETI problem only when the computer is otherwise idle. A work
unit currently requires an average of between seven and eight hours of CPU time on
a client. More than 205,000,000 work units have been processed since the start of
the project. More recently, similar technology to that demonstrated by SETI@home
has been used for a variety of public resource computing projects as well as internal
projects within large companies utilizing their idle PCs to solve problems ranging
from drug screening to chip design validation.

Although computing in less time is beneficial, and may enable problems to
be solved that couldn’t be otherwise, it comes at a cost. Writing software to run
on parallel computers can be difficult. Only a small minority of programmers have
experience with parallel programming. If all these computers designed to exploit
parallelism are going to achieve their potential, more programmers need to learn
how to write parallel programs.

This book addresses this need by showing competent programmers of sequen-
tial machines how to design programs that can run on parallel computers. Although
many excellent books show how to use particular parallel programming environ-
ments, this book is unique in that it focuses on how to think about and design
parallel algorithms. To accomplish this goal, we will be using the concept of a pat-
tern language. This highly structured representation of expert design experience
has been heavily used in the object-oriented design community.

1.2 Parallel Programming 3

The book opens with two introductory chapters. The first gives an overview
of the parallel computing landscape and background needed to understand and use
the pattern language. This is followed by a more detailed chapter in which we lay
out the basic concepts and jargon used by parallel programmers. The book then
moves into the pattern language itself.

1.2 PARALLEL PROGRAMMING

The key to parallel computing is exploitable concurrency. Concurrency exists in a
computational problem when the problem can be decomposed into subproblems
that can safely execute at the same time. To be of any use, however, it must be
possible to structure the code to expose and later exploit the concurrency and
permit the subproblems to actually run concurrently; that is, the concurrency must
be exploitable.

Most large computational problems contain exploitable concurrency. A pro-
grammer works with exploitable concurrency by creating a parallel algorithm and
implementing the algorithm using a parallel programming environment. When the
resulting parallel program is run on a system with multiple processors, the amount
of time we have to wait for the results of the computation is reduced. In addition,
multiple processors may allow larger problems to be solved than could be done on
a single-processor system.

As a simple example, suppose part of a computation involves computing the
summation of a large set of values. If multiple processors are available, instead of
adding the values together sequentially, the set can be partitioned and the sum-
mations of the subsets computed simultaneously, each on a different processor.
The partial sums are then combined to get the final answer. Thus, using multiple
processors to compute in parallel may allow us to obtain a solution sooner. Also,
if each processor has its own memory, partitioning the data between the proces-
sors may allow larger problems to be handled than could be handled on a single
PrOCessor.

This simple example shows the essence of parallel computing. The goal is
to use multiple processors to solve problems in less time and/or to solve bigger
problems than would be possible on a single processor.-The programmer’s task is
to identify the concurrency in the problem, structure the algorithm so that this
concurrency can be exploited, and then implement the solution using a suitable
programming environment. The final step is to solve the problem by executing the
code on a parallel system.

Parallel programming presents unique challenges. Often, the concurrent tasks
making up the problem include dependencies that must be identified and correctly
managed. The order in which the tasks execute may change the answers of the
computations in nondeterministic ways. For example, in the parallel summation
described earlier, a partial sum cannot be combined with others until its own com-
putation has completed. The algorithm imposes a partial order on the tasks (that
is, they must complete before the sums can be combined). More subtly, the nu-
merical value of the summations may change slightly depending on the order of
the operations within the sums because floating-point arithmetic is nonassociative.
A good parallel programmer must take care to ensure that nondeterministic issues

4 Chapter1 A Pattern Language for Parallel Programming

cuch as these do not affect the quality of the final answer. Creating safe parallel
programs can take considerable effort from the programmer.

Even when a parallel program is “correct”, it may fail to deliver the antici-
pated performance improvement from exploiting concurrency. Care must be taken
to ensure that the overhead incwrred by managing the concurrency does not over-
whelm the program runtime. Also, partitioning the work among the processors in
a balanced way is often not as easy as the summation example suggests. The effec-
tiveness of a parallel algorithm depends on how well it maps onto the underlying
parallel computer, so a parallel algorithm could be very effective on one parallel
architecture and a disaster on another.

We will revisit these issues and provide a more quantitative view of parallel
computation in the next chapter.

1.3 DESIGN PATTERNS AND PATTERN LANGUAGES

A design pattern describes a good solution to a recurring problem in a particular
context. The pattern follows a prescribed format that includes the pattern name,
a description of the context, the forces (goals and constraints), and the solution.
The idea is to record the experience of experts in a way that can be used by others
facing a similar problem. In addition to the solution itself, the name of the pattern
is important and can form the basis for a domain-specific vocabulary that can
significantly enhance communication between designers in the same area.

Design patterns were first proposed by Christopher Alexander. The domain
was city planning and architecture [AIST7]. Design patterns were originally intro-
duced to the software engineering community by Beck and Cunningham [BC87] and
became prominent in the area of object-oriented programming with the publication
of the book by Gamma, Helm, Johnson, and Vlissides [GHJIV95], affectionately
known as the GoF (Gang of Four) book. This book gives a large collection of de-
sign patterns for object-oriented programming. To give one example, the Visitor
pattern describes a way to structure classes so that the code implementing a het-
erogeneous data structure can be kept separate from the code to traverse it. Thus,
what happens in a traversal depends on both the type of each node and the class
that implements the traversal. This allows multiple functionality for data structure
traversals, and significant flexibility as new functionality can be added without hav-
ing to change the data structure class. The patterns in the GoF book have entered
the lexicon of object-oriented programming—references to its patterns are found in
the academic literature, trade publications, and system documentation. These pat-
terns have by now become part of the expected knowledge of any competent software
engineer.

An educational nonprofit organization called the Hillside Group [Hil] was
formed in 1993 to promote the use of patterns and pattern languages and, more
generally, to improve human communication about computers “by encouraging peo-
ple to codify common programming and design practice”. To develop new patterns
and help pattern writers hone their skills, the Hillside Group sponsors an annual
Pattern Languages of Programs (PLoP) workshop and several spinoffs in other
parts of the world, such as ChiliPLoP (in the western United States), KoalaPLoP

1.4

1.4 A Pattern Language for Parallel Programming 5

(Australia), EuroPLoP (Europe), and Mensore PLoP (Japan). The proceedings of
these workshops [Pat] provide a rich source of patterns covering a vast range of
application domains in software development and have been used as a basis for
several books [CS95, VCK96, MRB97, HFRY9)].

In his original work on patterns, Alexander provided not only a catalog of
patterns, but also a pattern language that introduced a new approach to design.
In a pattern language, the patterns are organized into a structure that leads the
user through the collection of patterns in such a way that complex systems can be
designed using the patterns. At each decision point, the designer selects an appro-
priate pattern. Each pattern leads to other patterns, resulting in a final design in
terms of a web of patterns. Thus, a pattern language embodies a design method-
ology and provides domain-specific advice to the application designer. (In spite of
the overlapping terminology, a pattern language is not a programming language.)

A PATTERN LANGUAGE FOR PARALLEL PROGRAMMING

This book describes a pattern language for parallel programming that provides
several benefits. The immediate benefits are a way to disseminate the experience
of experts by providing a catalog of good solutions to important problems, an
expanded vocabulary, and a methodology for the design of parallel programs. We
hope to lower the barrier to parallel programming by providing guidance through
the entire process of developing a parallel program. The programmer brings to the
process a good understanding of the actual problem to be solved and then works
through the pattern language, eventually obtaining a detailed parallel design or
possibly working code. In the longer term, we hope that this pattern language can
provide a basis for both a disciplined approach to the qualitative evaluation of
different programming models and the development of parallel programming tools.

The pattern language is organized into four design spaces—Finding Concur-
rency, Algorithm Structure, Supporting Structures, and Implementation
Mechanisms—which form a linear hierarchy, with Finding Concurrency at the top
and Implementation Mechanisms at the bottom, as shown in Fig. 1.1.

The Finding Concurrency design space is concerned with structuring the prob-
lem to expose exploitable concurrency. The designer working at this level focuses

I Finding Concurrency l

I

l Algorithm Structure J

|

r Supporting Structures 1

szlementation, Mechanisms 1

Figure 1.1: Overview of the pattern language

6 Chapter1 A Pattern Language for Parallel Programming

on high-level algorithmic issues and reasons about the problem to expose potential
concurrency. The Algorithm Structure design space is concerned with structuring
the algorithm to take advantage of potential concurrency. That is, the designer
working at this level reasons about how to use the concurrency exposed in working
with the Finding Concurrency patterns. The Algorithm Structure patterns describe
overall strategies for exploiting concurrency. The Supporting Structures design space
represents an intermediate stage between the Algorithm Structure and Implementa-
tion Mechanisms design spaces. Two important groups of patterns in this space are
those that represent program-structuring approaches and those that represent com-
monly used shared data structures. The Implementation M echanisms design space
is concerned with how the patterns of the higher-level spaces are mapped into par-
ticular programming environments. We use it to provide descriptions of common
mechanisms for process/thread mahagement (for example, creating or destroying
processes/threads) and process/thread interaction (for example, semaphores, bar-
riers, or message passing). The items in this design space are not presented as
patterns because in many cases they map directly onto elements within particu-
lar parallel programming environments. They are included in the pattern language
anyway, however, to provide a complete path from problem description to code.

CHAPTER 2

Background and Jargon
of Parallel Computing

2.1 CONCURRENCY IN PARALLEL PROGRAMS VERSUS OPERATING SYSTEMS
2.2 PARALLEL ARCHITECTURES: A BRIEF INTRODUCTION

2.3 PARALLEL PROGRAMMING ENVIRONMENTS

2.4 THE JARGON OF PARALLEL COMPUTING

2.5 A QUANTITATIVE LOOK AT PARALLEL COMPUTATION

2.6 COMMUNICATION ‘

2.7 SUMMARY

In this chapter, we give an overview of the parallel programming landscape, and de-
fine any specialized parallel computing terminology that we will use in the patterns.
Because many terms in computing are overloaded, taking different meanings in dif-
ferent contexts, we suggest that even readers familiar with parallel programming
at least skim this chapter.

2.1 CONCURRENCY IN PARALLEL PROGRAMS VERSUS OPERATING SYSTEMS

Concurrency was first exploited in computing to better utilize or share resources
within a computer. Modern operating systems support context switching to allow
multiple tasks to appear to execute concurrently, thereby allowing useful work to oc-
cur while the processor is stalled on one task. This application of concurrency, for ex-
ample, allows the processor to stay busy by swapping in a new task to execute while
another task is waiting for I/0O. By quickly swapping tasks in and out, giving each
task a “slice” of the processor time, the operating system can allow multiple users
to use the system as if each were using it alone (but with degraded performance).

Most modern operating systems can use multiple processors to increase the
throughput of the system. The UNIX shell uses concurrency along with a com-
munication abstraction known as pipes to provide a powerful form of modularity:
Commands are written to accept a stream of bytes as input (the consumer) and
produce a stream of bytes as output (the producer). Multiple commands can be
chained together with a pipe connecting the output of one command to the input
of the next, allowing complex commands to be built from simple building blocks.
Each command is executed in its own process, with all processes executing con-
currently. Because the producer blocks if buffer space in the pipe is not available,
and the consumer blocks if data is not available, the job of managing the stream
of results moving between commands is greatly simplified. More recently, with

7

8 Chapter2 Background and Jargon of Parallel Computing

operating systems with windows that invite users to do more than one thing at
a time, and the Internet, which often introduces I /O delays perceptible to the user,
almost every program that contains a GUI incorporates concurrency.

Although the fundamental concepts for safely handling concurrency are the
same in parallel programs and operating systems, there are some important dif-
ferences. For an operating system, the problem is not finding concurrency—the
concurrency is inherent in the way the operating system functions in managing
a collection of concurrently executing processes (representing users, applications,
and background activities such as print spooling) and providing synchronization
mechanisms so resources can be safely shared. However, an operating system must
support concurrency in a robust and secure way: Processes should not be able to
interfere with each other (intentionally or not), and the entire system should not
crash if something goes wrong with one process. In a parallel program, finding and
exploiting concurrency can be a challenge, while isolating processes from each other
is not the critical concern it is with an operating system. Performance goals are dif-
forent as well. In an operating system, performance goals are normally related to
throughput or response time, and it may be acceptable to sacrifice some efficiency
to maintain robustness and fairness in resource allocation. In a parallel program,
the goal is to minimize the running time of a single program.

2.2 PARALLEL ARCHITECTURES: A BRIEF INTRODUCTION

2.2.1

There are dozens of different parallel architectures, among them networks of work-
stations, clusters of off-the-shelf PCs, massively parallel supercomputers, tightly
coupled symmetric multiprocessors, and multiprocessor workstations. In this sec-
tion, we give an overview of these systems, focusing on the characteristics relevant
to the programmer.

Flynn's Taxonomy

By far the most common way to characterize these architectures is Flynn’s taxon-
omy [Fly72]. He categorizes all computers according to the number of instruction
streams and data streams they have, where a stream is a sequence of instructions
or data on which a computer operates. In Flynn’s taxonomy, there are four possi-
bilities: SISD, SIMD, MISD, and MIMD.

Single Instruction, Single Data (SISD). Ina SISD system, one stream
of instructions processes a single stream of data, as shown in Fig. 2.1. This is the
common von Neumann model used in virtually all single-processor computers.

Single Instruction, Multiple Data (SIMD). In a SIMD system, a sin-
gle instruction stream is concurrently broadcast to multiple processors, each with
its own data stream (as shown in Fig. 2.2). The original systems from Thinking
Machines and MasPar can be classified as SIMD. The CPP DAP Gamma II and
Quadrics Apemille are more recent examples; these are typically deployed in spe-
cialized applications, such as digital signal processing, that are suited to fine-grained
parallelism and require little interprocess communication. Vector processors, which

2.2 Parallel Architectures: A Brief Introduction 9

instructions input

control unit

processor

output
data

Figure 2.1: The Single Instruction, Single Data (SISD) architecture

opera?c. on Ve.actor data in a pipelined fashion, can also be categorized as SIMD.
Exploiting this parallelism is usually done by the compiler.

4 Multip}e Ins.truction, Single Data (MISD). No well-known systems fit
this designation. It is mentioned for the sake of completeness.

Multiple Instruction, Multiple Data (MIMD). In a MIMD system
each processing element has its own stream of instructions operating on its own,
Fiata. This architecture, shown in Fig. 2.3, is the most general of the architectures
in that each of the other cases can be mapped onto the MIMD architecture. The
vast majority of modern parallel systems fit into this category. ' ’

2.2.2 A Further Breakdown of MIMD

The MIMD cac.egory of Flynn's taxonomy is too broad to be useful on its own; this
category is typically decomposed according to memory organization. ‘

instructions

input input
data data

| control unit| |

processor processor || processo: processor |
. R . CLTERUITIED sl

output output output oul;
put
data data data data

Figure 2.2: The Single Instruction, Multiple Data (SIMD) architecture

10 Chapter 2 Background and Jargon of Parallel Computing

instructions instructions instructions instructions

control unit control unit control unit

processor

processo: processor |

outpu ‘
data

l interconnect network l

Figure 2.3: The Multiple Instruction, Multiple Data (MIMD) architecture

Shared memory. In a shared-memory system, all processes share a single
address space and communicate with each other by writing and reading shared
variables.

One class of shared-memory systems is called SMPs (symmetric multiproces-
sors). As shown in Fig. 2.4, all processors share a connection to & common memory
and access all memory locations at equal speeds. SMP systems are arguably the
easiest parallel systems to program because programmers do not need to distribute
data structures among processors. Because increasing the number of processors in-
creases contention for the memory, the processor/memory bandwidth is typically
a limiting factor. Thus, SMP systems do not scale well and are limited to small
numbers of processors.

The other main class of shared-memory systems is called NUMA (nonuniform
memory access). As shown in Fig. 2.5, the memory is shared; that is, it is uniformly
addressable from all processors, but some blocks of memory may be physically more
closely associated with some processors than others. This reduces the memory band-
width bottleneck and allows systems with more processors; however, as a result, the
access time from a processor to a memory location can be significantly different de-
pending on how “close” the memory location is to the processor. To mitigate the
effects of nonuniform access, each processor has a cache, along with a protocol to
keep cache entries coherent. Hence, another name for these architectures is cache-
coherent nonuniform memory access systems (ccNUMA). Logically, programming
a ccNUMA system is the same as programming an SMP, but to obtain the best

‘CPU‘ ‘CPU‘ 'CPU] ‘CPUJ

[

Figure 2.4: The Symmetric Multiprocessor (SMP) architecture

2.2 Parallel Architectures: A Brief Introduction 11

CTU cr"U I CPU | | cPU j CPU ’ } CPU ’ i CPU f } CPU}
| | I l I

[

! l | il i l l |
} CPU ' | CPU f LCPU ‘ CPU CPU | | CPU | | CPU | | CPU

Figure 2.5: An example of the nonuniform memory access (NUMA) architecture

performance, the programmer will need to be more careful about locality issues and
cache effects.

Distributed memory. In a distributed-memory system, each process has
its own address space and communicates with other processes by message pass-
ing (sending and receiving messages). A schematic representation of a distributed
memory computer is shown in Fig. 2.6.

Depending on the topology and technology used for the processor intercon-
nection, communication speed can range from almost as fast as shared memory (in
tightly integrated supercomputers) to orders of magnitude slower (for example, in
a cluster of PCs interconnected with an Ethernet network). The programmer must
explicitly program all the communication between processors and be concerned
with the distribution of data.

Distributed-memory computers are traditionally divided into two classes: MPP
(massively parallel processors) and clusters. In an MPP, the processors and the
network infrastructure are tightly coupled and specialized for use in a parallel com-
puter. These systems are extremely scalable, in some cases supporting the use of
many thousands of processors in a single system [MSW96,IBM02).

Clusters are distributed-memory systems composed of off-the-shelf com-
puters connected by an off-the-shelf network. When the computers are PCs run-
ning the Linux operating system, these clusters are called Beowulf clusters. As

e
‘ CPU ‘ l CPU—‘ } CPU ‘ | CPU {
l J l [

(e) (e) () (oo

Figure 2.6: The distributed-memory architecture

12 Chapter2 Background and Jargon of Parallel Computing

off-the-shelf networking technology improves, systems of this type are becoming
more common and much more powerful. Clusters provide an inexpensive way for an
organization to obtain parallel computing capabilities [Beo]. Preconfigured clusters
are now available from many vendors. One frugal group even reported construct-
ing a useful parallel system by using a cluster to harness the combined power of
obsolete PCs that otherwise would have been discarded [HHSO1].

Hybrid systems. These systems are clusters of nodes with separate address
spaces in which each node contains several processors that share memory.

According to van der Steen and Dongarra’s “Overview of Recent Supercom-
puters” [vdSDO03], which contains a brief description of the supercomputers cur-
rently or soon to be commercially, available, hybrid systems formed from clusters
of SMPs connected by a fast network are currently the dominant trend in high-
performance computing. For example, in late 2003, four of the five fastest computers
in the world were hybrid systems [Top].

Grids. Grids are systems that use distributed, heterogeneous resources con-
nected by LANs and/or WANs [FK03]. Often the interconnection network is the
Internet. Grids were originally envisioned as a way to link multiple supercomputers
to enable larger problems to be solved, and thus could be viewed as a special type
of distributed-memory or hybrid MIMD machine. More recently, the idea of grid
computing has evolved into a general way to share heterogeneous resources, such
as computation servers, storage, application servers, information services, or even
scientific instruments. Grids differ from clusters in that the various resources in the
grid need not have a common point of administration. In most cases, the resources
on a grid are owned by different organizations that maintain control over the poli-
cies governing use of the resources. This affects the way these systems are used, the
middleware created to manage them, and most importantly for this discussion, the
overhead incurred when communicating between resources within the grid.

2.2.3 Summary

We have classified these systems according to the characteristics of the hardware.
These characteristics typically influence the native programming model used to ex-
press concurrency on a system; however, this is not always the case. It is possible
for a programming environment for a shared-memory machine to provide thg pro-
grammer with the abstraction of distributed memory and message passing. Virtual
distributed shared memory systems contain middleware to provide the opposite:
the abstraction of shared memory on a distributed-memory machine.

2.3 PARALLEL PROGRAMMING ENVIRONMENTS

Parallel programming environments provide the basic tools, language features, and
application programming interfaces (APIs) needed to construct a parallel program.
A programming environment implies a particular abstraction of the computer sys-
tem called a programming model. Traditional sequential computers use the well
known von Neumann model. Because all sequential computers use this model,

2.3 Parallel Programming Environments = 13

software designers can design software to a single abstraction and reasonably expect
it to map onto most, if not all, sequential computers.

Unfortunately, there are many possible models for parallel computing, re-
flecting the different ways processors can be interconnected to construct a parallel
system. The most common models are based on one of the widely deployed paral-
lel architectures: shared memory, distributed memory with message passing, or a
hybrid combination of the two.

Programming models too closely aligned to a particular parallel system lead
to programs that are not portable between parallel computers. Because the effective
lifespan of software is longer than that of hardware, many organizations have more
than one type of parallel computer, and most programmers insist on programming
environments that allow them to write portable parallel programs. Also, explicitly
managing large numbers of resources in a parallel computer is difficult, suggesting
that higher-level abstractions of the parallel computer might be useful. The result
is that as of the mid-1990s, there was a veritable glut of parallel programming
environments. A partial list of these is shown in Table 2.1. This created a great
deal of confusion for application developers and hindered the adoption of parallel
computing for mainstream applications.

Fortunately, by the late 1990s, the parallel programming community con-
verged predominantly on two environments for parallel programming: OpenMP
[OMP] for shared memory and MPT [Mesb] for message passing.

OpenMP is a set of language extensions implemented as compiler directives.
Implementations are currently available for Fortran, C, and C++. OpenMP is fre-
quently used to incrementally add parallelism to sequential code. By adding a com-
piler directive around a loop, for example, the compiler can be instructed to generate
code to execute the iterations of the loop in parallel. The compiler takes care of
most of the details of thread creation and management. OpenMP programs tend to
work very well on SMPs, but because its underlying programming model does not
include a notion of nonuniform memory access times, it is less ideal for cceNUMA
and distributed-memory machines.

MPT is a set of library routines that provide for process management, mes-
sage passing, and some collective communication operations (these are operations
that involve all the processes involved in a program, such as barrier, broadcast,
and reduction). MPI programs can be difficult to write because the programmer
is responsible for data distribution and explicit interprocess communication using
messages. Because the programming model assumes distributed memory, MPI is a
good choice for MPPs and other distributed-memory machines.

Neither OpenMP nor MPI is an ideal fit for hybrid architectures that combine
multiprocessor nodes, each with multiple processes and a shared memory, into a
larger system with separate address spaces for each node: The OpenMP model does
not recognize nonuniform memory access times, so its data allocation can lead to
poor performance on machines that are not SMPs, while MPI does not include
constructs to manage data structures residing in a shared memory. One solution is
a hybrid model in which OpenMP is used on each shared-memory node and MPI is
used between the nodes. This works well, but it requires the programmer to work
with two different programming models within a single program. Another option

14 Chapter 2 Background and Jargon of Parallel Computing

Table 2.1: Some Parallel Programming Environments from the Mid-1990s

»C*in C CUMULVS Java RMI P-RIO Quake
ABCPL DAGGER javaPG P3L) Qufmrk’ o
ACE DAPPLE JAVAR P4-Linda Quick Threads
ACTH++ Data Parallel C JavaSpaces Pabloﬂ %agc;r«\—
ADDAP DC++ JIDL PADE SAM AL
Adl DCE++ Joyce PADRE SCAND/ -
Adsmith DDD Karma Panda SC.HEDU
AFAPI DICE Khoros ?apers SciTL
ALWAN DIPC KOAN/Fortran-3 Para—fﬂ» SDDA
AM Distributed Smalltalk ~ LAM Paradigm SHME)é[J
AMDC DOLIB Legion Parafra.seZ b'IMPL
Amoeba DOME . Lilac Paralatlo.n Swir::“"
AppLeS DOSMOS Linda Parallaxis EMI
ARTS DRL LiPS Parallel Hafskell S -~
Athapascan-0b DSM-Threads Locust Para}lel»Cffl‘ :()1N12
Aurora Ease Lparx Par(,l éi i~
Automap ECO Lucid Pal‘L%b++ L L end
bb_threads Eilean Maisie ParLin Et u"e‘:i s
Blaze Emerald Manifold ?arlog ;:Iﬁ.;‘l

EPL Mentat armacs
Elso}jkcomm }];iccalibur Meta Chaos Parti SuperPascal
C* Express Midway pC Syile‘rgy o
Ox* Falcon Millipede pCH+ TCGI\/ISh
C4 Filaments Mirage PCN ?I:elcg;rapRésE
CarlOS FLASH Modula-2* PC}"': Ihe. FO N
Cashmere M Modula-P PCU . :[jhlzz;d;bg—-%—
CC++ Fork MOSIX PEAQE VI; R,‘ v
Charlotte Fortran-M MpC PENNY TreadMarks
Charm FX MPCH+ PET ucC
Charm-+-+ GA ’ MPI PETSc uTCJFFY
Chu GAMMA Multipol PH UNI
Cid Glenda Munin) Phosp-horus \/; .
Cilk GLU Nano-Threads POET AY 1(;L VNS
CM-Fortran GUARD NESL Polaris - \/:xsu‘oA -NU
Code HAsL NetClasses+-+ POOL-T V }DE hroads
Concurrent ML, HORUS Nexus POOMA W?n32l threads
Converse HPC Nimrod POSYBL WmvPaf)
COOL HPCH+ NOW PRESTO VVYVW;n :
CORRELATE HPF Objective Linda Prospero Xhl\iOOP
CparPar IMPACT Occam Pr‘oteus XPC 4
CPS ISETL-Linda Omega PSDM Zounds
CRL ISIS OOF90 PsI ZPL
CSP JADA Orca PVM .
Cthreads JADE P4+ QPC++

L

is to use MPI on both the shared-memory and distributed-memory port.ions of the
algorithm and give up the advantages of a shared-memory programming model,
even when the hardware directly supports it. o

New high-level programming environments that simplify portfzb],e parallel pro-
gramming and more accurately reflect the underlying parallel arc.hxtcctures are tqp—
ics of current rescarch [Cen]. Another approach more popular in the commercial

2.3 Parallel Programming Environments 15

sector is to extend MPI and OpenMP. In the mid-1990s, the MPI Forum defined an
extended MPI called MPT 2.0, although implementations are not widely available
at the time this was written. It is a large complex extension to MPI that includes
dynamic process creation, parallel I/O, and many other features. Of particular in-
terest to programmers of modern hybrid architectures is the inclusion of one-sided
communication. One-sided communication mimics some of the features of a shared-
memory system by letting one process write into or read from the memory regions
of other processes. The term “one-sided” refers to the fact that the read or write
is launched by the initiating process without the explicit involvement of the other
participating process. A more sophisticated abstraction of one-sided communication
is available as part of the Global Arrays [NHL96, NHK 102, Gloa] package. Global
Arrays works together with MPI to help a programmer manage distributed array
data. After the programmer defines the array and how it is laid out in memory,
the program executes “puts” or “gets” into the array without needing to explicitly
manage which MPI process “owns” the particular section of the array. In essence,
the global array provides an abstraction of a globally shared array. 'This only works
for arrays, but these are such common data structures in parallel computing that
this package, although limited, can be very useful.

Just as MPI has been extended to mimic some of the benefits of a shared-
memory environment, OpenMP has been extended to run in distributed-memory
environments. The annual WOMPAT (Workshop on OpenMP Applications and
Tools) workshops contain many papers discussing various approaches and experi-
ences with OpenMP in clusters and ccNUMA environments.

MP1 is implemented as a library of routines to be called from programs writ-
ten in a sequential programming language, whereas OpenMP is a set of extensions
to sequential programming languages. They represent two of the possible cate-
gories of parallel programming environments (libraries and language extensions),
and these two particular environments account for the overwhelming majority of
parallel computing being done today. There is, however, one more category of par-
allel programming environments, namely languages with built-in features to sup-
port parallel programming. Java is such a language. Rather than being designed to
support high-performance computing, Java is an object-oriented, general-purpose
programming environment with features for explicitly specifying concurrent pro-
cessing with shared memory. In addition, the standard I/O and network packages
provide classes that make it easy for Java to perform interprocess communication
between machines, thus making it possible to write programs based on both the
shared-memory and the distributed-memory models. The newer java.nio pack-
ages support I/O in a way that is less convenient for the programmer, but gives
significantly better performance, and Java 2 1.5 includes new support for concur-
rent programming, most significantly in the java.util.concurrent.* packages.

Additional packages that support different approaches to parallel computing are
widely available. ’

Although there have been other general-purpose languages, both prior to Java
and more recent (for example, C#), that contained constructs for specifying con-
currency, Java is the first to become widely used. As a result, it may be the first
exposure for many programmers to concurrent and parallel programming. Although

16 Chapter 2 Background and Jargon of Parallel Computing

Java provides software engineering benefits, currently the performance of parallel
Java programs cannot compete with OpenMP or MPI programs for typical scien-
tific computing applications. The Java design has also been criticized for several
deficiencies that matter in this domain (for example, a floating-point model that
emphasizes portability and more-reproducible results over exploiting the available
floating-point hardware to the fullest, inefficient handling of arrays, and lack of a
lightweight mechanism to handle complex numbers). The performance difference
between Java and other alternatives can be expected to decrease, especially for
symbolic or other nonnumeric problems, as compiler technology for Java improves
and as new packages and language extensions become available. The Titanium
project [Tita] is an example of a Java dialect designed for high-performance com-
puting in a ccNUMA environment,

For the purposes of this book, we have chosen OpenMP, MPI, and Java as
the three environments we will use in our examples—OpenMP and MPI for their
popularity and Java because it is likely to be many programmers’ first exposure to
concurrent programming. A brief overview of each can be found in the appendixes.

2.4 THE JARGON OF PARALLEL COMPUTING

In this section, we define some terms that are frequently used throughout the pat-
tern language. Additional definitions can be found in the glossary.

Task. The first step in designing a parallel program is to break the prob-
lem up into tasks. A task is a sequence of instructions that operate together as a
group. This group corresponds to some logical part of an algorithm or program. For
example, consider the multiplication of two order-N matrices. Depending on how
we construct the algorithm, the tasks could be (1) the multiplication of subblocks
of the matrices, (2) inner products between rows and columns of the matrices, or
(3) individual iterations of the loops involved in the matrix multiplication. These
are all legitimate ways to define tasks for matrix multiplication; that is, the task
definition follows from the way the algorithm designer thinks about the problem.

Unit of execution (UE). To be executed, a task needs to be mapped to a
UE such as a process or thread. A process is a collection of resources that enables
the execution of program instructions. These resources can include virtual memory,
1/0O descriptors, a runtime stack, signal handlers, user and group IDs, and access
control tokens. A more high-level view is that a process is a “heavyweight” unit of
execution with its own address space. A thread is the fundamental UE in modern
operating systems. A thread is associated with a process and shares the process’s
environment. This makes threads lightweight (that is, a context switch between
threads takes only a small amount of time). A more high-level view is that a thread
is a “lightweight” UE that shares an address space with other threads.

We will use unit of ezecution or UE as a generic term for one of a collection of
possibly concurrently executing entities, usually either processes or threads. This
is convenient in the early stages of program design when the distinctions between
processes and threads are less important.

2.4 The Jargon of Parallel Computing 17

P.rocessing element (PE). We use the term processing element (PE) as
a generic term for a hardware element that executes a stream of instructions {[‘he
unit of hardware considered to be a PE depends on the context. For exa;nple.
some programming environments view each workstation in a cluster of SMP WOI‘k—/
stations as executing a single instruction stream; in this situation, the PE would
be the workstation. A different programming environment runnh;g on the same
hardware, however, might view each processor of each workstation as executing an
individual instruction stream; in this case, the PE is the individual processor, and
each workstation contains several PEs. ‘ 7

Load balance and load balancing. To execute a parallel program, the
tasks nlqst IE)e mapped to UEs, and the UEs to PEs. How the mappings areodone; céh
have‘ a significant impact on the overall performance of a parallel algorithm. Tt is
cru.aal to avoid the situation in which a subset of the PEs is doing most of the work
while others are idle. Load balance refers to how well the work is aistributed among
PEs. Load balancing is the process of allocating work to PEs, either statically o;
dynamically, so that the work is distributed as evenly as possiiole. B

Synchronization. In a parallel program, due to the nondeterminism of task
scheduling and other factors, events in the computation might not always occur

in the same order. For example, in one run, a task might read variable z before

another task reads variable y; in the next run with the same input, the events might
occur in the opposite order. In many cases, the order in which two events occur
does not matter. In other situations, the order does matter, and to ensure that
the program is correct, the programmer must introduce synchronization to enforce
the necessary ordering constraints. The primitives provided for this purpose in
our selected environments are discussed in. the Implementation Mechanisms design
space (Sec. 6.3). e

‘ Synchronous versus asynchronous. We use these two terms to quali-
tatively. refer to how tightly coupled in time two events are. If two events must
happen at the same time, they are synchronous; otherwise they are asynchronoué.
For fexlample7 message passing (that is, communication between UEb by sending and
receiving messages) is synchronous if a message sent must be received before the
§e11der can continue. Message passing is asynchronous if the sender can continue
its cgmputation regardless of what happens at the receiver, or if the receiver can
continue computations while waiting for a receive to complete.

Race conditions. A race condition is a kind of error peculiar to paral-
lel programs. It occurs when the outcome of a program changes as the relative
scheduling of UEs varies. Because the operating system and not the programmer
controls the scheduling of the UEs, race conditions result in programs that poten-
tially give different answers even when run on the same system with the same data
Race conditions are particularly difficult errors to debug because by their naturé
they cannot be reliably reproduced. Testing helps, but is not as effective as with
sequential programs: A program may run correctly the first thousand times and

18 Chapter2 Background and Jargon of Parallel Computing

then fail catastrophically on the thousand-and-first execution—and then run again
correctly when the programmer attempts to reproduce the error as the first step in
debugging.

Race conditions result from errors in synchronization. If multiple UEs read
and write shared variables, the programmer must protect access to these shared
variables so the reads and writes occur in a valid order regardless of how the tasks
are interleaved. When many variables are shared or when they are accessed through
multiple levels of indirection, verifying by inspection that no race conditions exist
can be very difficult. Tools are available that help detect and fix race conditions,
such as ThreadChecker from Intel Corporation, and the problem remains an area
of active and important research [NM92].

Deadlocks. Deadlocks are another type of error peculiar to parallel pro-
grams. A deadlock occurs when there is a cycle of tasks in which each task is
blocked waiting for another to proceed. Because all are waiting for another task
to do something, they will all be blocked forever. As a simple example, consider
two tasks in a message-passing environment. Task A attempts to receive a message
from task B, after which A will reply by sending a message of its own to task B.
Meanwhile, task B attempts to receive a message from task A, after which B will
send a message to A. Because each task is waiting for the other to send it a message
first, both tasks will be blocked forever. Fortunately, deadlocks are not difficult to
discover, as the tasks will stop at the point of the deadlock.

2.5 A QUANTITATIVE LOOK AT PARALLEL COMPUTATION

The two main reasons for implementing a parallel program are to obtain better
performance and to solve larger problems. Performance can be both modeled and
measured, so in this section we will take a another look at parallel computations
by giving some simple analytical models that illustrate some of the factors that
influence the performance of a parallel program.

Consider a computation consisting of three parts: a setup section, a compu-
tation section, and a finalization section. The total running time of this program
on one PE is then given as the sum of the times for the three parts.

Ttotal(1> = Tsctup + Tcmnp'ute + Tﬁnalization (2J)

What happens when we run this computation on a parallel computer with multi-
ple PEs? Suppose that the setup and finalization sections cannot be carried out
concurrently with any other activities, but that the computation section could be
divided into tasks that would run independently on as many PEs as are available,
with the same total number of computation steps as in the original computation.
The time for the full computation on P PEs can therefore be given by

Tcomp'u.tr; (l)

P + Vr.jﬁnal«;zaléon (22)

Ttotal(P> = Tsetup +

2.5 A Quantitative Look at Parallel Computation 19

Of course, Eq. 2.2 describes a very idealized situation. However, the idea that
computations have a serial part (for which additional PEs are useiess) and a par-
allelizable part (for which more PEs decrease the running time) is realistic. Thus
this simple model captures an important relationship. ’

An important measure of how much additional PEs help is the relative
speedup S, which describes how much faster a problem runs in a way that nor-
malizes away the actual running time.

Ttotal (1)

S(P) - Ttotal(P)

(2.3)

A related measure is the efficiency F, which is the speedup normalized by the
number of PEs. ‘

B(P) = S*(;i) (2.4)
— Tio al(l)
B P}tzmz(P) 23

‘Ideally, we would want the speedup to be equal to P, the number of PEs. This
is sometimes called perfect linear speedup. Unfortunately, this is an ideal that can
rarely be achieved because times for setup and finalization are not improved by
adding more PEs, limiting the speedup. The terms that cannot be run concurrently
are called the serial terms. Their running times represent some fraction of the total
called the serial fraction, denoted 7. 7

Tsetup + Tﬁnalization
f\/ =
Toora(1) (26)

The fraction of time spent in the parallelizable part of the program is then (1 —=).
We can thus rewrite the expression for total computation time with P PEs as

Ttotal(P) =79 Ttotal(l) + u;ﬂ@@ (27)

Now, rewriting S in terms of the new expression for T}osq;(P), we obtain the famous
Amdahl’s law:

_ Ttota (1)
S(P) = d
() (’)’ + ll_zry) Ttotal(l) (28)
1
IR >

Thus, in an ideal parallel algorithm with no overhead in the parallel part, the
speedup shou‘ld follow Eq. 2.9. What happens to the speedup if we take our ideal
parallel algorithm and use a very large number of processors? Taking the limit as

20 Chapter 2 Background and Jargon of Parallel Computing

P goes to infinity in our expression for S yields
S == (2.10)

Eq. 2.10 thus gives an upper bound on the speedup obtainable in an algorithm
whose serial part represents v of the total computation.

These concepts are vital to the parallel algorithm designer. In designing a
parallel algorithm, it is important to understand the value of the serial fraction so
that realistic expectations can be set for performance. It may not make sense to
implement a complex, arbitrarily scalable parallel algorithm if 10% or more of the
algorithm is serial—and 10% is fairly common.

Of course, Amdahl’s law is based on assumptions that may or may not be
true in practice. In real life, a number of factors may make the actual running
time longer than this formula implies. For example, creating additional parallel
tasks may increase overhead and the chances of contention for shared resources.
On the other hand, if the original serial computation is limited by resources other
than the availability of CPU cycles, the actual performance could be much better
than Amdahl’s law would predict. For example, a large parallel machine may allow
bigger problems to be held in memory, thus reducing virtual memory paging, or
multiple processors each with its own cache may allow much more of the problem to
remain in the cache. Amdahl’s law also rests on the assumption that for any given
input, the parallel and serial implementations perform exactly the same number of
computational steps. If the serial algorithm being used in the formula is not the best
possible algorithm for the problem, then a clever parallel algorithm that structures
the computation differently can reduce the total number of computational steps.

Tt has also been observed [Gus88] that the exercise underlying Amdahl’s law,
namely running exactly the same problem with varying numbers of processors, is
artificial in some circumstances. If, say, the parallel application were a weather sim-
ulation, then when new processors were added, one would most likely increase the
problem size by adding more details to the model while keeping the total execution
time constant. If this is the case, then Amdahl’s law, or fixed-size speedup, gives a
pessimistic view of the benefits of additional processors.

To see this, we can reformulate the equation to give the speedup in terms of
performance on a P-processor system. Earlier in Eq. 2.2, we obtained the execution
time for 7" processors, Tipar(P), from the execution time of the serial terms and
the execution time of the parallelizable part when executed on one processor. Here,
we do the opposite and obtain T (1) from the serial and parallel terms when
executed on P processors.

Ttotal(l) = Tsetu,p + PTcompute (P> + Tﬁnalizatian (211>
Now, we define the so-called scaled serial fraction, denoted Yscated, a8

Tsctup + Tﬁnalization
Yscaled = 212)
¢ Ttotal(P) (

2.6 Communication 21

and then

thal(l) = Vscalethoml(P) + P(l - A/s{:aled)Ttotal(P> (213)

Rewriting the equation for speedup (Eq. 2.3) and simplifying, we obtain the scaled
(or fixed-time) speedup.’

S(P) =P+ (1~ P)"/scaéed- (2.14)

This gives exactly the same speedup as Amdahl’s law, but allows a different question
to be asked when the number of processors is increased. Since Yscareq depends on
P, the result of taking the limit isn’t immediately obvious, but would give the
same result as the limit in Amdahl’s law. However, suppose we take the limit in P
while holding Toompute 0nd thus Yecaleq constant. The interpretation is that we are
increasing the size of the problem so that the total running time remains constant
when more processors are added. (This contains the implicit assumption that the
execution time of the serial terms does not change as the problem size grows.) In
this case, the speedup is linear in P. Thus, while adding more processors to solve a
fixed problem may hit the speedup limits of Amdahl’s law with a relatively small
number of processors, if the problem grows as more processors are added, Amdahl’s
law will be pessimistic. These two models of speedup, along with a fixed-memory
version of speedup, are discussed in [SN90].

2.6 COMMUNICATION

Latency and Bandwidth

A simple but useful model characterizes the total time for message transfer as the
sum of a fixed cost plus a variable cost that depends on the length of the message.
i . 1’\?’

Tmessage—transfe'r =« + ”B“ (215)
The fixed cost « is called latency and is essentially the time it takes to send an empty
message over the communication medium, from the time the send routine is called
to the time the data is received by the recipient. Latency (given in some appropriate
time unit) includes overhead due to software and network hardware plus the time
it takes for the message to traverse the communication medium. The bandwidth 8
(given in some measure of bytes per time unit) is a measure of the capacity of the
communication medium. NN is the length of the message.

The latency and bandwidth can vary significantly between systems depend-
ing on both the hardware used and the quality of the software implementing the
communication protocols. Because these values can be measured with fairly simple
benchmarks [DD97], it is sometimes worthwhile to measure values for « and 3,
as these can help guide optimizations to improve communication performance. For
example, in a system in which « is relatively large, it might be worthwhile to try to

Trors X : .
This equation, sometimes known as Gustafson’s law, was attributed in [Gus88] to E. Barsis.

22 Chapter 2 Background and Jargon of Parallel Computing
2.7 Summary 23

2.7 SUMMARY

This chapter has given a brief overview of some of the concepts and vocabu-
lary used in parallel computing. Additional terms are defined in the glossary. We
also discussed the major programming environments in use for parallel computing:
OpenMP, MPI, and Java. Throughout the book, we will use these three program-
ming environments for our examples. More details about OpenMP, MPI, and Java
and how to use them to write parallel programs are provided in the appendixes.

compute | o | compute

compute

Figure 2.7: Communication without (left) and with (right) support for overlapping communication
and computation. Although UE 0 in the computation on the right still has some idle time waiting
for the reply from UE 1, the idle time is reduced and the computation requires less total time
because of UE 1's earlier start.

restructure a program that sends many small messages to aggregate the communi-
cation into a few large messages instead. Data for several recent systems has been
presented in [BBCT03].

2.6.2 Overlapping Communication and Computation and Latency Hiding

If we look more closely at the computation time within a single task on a single
processor, it can roughly be decomposed into computation time, communication
time, and idle time. The communication time is the time spent sending and receiving
messages (and thus only applies to distributed-memory machines), whereas the idle
time is time that no work is being done because the task is waiting for an event,
such as the release of a resource held by another task.

A common situation in which a task may be idle is when it is waiting for
a message to be transmitted through the system. This can occur when sending
a message (as the UE waits for a reply before proceeding) or when receiving a
message. Sometimes it is possible to eliminate this wait by restructuring the task to
send the message and/or post the receive (that is, indicate that it wants to receive
a message) and then continue the computation. This allows the programmer to
overlap communication and computation. We show an example of this technique
in Fig. 2.7. This style of message passing is more complicated for the programmer,
because the programmer must take care to wait for the receive to complete after
any work that can be overlapped with communication. is completed.

Another technique used on many parallel computers is to assign multiple
UEs to each PE, so that when one UE is waiting for communication, it will be
possible to context-switch to another UE and keep the processor busy. This is an
example of latency hiding. It is increasingly being used on modern high-performance
computing systems, the most famous example being the MTA system from Cray
Research [ACCT90].

