
Data Parallelism

and Control-Flow

Unit 1.c

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
16/16/2010

Acknowledgments

• Authored by

– Thomas Ball, MSR Redmond

9/20/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 2

Recall Parallel.For

A;

Parallel.For(0, N,

m: i => { B; }

);

C;

m(0) m(1) m(N-1)…

A

C

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
36/16/2010

Control Flow: When Ordering Matters

• In theory, no order between the delegates m(i)
– Parallel.For expresses potential maximal parallelism

• In practice, ordering/sequencing of m(i) impacts
performance
– cache locality

– dynamic partitioning, load balancing

• Programmers also may need control over execution
– stop, break, exception handling, cancellation

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
46/16/2010

Concepts

• Workloads

• Static and dynamic partitioning

• Coordination vs. computation

• Partitioner

• Local control-flow

• Stop/break out of Parallel.For

• Exceptions

• Cancellation

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
56/16/2010

Performance

Concept

Code

Concept

Parallel.For on Two Cores, an

Unbalanced Workload, a Static Partition

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
66/16/2010

Work and Span

• Parallelism = Work/Span

• Unbalanced workload + static partition

– Work unchanged

– Static partition increases Span

– Parallelism decreases

• What to do?

– Ensure a balanced workload, or

– Dynamically partition work (can also increase
Span, but not as much as before)

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
7

Partitioning

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
86/16/2010

More Coordination

Less Load-Balancing

Less Coordination

Coordination vs. Computation in

the Parallel DAG

• Coordination

– Work done by the run-time

to properly schedule m(i)

– Each edge has a run-time

cost (burden)

• Computation

– The execution of A, m(i), C

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
9

m(0) m(1) m(N-1)…

A

C

Ordering of Iteration Space

and Partitioning

• Parallel.For(0,N, …)

– Ordered by integer range [0...N-1]

• Parallel.ForEach(enumerable, …)

– Ordered by integer range if enumerable is

• Array

• IList<T>

– Otherwise,

• ordered by enumerable.Current/MoveNext

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
106/16/2010

Dynamic Partitioning via Chunking

• A chunk is a contiguous range of iteration space

– chunk is executed by one task sequentially

– more computation/less coordination

• Parallel.For dynamically allocates chunks to tasks

• Chunk size increases over time

– ensures good load balancing if few iterations

– minimizes overhead if there are many iterations

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
116/16/2010

System.Collections.Concurrent.Partitioner

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
12

// Represents a particular manner of splitting a

// data source into multiple partitions.

public abstract class Partitioner<TSource>

{

protected Partitioner();

public virtual bool SupportsDynamicPartitions { get; }

public virtual IEnumerable<TSource> GetDynamicPartitions();

public abstract IList<IEnumerator<TSource>>

GetPartitions(int partitionCount);

}

public abstract class OrderablePartitioner<TSource> :

Partitioner<TSource>

Visual Partitioning:

Explore Workloads and Partitioning

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
13

Take Advantage of Chunking via

Local Control Flow

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
146/16/2010

π in Parallel, Very Inefficiently

const int NUM_STEPS = 100000000;

static double NaiveParallelPi()

{

double sum = 0.0;

double step = 1.0 / (double)NUM_STEPS;

object obj = new object();

Parallel.For(0, NUM_STEPS, i =>

{

double x = (i + 0.5) * step;

double partial = 4.0 / (1.0 + x * x);

lock (obj) sum += partial;

});

return step * sum;

}

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
156/16/2010

Local Control-flow

Sequential

Task

Chunks

public static ParallelLoopResult For<TLocal>(

int fromInclusive, int toExclusive,

Func<TLocal> localInit,

Func<int, ParallelLoopState, TLocal, TLocal> body,

Action<TLocal> localEnd);

localInit

body

body

localEnd

…

…

localInit

body

body

localEnd

…

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
166/16/2010

π in Parallel, More Efficiently

const int NUM_STEPS = 100000000;

static double ParallelPi()

{

double sum = 0.0;

double step = 1.0 / (double)NUM_STEPS;

object obj = new object();

Parallel.For(0, NUM_STEPS,

() => 0.0,

(i, state, partial) =>

{

double x = (i + 0.5) * step;

return partial + 4.0 / (1.0 + x * x);

},

partial => { lock (obj) sum += partial; });

return step * sum;

}

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
176/16/2010

ControlFlow\LocalControlFlow.cs

Alpaca

Project

More Control Flow

• Stop/break out of Parallel.For

• Parallel execution and exceptions

• Cancelling a parallel computation

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
18

Stopping Parallel For Loops

• Example 1

– Searching a large unsorted collection

– First hit wins

• Example 2

– Searching a large unsorted collection

– Find lowest index with matching element

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
196/16/2010

ParallelLoopState

• Enables iterations of Parallel loops to

interact with other iterations

– One instance provided by runtime to each

loop

– Methods
• void Stop()

• void Break()

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
206/16/2010

Searching for 42

int index = -1;

ParallelLoopResult loopResult =

Parallel.For(0, a.Length,

(int i, ParallelLoopState loop) =>

{

if (a[i] == 42)

{

index = i;

loop.Stop();

}

}

);

if (!loopResult.IsCompleted) {

Console.WriteLine(“42 at index ” + index);

} Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
216/16/2010

ControlFlow\StopBreak.cs

Alpaca

Project

Searching for First 42

ParallelLoopResult loopResult =

Parallel.For(0, a.Length,

(int i, ParallelLoopState loop) =>

{

if (a[i] == 42)

{

loop.Break();

}

}

);

if (loopResult.LowestBreakIteration.HasValue) {

Console.WriteLine(“Lowest index of 42 = ” +

loopResult.LowestBreakIteration.Value);

}
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
226/16/2010

Long Running Loop Iterations

• Poll ParallelLoopState
– bool IsStopped

– Nullable<long> LowestBreakIteration

– bool IsExceptional

– bool ShouldExitCurrentIteration

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
236/16/2010

ParallelLoopResult

• IsCompleted == true

– All iterations were processed.

• IsCompleted == false &&

LowestBreakIteration.HasValue == false

– Stop was used to exit the loop early

• IsCompleted == false &&

LowestBreakIteration.HasValue == true

– Break was used to exit the loop early,

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
246/16/2010

What does this code do?

try {

Parallel.Invoke(

() => { int x = 0; int y = 100/x; },

() => { object p = null; var s = p.ToString(); }

);

} catch (Exception e) {

Console.WriteLine(e.ToString());

}

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
256/16/2010

System.AggregateException

• Used to consolidate multiple failures into a

single, throwable exception object

• AggregateException
– ReadOnlyCollection<Exception> InnerExceptions

– AggregateException Flatten()

– void Handle(Func<Exception, bool> pred)

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
266/16/2010

Alpaca

ProjectControlFlow\AggregateExceptionExample.cs

Cancellation in .NET 4

• CancellationTokenSource

• CancellationToken

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
276/16/2010

Cancellation in .NET 4

• Cancellation is cooperative

• Listeners can be notified of cancellation requests by

– polling, callback registration, or waiting on wait handles

• A cancellation request is sent to all copies of the

token via one method call

• A listener can listen to multiple tokens

simultaneously by joining them into one linked token

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
286/16/2010

void Cancel()

• The associated CancellationToken will transition to a

state where IsCancellationRequested returns true.

• Any callbacks or cancelable operations registered

with the CancellationToken will be executed.

• Cancelable operations and callbacks registered with

the token should not throw exceptions.

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
296/16/2010

Canceling Parallel.For (1)

30

var cts = new CancellationTokenSource();

var po = new ParallelOptions()

{

CancellationToken = cts.Token,

MaxDegreeOfParallelism =

System.Environment.ProcessorCount,

};

Alpaca

ProjectControlFlow\CancelingExample.cs

Canceling Parallel.For (2)

31

Parallel.Invoke(

() =>

{

Thread.Sleep(10);

Console.WriteLine("Cancelling operation via CancellationToken.Cancel...");

cts.Cancel();

},

() =>

{

try

{

Thread.Sleep(1);

int[] nums = Enumerable.Range(0, 1000000).ToArray();

Parallel.ForEach(nums, po, (num) =>

{

double d = Math.Sqrt(num) * Math.Sqrt(num * num);

});

Console.WriteLine("Operation completed without being cancelled.");

}

catch (OperationCanceledException e)

{

Console.WriteLine(e.Message);

Assert.IsTrue(token.IsCancellationRequested);

}

});

Multiple Exit Strategies

• Unhandled exceptions take priority over Stop,
Break, or cancellation requests

• If no exceptions occurred but the
CancellationToken was signaled and either Stop
or Break was used
– there’s a potential race as to whether the loop will

notice the cancellation prior to exiting:

– If it does, the loop will exit with an
OperationCanceledException.

– If it doesn’t, it will exit due to the Stop/Break

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
326/16/2010

Multiple Exit Strategies

• Stop and Break may not be used together. If

they are, an exception will be raised.

• For long running iterations, there are multiple

properties an iteration might want to check to

see whether it should bail early:

– IsStopped, LowestBreakIteration, IsExceptional

– ShouldExitCurrentIteration property, which

consolidates all of those checks in an efficient

manner.

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
336/16/2010

http://code.msdn.microsoft.com/ParExtSamples

• ParallelExtensionsExtras.csproj

– Extensions/

• AggregateExceptionExtensions.cs

• CancellationTokenExtensions.cs

– Partitioners/

6/16/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
34

