
Lightweight Concurrent Tasks

Lecture 1.d

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
1

Acknowledgements

• Authored by

– Thomas Ball, MSR Redmond

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
2

What We’ve Seen So Far

• Parallel.For/ForEach

– data parallelism over integer range or IEnumerable

– automatic generation of tasks

– dynamic partitioning and load balancing

• Parallel.For doesn’t address many problems

– Irregular matrix algorithms

– Algorithms over trees, graphs

– …

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
3

Concepts

• Wavefront computation

• Task

– Task Status

– Parent/child relationship

– Task Result

– Task Continuation

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
4

Code

Concept

Performance

Concept

Levenshtein Edit Distance

• Find minimal distance between strings s1 and s2
– via character insertions, deletions, and substitutions

• Example of dynamic programming
– break down problems into smaller problems

– cache (“memoize”) results of subproblems

• Other examples
– longest common subsequence, matrix-chain

multiplication, sequence alignment

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
5

Edit Distance and Wavefront

S A T U R D A Y

0 1 2 3 4 5 6 7 8

S 1

U 2

N 3

D 4

A 5

Y 6

(i-1,j-1) (i,j-1)

(i-1,j) (i,j)

dist[i, j] =

(s1[i - 1] == s2[j - 1])

? dist[i - 1, j - 1]

: 1 + min(dist[i - 1, j],

min(dist[i, j - 1],

dist[i - 1, j - 1]));

s1

s2

i>0 and j>0

dist

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
6

Edit Distance and Wavefront

S A T U R D A Y

0 1 2 3 4 5 6 7 8

S 1 0 1 2 3 4 5 6 7

U 2 1 1 2 2 3 4 5 6

N 3 2 2 2 3 3 4 5 6

D 4 3 3 3 3 4 3 4 5

A 5 4 3 4 4 4 4 3 4

Y 6 5 4 4 5 5 5 4 3

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
7

CS2

Slide 7

CS2 Maybe a slide showing why Parallel.For is not quite what we want?
Caitlin Sadowski, 7/8/2010

TaskFactory and Task

• TaskFactory
– Task StartNew(Action)

– Task ContinueWhenAll(Task[], Action<Task[]>)

• Task
– static TaskFactory Factory

– Task ContinueWith(Action<Task>)

– void Wait()

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
8

Wavefront on 2x2 Matrix A C

B D

A

B

D

C

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
9

Task A = Task.Factory.StartNew(actionA);

Task B = A.ContinueWith(actionB);

Task C = A.ContinueWith(actionC);

Task D = Task.Factory.ContinueWhenAll(

new Task[2] { B, C },

actionD);

D.Wait();

3x3 Matrix and

Task Graph

A C F

B E H

D G I

A

B

E

C

D F

G H

I
6/16/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
10

General Wavefront Algorithm

void Wavefront(

int numRows,

int numColumns,

Action<int,int> processCell)

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
11

Alpaca

ProjectParallelAlgorithms_Wavefront.cs

Edit Distance with Parallel Wavefront

// allocation of dist array

Wavefront(numRows, numColumns,

(int i, int j) =>

{

if (i == 0)

dist[i,j] = j;

else if (j == 0)

dist[i,j] = i;

else

dist[i, j] = (s1[i - 1] == s2[j - 1])

? dist[i - 1, j - 1]

: 1 + Math.Min(dist[i - 1, j],

Math.Min(dist[i, j - 1],

dist[i - 1, j - 1]));

}

);
6/16/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
12

Alpaca

ProjectEditDistance.cs

Performance of Parallel Wavefront

• Much worse than sequential!

• One Task per entry of the distance matrix

– Not enough computation per Task

– Coordination cost of Task allocation, management,

and synchronization dominates

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
13

CS3

Slide 13

CS3 Performance on what exactly is worse than sequential? Does code in previous slide use tasks?
Caitlin Sadowski, 7/8/2010

Blocking For More Work per Task

S A T U R D A Y

0 1 2 3 4 5 6 7 8

S 1 0 1 2 3 4 5 6 7

U 2 1 1 2 2 3 4 5 6

N 3 2 2 2 3 3 4 5 6

D 4 3 3 3 3 4 3 4 5

A 5 4 3 4 4 4 4 3 4

Y 6 5 4 4 5 5 5 4 3

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
14

BlockedWavefront

static void BlockedWavefront(

int numRows, int numColumns,

int numBlocksPerRow, int numBlocksPerColumn,

Action<int, int, int, int> processBlock)

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
15

processBlock(start_i, end_i, start_j, end_j);

Alpaca

ProjectParallelAlgorithms_Wavefront.cs

BlockedWavefront

// Compute the size of each block.

int rowBlockSize = numRows / numBlocksPerRow;

int columnBlockSize = numColumns / numBlocksPerColumn;

Wavefront(numBlocksPerRow, numBlocksPerColumn, (row, column) =>

{

int start_i = row * rowBlockSize;

int end_i = row < numBlocksPerRow - 1 ?

start_i + rowBlockSize : numRows;

int start_j = column * columnBlockSize;

int end_j = column < numBlocksPerColumn - 1 ?

start_j + columnBlockSize : numColumns;

processBlock(start_i, end_i, start_j, end_j);

});

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
16

Tasks, TaskScheduler, ThreadPool

• Task represents an asynchronous operation

• TaskScheduler

– is responsible for scheduling of Tasks

– defaults to the .NET 4 ThreadPool

– more on scheduling in Unit 5

• ThreadPool

– effectively manages a set of Threads

– More on thread pool and threads in Unit 5

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
17

Task Status (partial)

WaitingToRun

Running

WaitingForChildren

ToCompleteCanceled Faulted

RanToCompletion

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
18

Task Status (partial list)

WaitingToRun The task is scheduled for execution but has

not yet begun running

Running The task is running but has not yet

completed

WaitingForChildren

ToComplete

The task has finished executing and is waiting

for attached child tasks to complete

RanToCompletion The task completed execution successfully

Canceled The task acknowledged cancellation by

throwing an OperationCanceledException

Faulted The task completed due to an unhandled

exception

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
19

CS5

Slide 19

CS5 What's the big picture? How do I query & use these states?
Caitlin Sadowski, 7/8/2010

Nested Tasks

static void SimpleNestedTask() {
var parent = Task.Factory.StartNew(() =>
{

Console.WriteLine("Outer task executing.");
var child = Task.Factory.StartNew(() =>
{

Console.WriteLine("Nested task starting.");
Thread.SpinWait(500000);
Console.WriteLine("Nested task completing.");

});
});
parent.Wait();
Console.WriteLine("Outer has completed.");

}

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
20

TaskExamples.cs

Alpaca

Project

Child Tasks

static void SimpleNestedTask() {
var parent = Task.Factory.StartNew(() =>
{

Console.WriteLine("Outer task executing.");
var child = Task.Factory.StartNew(() =>
{

Console.WriteLine("Nested task starting.");
Thread.SpinWait(500000);
Console.WriteLine("Nested task completing.");

},
TaskCreationOptions.AttachedToParent);

);
});
parent.Wait();
Console.WriteLine("Outer has completed.");

}

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
21

Relationship Between

Nested and Child Tasks?

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
22

Task Results (Futures)

var cts = new CancellationTokenSource();

Task<int> dataForThefuture = Task.Factory.StartNew(

() => ComputeSomeResult(), cts.Token);

...

// This will return the value immediately if the Task has already

// completed, or will wait for the result to be available if it’s

// not yet completed.

int result = dataForTheFuture.Result;

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
23

Task Results (Futures)

var cts = new CancellationTokenSource();

Task<int> dataForThefuture = Task.Factory.StartNew(

() => ComputeSomeResult(), cts.Token);

...

// Cancel it and make sure we are made aware of any exceptions

// that occurred.

cts.Cancel();

dataForTheFuture.ContinueWith(t => LogException(dataForTheFuture),

TaskContinuationOptions.OnlyOnFaulted);

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
24

Tasks and Exceptions

• If a nested task throws an exception, it must

be observed or handled directly in the outer

task just as with any non-nested task

• If a child task C throws an exception, the

exception is automatically propagated to the

parent task (via C.Wait()or C.Result)

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
25

Difference between

Nest and Child Tasks

Category Nested Tasks Attached Child Tasks

Outer task (parent) waits

for inner tasks to complete.
No Yes

Parent propagates

exceptions thrown by

children (inner tasks).

No Yes

Status of parent (outer

task) dependent on status

of child (inner task).

No Yes

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
26

CS4

Slide 26

CS4 So, whats the big picture? What are some examples why nested vs. child makes more sense, and visa versa?
Caitlin Sadowski, 7/8/2010

TaskContinuationOptions

(partial)

NotOnRanTo

Completion

Continuation task should not be scheduled if

its antecedent ran to completion.

NotOnFaulted Continuation task should not be scheduled if

its antecedent threw an unhandled

exception

NotOnCanceled Continuation task should not be scheduled if

its antecedent was canceled

OnlyOnlyOn

RanToCompletion,

OnlyOnFaulted,

OnlyOnCanceled

You can guess…

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
27

CS6

Slide 27

CS6 What about a couple high-level (e.g. with clear motivation) examples?
Caitlin Sadowski, 7/8/2010

Tasks and Cancellation

• Task cancellation is cooperative

• To cancel a parent and all its children in one

request, pass the same token to all tasks

– Parent cancellation doesn’t imply child

cancellation

– When child task cancels itself, a

TaskCanceledException is propagated to the

joining task (see exceptions)

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
28

static void MyParallelInvoke(params Action[] actions)

{

var tasks = new Task[actions.Length];

for (int i = 0; i < actions.Length; i++)

{

tasks[i] = Task.Factory.StartNew(actions[i]);

}

Task.WaitAll(tasks);

}

One Task per Element

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
29

Alpaca

ProjectMyParallel.cs

static T[] MyParallelInvoke<T>(params Func<T>[] functions)

{

var results = new T[functions.Length];

Task.Factory.StartNew(() =>

{

for (int i = 0; i < functions.Length; i++)

{

int cur = i;

Task.Factory.StartNew(

() => results[cur] = functions[cur](),

TaskCreationOptions.AttachedToParent);

}

}).Wait();

return results;

}

One Task per Element,

With Child Tasks

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
30

static T[] MyParallelInvoke<T>(

params Func<T>[] functions

) {

T[] results = new T[functions.Length];

Parallel.For(0, functions.Length, i =>

{

results[i] = functions[i]();

});

return results;

}

One Task per Element,

With Parallel.For

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
31

http://code.msdn.microsoft.com/ParExtSamples

• ParallelExtensionsExtras.csproj

– Extensions/

• TaskExtraExtensions.cs

• TaskFactoryExtensions/

– ParallelAlgorithms/

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
32

Parallel Programming

with Microsoft .NET

• Chapter 3 (Parallel Tasks)

• Chapter 6 (Dynamic Task Parallelism)

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
33

