6/16/2010

Data Parallelism
and Control-Flow

Unit 1.c

Practical Parallel and Concurrent Programming
DRAFT: comments to msrpcpcp@microsoft.com

Acknowledgments

 Authored by
— Thomas Ball, MSR Redmond

Recall Parallel.For

A

Paral | el . For (0, N,
m i =>{ B }

) ;

C

6/16/2010 Practical Parallel and Concurrent Pr.ogrammmg
DRAFT: comments to msrpcpcp@microsoft.com

Control Flow: When Ordering Matters

* |n theory, no order between the delegates m(i)
— Parallel.For expresses potential maximal parallelism

* |n practice, ordering/sequencing of m(i) impacts
performance
— cache locality

— dynamic partitioning, load balancing

 Programmers also may need control over execution
— stop, break, exception handling, cancellation

Performance

Concept

6/16/2010

Concepts

— .

Practical Parallel and Concurrent Programming

Workloads
Static and dynamic partitioning
Coordination vs. computation

Partitioner

Local control-flow
Stop/break out of Parallel.For
Exceptions

Cancellation

DRAFT: comments to msrpcpcp@microsoft.com

Parallel.For on Two Cores, an
Unbalanced Workload, a Static Partition

i/

Practical Parallel and Concurrent Programming
DRAFT: comments to msrpcpcp@microsoft.com

6/16/2010

Work and Span

e Parallelism = Work/Span

 Unbalanced workload + static partition
— Work unchanged
— Static partition increases Span
— Parallelism decreases

e What to do?

— Ensure a balanced workload, or

— Dynamically partition work (can also increase
Span, but not as much as before)

Partitioning

Spectrum of Partitioning

-
o Tradeoffs c
o ' <
- [~ O
v .
> v 5
= Q
3 | | | | |
as 3

<¢— Less Load-Balancing More Load-Balancing—# ©
Less Coordination More Coordination
6/16/2010 Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com

Coordination vs. Computation in
the Parallel DAG

e Coordination

— Work done by the run-time
to properly schedule m(i)

— Each edge has a run-time
cost (burden)

e Computation
— The execution of A, m(i), C

Practical Parallel and Concurrent Programming

6/16/2010 DRAFT: comments to msrpcpcp@microsoft.com

Ordering of Iteration Space
and Partitioning

e Parallel.For(Q,N, ...)
— Ordered by integer range [0...N-1]

e Parallel.ForEach(enumerable, ...)

— Ordered by integer range if enumerable is
* Array
e [List<T>

— Otherwise,
e ordered by enumerable.Current/MoveNext

Dynamic Partitioning via Chunking

A chunkis a contiguous range of iteration space
— chunk is executed by one task sequentially
— more computation/less coordination

e Parallel.For dynamically allocates chunks to tasks

 Chunk size increases over time
— ensures good load balancing if few iterations
— minimizes overhead if there are many iterations

System.Collections.Concurrent.Partitioner

// Represents a particular manner of splitting a
// data source into multiple partitions.
public abstract class Partitioner<TSource>

{
protected Partitioner();
public virtual bool SupportsDynamicPartitions { get; }
public virtual IEnumerable<TSource> GetDynamicPartitions();
public abstract IList<IEnumerator<TSource>>
GetPartitions(int partitionCount);
}

public abstract class OrderablePartitioner<TSource> :
Partitioner<TSource>

Practical Parallel and Concurrent Programming

. 12
DRAFT: comments to msrpcpcp@microsoft.com

6/16/2010

Visual Partitioning:
Explore Workloads and Partitioning

W Visualize Partitioning

Practical Parallel and Concurrent Programming
DRAFT: comments to msrpcpcp@microsoft.com

6/16/2010

Take Advantage of Chunking via
Local Control Flow

TTin Parallel, Very Inefficiently

const int NUM_STEPS = 100000000;

static double NaiveParallelPi()
{
double sum = 0.0;
double step = 1.0 / (double)NUM STEPS;
object obj = new object();
Parallel.For(©, NUM_STEPS, i =>
{
double x = (i + ©0.5) * step;
double partial = 4.0 / (1.0 + x * x);
lock (obj) sum += partial;
1);

return step * sum;

6/16/2010 Practical Parallel and Concurrent Pr.ogramming
DRAFT: comments to msrpcpcp@microsoft.com

15

Local Control-flow

public static ParallellLoopResult For<TlLocal>(
int fromInclusive, int toExclusive,
Func<TlLocal> localInit,

Func<int, ParallellLoopState, TLocal, TLocal> body,
Action<TlLocal> localEnd);

locallnit locallnit
Sequential
Task
Chunks
localEnd localEnd
< | , . >
6/16/2010 e S ToEramming

DRAFT: comments to M PCp @microsoft.com

16

Tlin Parallel, More Efficiently

const int NUM _STEPS = 100000000;
static double ParallelPi()
{
double sum = 0.0;
double step = 1.0 / (double)NUM STEPS;
object obj = new object();
Parallel.For(©, NUM STEPS,
: () => 0.0,
(i, state, partial) =>
{
double x = (i + 90.5) * step;
return partial + 4.9 / (1.0 + x * x);
}s
partial => { lock (obj) sum += partial; });
return step * sum; VA .
} ControlFlow\LocalControlFlow.cs

Practical Parallel and Concurrent Programming
6/16/2010 . 17
/16/ DRAFT: comments to msrpcpcp@microsoft.com

More Control Flow

e Stop/break out of Parallel.For
e Parallel execution and exceptions
 Cancelling a parallel computation

Stopping Parallel For Loops

e Example 1
— Searching a large unsorted collection
— First hit wins

e Example 2
— Searching a large unsorted collection
— Find lowest index with matching element

ParallelLoopState

* Enables iterations of Parallel loops to
interact with other iterations

—One instance provided by runtime to each
loop

—Methods
e void Stop()
 void Break()

Searching for 42

int index = -1;
ParallellLoopResult loopResult =
Parallel.For(©, a.Length,
(int i, ParallellLoopState loop) =>
{
if (a[i] == 42)
{

index = 1;
loop.Stop();

ControlFlow\StopBreak.cs

}

E

if (!loopResult.IsCompleted) {
Console.WriteLine(“42 at index »” + index);

Practical Parallel and Concurrent Programming

. 21
DRAFT: comments to msrpcpcp@microsoft.com

6/]}/2010

Searching for First 42

ParallellLoopResult loopResult =
Parallel.For(0, a.Length,
(int i, ParallellLoopState loop) =>

{
if (a[i] == 42)
{
loop.Break();
}
}

E
if (loopResult.LowestBreakIteration.HasValue) {
Console.WritelLine(“Lowest index of 42 = * +

loopResult.LowestBreakIteration.Value);

¥

6/16/2010 Practical Parallel and Concurrent Programming

. 22
DRAFT: comments to msrpcpcp@microsoft.com

Long Running Loop Iterations

 Poll ParallellLoopState

— bool |sStopped

— Nul I abl e<l ong> Lowest Breaklteration
— bool | sExcepti onal

— bool Shoul dExitCurrentlteration

Practical Parallel and Concurrent Programming

6/16/2010 .
/16/ DRAFT: comments to msrpcpcp@microsoft.com

23

ParallelLoopResult

e IsCompleted == true
— All iterations were processed.

e IsCompleted == false &&
LowestBreaklteration.HasValue == false
— Stop was used to exit the loop early

e IsCompleted == false &&
LowestBreaklteration.HasValue == true
— Break was used to exit the loop early,

What does this code do?

try {
Paral |l el .| nvoke(

() =>{int x =0; int y = 100/x; },
() =>{ object p =null; var s = p.ToString(); }
);
} catch (Exception e) {
Consol e. WiteLine(e. ToString());

}

System.AggregateException

 Used to consolidate multiple failures into a
single, throwable exception object

e AggregateException

— ReadOnl yCol | ecti on<Exception> | nner Excepti ons
— Aggr egat eException Flatten()
— voi d Handl e(Func<Exception, bool > pred)

ControlFlow\AggregateExceptionExample.cs

Practical Parallel and Concurrent Programming

6/16/2010 .
/16/ DRAFT: comments to msrpcpcp@microsoft.com

Cancellation in .NET 4

copy by copy by

value value
CancellationTokenSource CTS.Token /\ /_\ .
» CT CcT CT
Bool IsCanceled ' . ,
Callback([]) callbacks DR t | |

WaitHandle handle
int state;

e CancellationTokenSource
e CancellationToken

Practical Parallel and Concurrent Programming

6/16/2010 DRAFT: comments to msrpcpcp@microsoft.com

27

Cancellation in .NET 4

Cancellation is cooperative
Listeners can be notified of cancellation requests by

— polling, callback registration, or waiting on wait handles

A cancellation request is sent to all copies of the
token via one method call

A listener can listen to multiple tokens
simultaneously by joining them into one linked token

void Cancel()

e The associated CancellationToken will transition to a
state where IsCancellationRequested returns true.

* Any callbacks or cancelable operations registered
with the CancellationToken will be executed.

 Cancelable operations and callbacks registered with
the token should not throw exceptions.

Canceling Parallel.For (1)

var cts = new CancellationTokenSource();
var po = new ParallelOptions()

{
CancellationToken = cts.Token,
MaxDegreeOfParallelism =
System.Environment.ProcessorCount,
}s

ControlFlow\CancelingExample.cs

30

Canceling Parallel.For (2)

Parallel.Invoke(
() =>
{
Thread.Sleep(10);

Console.WriteLine("Cancelling operation via CancellationToken.Cancel...");
cts.Cancel();

}s
() =>
{
try
{
Thread.Sleep(1);
int[] nums = Enumerable.Range(@, 1000000).ToArray();
Parallel.ForEach(nums, po, (num) =>
{
double d = Math.Sqrt(num) * Math.Sqrt(num * num);
});
Console.WriteLine("Operation completed without being cancelled.");
}
catch (OperationCanceledException e)
{
Console.WritelLine(e.Message);
Assert.IsTrue(token.IsCancellationRequested);
}
})s

31

Multiple Exit Strategies

 Unhandled exceptions take priority over Stop,
Break, or cancellation requests

* |f no exceptions occurred but the
CancellationToken was signaled and either Stop
or Break was used

— there’s a potential race as to whether the loop will
notice the cancellation prior to exiting:

— If it does, the loop will exit with an
OperationCanceledException.

— If it doesn’t, it will exit due to the Stop/Break

Multiple Exit Strategies

e Stop and Break may not be used together. If
they are, an exception will be raised.

 For long running iterations, there are multiple

properties an iteration might want to check to
see whether it should bail early:

— IsStopped, LowestBreaklteration, IsExceptional

— ShouldExitCurrentlteration property, which

consolidates all of those checks in an efficient
manner.

http://code.msdn.microsoft.com/ParExtSamples

e ParallelExtensionsExtras.csproj
— Extensions/

» AggregateExceptionExtensions.cs
e CancellationTokenExtensions.cs

— Partitioners/

Practical Parallel and Concurrent Programming

6/16/2010 DRAFT: comments to msrpcpcp@microsoft.com

34

