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What We’ve Seen So Far

• Parallel.For/ForEach

– data parallelism over integer range or IEnumerable

– automatic generation of tasks

– dynamic partitioning and load balancing

• Parallel.For doesn’t address many problems

– Irregular matrix algorithms

– Algorithms over trees, graphs

– …
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Concepts

• Wavefront computation

• Task

– Task Status

– Parent/child relationship

– Task Result

– Task Continuation
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Levenshtein Edit Distance

• Find minimal distance between strings s1 and s2
– via character insertions, deletions, and substitutions 

• Example of dynamic programming
– break down problems into smaller problems

– cache (“memoize”) results of subproblems

• Other examples
– longest common subsequence, matrix-chain 

multiplication, sequence alignment
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Edit Distance and Wavefront

S A T U R D A Y

0 1 2 3 4 5 6 7 8

S 1

U 2

N 3

D 4

A 5

Y 6

(i-1,j-1) (i,j-1)

(i-1,j) (i,j)

dist[i, j] = 

(s1[i - 1] == s2[j - 1])

? dist[i - 1, j - 1]

: 1 + min(dist[i - 1, j],

min(dist[i, j - 1],

dist[i - 1, j - 1]));

s1

s2

i>0 and j>0

dist
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Edit Distance and Wavefront

S A T U R D A Y

0 1 2 3 4 5 6 7 8

S 1 0 1 2 3 4 5 6 7

U 2 1 1 2 2 3 4 5 6

N 3 2 2 2 3 3 4 5 6

D 4 3 3 3 3 4 3 4 5

A 5 4 3 4 4 4 4 3 4

Y 6 5 4 4 5 5 5 4 3
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Slide 7

CS2 Maybe a slide showing why Parallel.For is not quite what we want?
Caitlin Sadowski, 7/8/2010



TaskFactory and Task

• TaskFactory
– Task StartNew(Action)

– Task ContinueWhenAll(Task[], Action<Task[]>)

• Task
– static TaskFactory Factory

– Task ContinueWith(Action<Task>)

– void Wait()
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Wavefront on 2x2 Matrix A C

B D

A

B

D

C
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Task A = Task.Factory.StartNew(actionA);

Task B = A.ContinueWith(actionB);

Task C = A.ContinueWith(actionC);

Task D = Task.Factory.ContinueWhenAll(

new Task[2] { B, C },

actionD);

D.Wait();



3x3 Matrix and 

Task Graph

A C F

B E H

D G I

A

B

E

C

D F

G H

I
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General Wavefront Algorithm

void Wavefront(

int numRows, 

int numColumns, 

Action<int,int> processCell)
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Edit Distance with Parallel Wavefront

// allocation of dist array

Wavefront(numRows, numColumns, 

(int i, int j ) => 

{

if (i == 0)

dist[i,j] = j;

else if (j == 0) 

dist[i,j] = i;

else

dist[i, j] = (s1[i - 1] == s2[j - 1]) 

? dist[i - 1, j - 1]

: 1 + Math.Min(dist[i - 1, j],

Math.Min(dist[i, j - 1],

dist[i - 1, j - 1]));

}

);
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Performance of Parallel Wavefront

• Much worse than sequential!

• One Task per entry of the distance matrix

– Not enough computation per Task

– Coordination cost of Task allocation, management, 

and synchronization dominates
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CS3 Performance on what exactly is worse than sequential? Does code in previous slide use tasks?
Caitlin Sadowski, 7/8/2010



Blocking For More Work per Task

S A T U R D A Y

0 1 2 3 4 5 6 7 8

S 1 0 1 2 3 4 5 6 7

U 2 1 1 2 2 3 4 5 6

N 3 2 2 2 3 3 4 5 6

D 4 3 3 3 3 4 3 4 5

A 5 4 3 4 4 4 4 3 4

Y 6 5 4 4 5 5 5 4 3
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BlockedWavefront

static void BlockedWavefront(

int numRows, int numColumns,

int numBlocksPerRow, int numBlocksPerColumn,

Action<int, int, int, int> processBlock)
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processBlock(start_i, end_i, start_j, end_j);
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BlockedWavefront

// Compute the size of each block.

int rowBlockSize = numRows / numBlocksPerRow;

int columnBlockSize = numColumns / numBlocksPerColumn;

Wavefront(numBlocksPerRow, numBlocksPerColumn, (row, column) =>

{

int start_i = row * rowBlockSize;

int end_i = row < numBlocksPerRow - 1 ?

start_i + rowBlockSize : numRows;

int start_j = column * columnBlockSize;

int end_j = column < numBlocksPerColumn - 1 ?

start_j + columnBlockSize : numColumns;

processBlock(start_i, end_i, start_j, end_j);

});

6/16/2010
Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com 
16



Tasks, TaskScheduler, ThreadPool

• Task represents an asynchronous operation

• TaskScheduler

– is responsible for scheduling of Tasks

– defaults to the .NET 4 ThreadPool

– more on scheduling in Unit 5

• ThreadPool

– effectively manages a set of Threads

– More on thread pool and threads  in Unit 5
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Task Status (partial)

WaitingToRun

Running

WaitingForChildren

ToCompleteCanceled Faulted

RanToCompletion
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Task Status (partial list)

WaitingToRun The task is scheduled for execution but has 

not yet begun running

Running The task is running but has not yet 

completed

WaitingForChildren

ToComplete

The task has finished executing and is waiting 

for attached child tasks to complete

RanToCompletion The task completed execution successfully

Canceled The task acknowledged cancellation by 

throwing an OperationCanceledException

Faulted The task completed due to an unhandled 

exception
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CS5 What's the big picture? How do I query & use these states?
Caitlin Sadowski, 7/8/2010



Nested Tasks

static void SimpleNestedTask() { 
var parent = Task.Factory.StartNew(() => 
{   

Console.WriteLine("Outer task executing."); 
var child = Task.Factory.StartNew(() => 
{ 

Console.WriteLine("Nested task starting."); 
Thread.SpinWait(500000);
Console.WriteLine("Nested task completing."); 

}); 
}); 
parent.Wait(); 
Console.WriteLine("Outer has completed."); 

}
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Child Tasks

static void SimpleNestedTask() { 
var parent = Task.Factory.StartNew(() => 
{   

Console.WriteLine("Outer task executing."); 
var child = Task.Factory.StartNew(() => 
{ 

Console.WriteLine("Nested task starting."); 
Thread.SpinWait(500000);
Console.WriteLine("Nested task completing."); 

},
TaskCreationOptions.AttachedToParent);

); 
}); 
parent.Wait(); 
Console.WriteLine("Outer has completed."); 

}
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Relationship Between

Nested and Child Tasks?
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Task Results (Futures)

var cts = new CancellationTokenSource();

Task<int> dataForThefuture = Task.Factory.StartNew(

() => ComputeSomeResult(), cts.Token);

...

// This will return the value immediately if the Task has already 

// completed, or will wait for the result to be available if it’s 

// not yet completed.

int result = dataForTheFuture.Result;
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Task Results (Futures)

var cts = new CancellationTokenSource();

Task<int> dataForThefuture = Task.Factory.StartNew(

() => ComputeSomeResult(), cts.Token);

...

// Cancel it and make sure we are made aware of any exceptions 

// that occurred.

cts.Cancel();

dataForTheFuture.ContinueWith(t => LogException(dataForTheFuture),

TaskContinuationOptions.OnlyOnFaulted);
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Tasks and Exceptions

• If a nested task throws an exception, it must 

be observed or handled directly in the outer 

task just as with any non-nested task

• If a child task C throws an exception, the 

exception is automatically propagated to the 

parent task (via C.Wait()or C.Result)
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Difference between 

Nest and Child Tasks

Category Nested Tasks Attached Child Tasks

Outer task (parent) waits 

for inner tasks to complete.
No Yes

Parent propagates 

exceptions thrown by 

children (inner tasks).

No Yes

Status of parent (outer 

task) dependent on status 

of child (inner task).

No Yes
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CS4 So, whats the big picture? What are some examples why nested vs. child makes more sense, and visa versa?
Caitlin Sadowski, 7/8/2010



TaskContinuationOptions

(partial)

NotOnRanTo

Completion 

Continuation task should not be scheduled if 

its antecedent ran to completion.

NotOnFaulted Continuation task should not be scheduled if 

its antecedent threw an unhandled 

exception

NotOnCanceled Continuation task should not be scheduled if 

its antecedent was canceled

OnlyOnlyOn

RanToCompletion,

OnlyOnFaulted,

OnlyOnCanceled

You can guess…
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CS6 What about a couple high-level (e.g. with clear motivation) examples?
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Tasks and Cancellation

• Task cancellation is cooperative

• To cancel a parent and all its children in one 

request, pass the same token to all tasks 

– Parent cancellation doesn’t imply child 

cancellation

– When child task cancels itself, a 

TaskCanceledException is propagated to the 

joining task (see exceptions)
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static void MyParallelInvoke(params Action[] actions)

{

var tasks = new Task[actions.Length];

for (int i = 0; i < actions.Length; i++)

{

tasks[i] = Task.Factory.StartNew(actions[i]);

}

Task.WaitAll(tasks);

}

One Task per Element
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static T[] MyParallelInvoke<T>(params Func<T>[] functions)

{

var results = new T[functions.Length];

Task.Factory.StartNew(() =>

{

for (int i = 0; i < functions.Length; i++)

{

int cur = i;

Task.Factory.StartNew(

() => results[cur] = functions[cur](),

TaskCreationOptions.AttachedToParent);

}

}).Wait();

return results;

}

One Task per Element,

With Child Tasks
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static T[] MyParallelInvoke<T>(

params Func<T>[] functions

) {

T[] results = new T[functions.Length];

Parallel.For(0, functions.Length, i =>

{

results[i] = functions[i]();

});

return results;

}

One Task per Element,

With Parallel.For

6/16/2010
Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com 
31



http://code.msdn.microsoft.com/ParExtSamples

• ParallelExtensionsExtras.csproj

– Extensions/

• TaskExtraExtensions.cs

• TaskFactoryExtensions/

– ParallelAlgorithms/
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Parallel Programming 

with Microsoft .NET 

• Chapter 3 (Parallel Tasks)

• Chapter 6 (Dynamic Task Parallelism)
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