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Data Intensive Problems

• Rendering in 3D
– Ray tracing

• Modeling of complex 
physical systems
– Weather prediction

• Analysis of massive 
datasets
– Web search
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Data Parallelism

• Why: speed-up

• How (greatly simplified):  

– split work into independent similar pieces

– execute pieces in parallel

– collect results 

• Simple example

– Count number of words in a set of files
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tjb3 This also could have a nice graphical representation, e.g. mapping files to cores.

I usually first describe data parallelism with a file processing example (e.g. counting words in a file); it is easy to see that you could process 
multiple files in parallel. 

This may be a good time to introduce the DAG model of computation.
Tom Ball, 8/10/2010



Concepts

• Amdahl’s law

• Directed-acyclic graph (DAG) 

execution model

• Work and span

• C# lambdas

• Parallel.For

• Happens-before edges
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Amdahl’s law

• Sorting takes 70% of the execution time of a 

sequential program

• You replace the sorting algorithm with one 

that scales perfectly on multi-core hardware

• How many cores do you need to get a 4x 

speed-up on the program?
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Amdahl’s law, 
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� = the parallel portion of execution

1 − � 	 = the sequential portion of execution

�	 = number of cores used



Amdahl’s law, 
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Amdahl’s law, 
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Amdahl’s law, 
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Amdahl’s law, 
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Lesson

• Speedup is limited by sequential code

• Even a small percentage of sequential code 

can greatly limit potential speedup

6/16/2010 Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
12



On The Sunny Side of the Street: 

Gustafson’s Law

Any sufficiently large problem can be parallelized effectively
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Key assumption: �	increases as problem size increases

� = the parallel portion of execution

1 − � 	 = the sequential portion of execution

�	 = number of cores used
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CS4 No examples?
Caitlin Sadowski, 7/7/2010

CS6 How does this sit with Amdahl's law? What is the take away message for this overall collection of slides?
Caitlin Sadowski, 7/7/2010



Sequential Merge Sort

16MB input (32-bit integers)

Recurse(left)

Recurse(right)

Copy back to input array

Merge to scratch array

Time

Sequential

Execution



Parallel Merge Sort 

(as Parallel Directed Acyclic Graph)  

16MB input (32-bit integers)

Recurse(left) Recurse(right)

Copy back to input array

Merge to scratch array

Time Parallel

Execution



Parallel DAG for Merge Sort 

(2-core)

Sequential  Sort

Merge

Sequential Sort
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tjb4 time always goes down in PPCP - reorient
Tom Ball, 8/10/2010



Parallel DAG for Merge Sort 

(4-core)
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Parallel DAG for Merge Sort 

(8-core)
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Work and Span

• Work

– the total number of operations executed by a 

computation

• Span

– the longest chain of sequential dependencies 

(critical path) in the parallel DAG
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T∞ (span): Critical Path Length

(Sequential Bottleneck)
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T1 (work): Time to Run Sequentially
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Work ��, Span	��, and Running Time ��

��

�
≤ ��

Work Law

�� = time to run on P processors

“speedup is limited by P”
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Work ��, Span	��, and Running Time ��

�� = time to run on P processors

Speedup
��

� 
≤ �
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Work ��, Span	��, and Running Time ��

�� = time to run on P processors

�� ≤ ��Span Law

“speedup also is limited by critical path”
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Work ��, Span	��, and Running Time ��

�� = time to run on P processors

Parallelism
��

��
≤	
��

��
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Work/Span of Merge Sort 

(Sequential Merge)

• Work �� : � � log �

• Span �� : � �

– Takes � � time to merge �	elements

• Parallelism: 

–
��

�!
: � log � - really bad!
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Main Message

• Analyze the Work and Span of your algorithm

• Parallelism is Work/Span

• Try to decrease Span

– the critical path

– a sequential bottleneck

• If you increase Span

– better increase Work by a lot more!
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And Now, For Something 

Completely Different
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C# Lambda Expressions 

• Syntax
(input parameters) => expression
(input parameters) => {statement;}

• Examples:
x => x
(x,y) => x==y
(int x, string s) => s.Length > x
() => { return SomeMethod()+1; }

Func<int, bool> myFunc = x => x == 5;
bool result = myFunc(4);
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Some Useful Delegate Types

• delegate void Action()
– Action showMethod = () => WriteLine(“Hi!”);

• delegate void Action<T>(T t)
– Action<int> showPlusOne = (x) => WriteLine(x+1);

• delegate U Func<T,U>(T t)
– Func<int,int> plusOne = (x) => (x+1);
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Things to Know about C# Lambdas

• Lambda is an expression (with no type)

– Its “signature” is inferred by the compiler by what 

it’s being assigned to.

• Conversion to a delegate type

• Type inference for parameters

• Capture of free variables

– Locations referenced by free variables are 

converted to be on the heap (“boxed”)
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Parallel.For

public static ParallelLoopResult For(

int fromInclusive

, int toExclusive

, Action<int> body

);
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Sequential Ray Tracing

void Render(Scene scene, Color[,] rgb)

{

for (int y = 0; y < screenHeight; y++)

{

for (int x = 0; x < screenWidth; x++) {

rgb[x,y] = TraceRay(new Ray(scene,x,y));

}

}

}
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Parallel Ray Tracing with

Lambda and Parallel.For

void Render(Scene scene, Color[,] rgb)

{  

Parallel.For(0, screenHeight, (y) => 

{

for (int x = 0; x < screenWidth; x++) 

{

rgb[x,y] = TraceRay(new Ray(scene,x,y));

}

});

}
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Thinking About Parallel.For
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Parallel DAG Edges (Happens-before)

Constrain Execution

• Implementation guarantees
– X completes execution before Y starts 

execution

– All effects of X are visible to Y

• No directed path between X,Y, no 
guarantees
– X,Y could happen in parallel, or

– X could happen before Y, or

– Y could happen before X

X

Y

X Y
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A;

Parallel.For(0, N, m: i => { B; });

C;

m(0) m(1) m(N-1)…

Parallel.For Happens-before Edges

A
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What .NET 4 Does For You

• Parallel.For automatically

– Assigns work to cores efficiently

– Dynamically partitions

– Balances load efficiently

– Handles exceptions

• And much more… 
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Example Partitioning on Two Cores
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Partitioning on Four Cores
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Unbalanced Workloads
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Parallel.For(0, N, i => { S });

• Desirable properties of statement S

–S does enough work, or

–N is large enough to compensate
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Some Typical Reasons for

Performance Problems

• Not enough work per parallel task

– Overhead of coordinating parallelism dominates

• Insufficient memory bandwidth

– Limitation of processor architecture

• False sharing

– Bad cache performance

– Exposed to memory wall

• Lock contention
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Nested Parallel.For

void Render(Scene scene, Color[,] rgb)

{  

Parallel.For(0, screenHeight, (y) => 

{

Parallel.For(0, screenWidth,  (x) => 

{

rgb[x,y] = TraceRay(new Ray(scene,x,y));

}

});

}

Is there enough 

work per parallel 

task? Experiment 

and find out!
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http://code.msdn.microsoft.com/ParExtSamples

• Parallel.For/ForEach

– Game of Life

– Blend Images

– ImageColorizer

– Morph

– MandelbrotsFractals

– ComputePi

– Strassens
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Parallel Programming 

with Microsoft .NET 

• Chapter 1 (Introduction)

• Chapter 2 (Parallel Loops) 

Parallel.For/ForEach
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