
Imperative Data Parallelism

(Performance)

Unit 1.a

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
16/16/2010



Acknowledgments

• Authored by

– Thomas Ball, MSR Redmond

• This slide deck contains material courtesy of

– Tim Harris, MSR Cambridge

9/4/2010
Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com 2



Data Intensive Problems

• Rendering in 3D
– Ray tracing

• Modeling of complex 
physical systems
– Weather prediction

• Analysis of massive 
datasets
– Web search

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
36/16/2010



Data Parallelism

• Why: speed-up

• How (greatly simplified):  

– split work into independent similar pieces

– execute pieces in parallel

– collect results 

• Simple example

– Count number of words in a set of files

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
46/16/2010

tjb3



Slide 4

tjb3 This also could have a nice graphical representation, e.g. mapping files to cores.

I usually first describe data parallelism with a file processing example (e.g. counting words in a file); it is easy to see that you could process 
multiple files in parallel. 

This may be a good time to introduce the DAG model of computation.
Tom Ball, 8/10/2010



Concepts

• Amdahl’s law

• Directed-acyclic graph (DAG) 

execution model

• Work and span

• C# lambdas

• Parallel.For

• Happens-before edges

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
56/16/2010

Performance

Concept

Code

Concept

Correctness

Concept



Amdahl’s law

• Sorting takes 70% of the execution time of a 

sequential program

• You replace the sorting algorithm with one 

that scales perfectly on multi-core hardware

• How many cores do you need to get a 4x 

speed-up on the program?

6/16/2010 Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
6



Amdahl’s law, 

6/16/2010 Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
7

������� �, � = 		
1

1 − � +
�
�

� = the parallel portion of execution

1 − � 	 = the sequential portion of execution

�	 = number of cores used



Amdahl’s law, 

6/16/2010 Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
8

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

e
e

d
u

p

#cores

Desired 4x 

speedup

Speedup achieved 

(perfect scaling on 70%)



Amdahl’s law, 

6/16/2010 Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
9

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

e
e

d
u

p

#cores

Desired 4x 

speedup

Speedup achieved 

(perfect scaling on 70%)

Limit as c→∞ = 1/(1-f) = 3.33



Amdahl’s law, 

6/16/2010 Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
10

0.94

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

1.12

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

S
p

e
e

d
u

p

#cores

Speedup achieved 

with perfect scaling

Amdahl’s law limit, 

just 1.11x



Amdahl’s law, 

6/16/2010 Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
11

0

10

20

30

40

50

60
1 7

1
3

1
9

2
5

3
1

3
7

4
3

4
9

5
5

6
1

6
7

7
3

7
9

8
5

9
1

9
7

1
0

3

1
0

9

1
1

5

1
2

1

1
2

7

S
p

e
e

d
u

p

#cores



Lesson

• Speedup is limited by sequential code

• Even a small percentage of sequential code 

can greatly limit potential speedup

6/16/2010 Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
12



On The Sunny Side of the Street: 

Gustafson’s Law

Any sufficiently large problem can be parallelized effectively

6/16/2010 Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
13

������� �, � = �� + 1 − �

Key assumption: �	increases as problem size increases

� = the parallel portion of execution

1 − � 	 = the sequential portion of execution

�	 = number of cores used

CS4
CS6



Slide 13

CS4 No examples?
Caitlin Sadowski, 7/7/2010

CS6 How does this sit with Amdahl's law? What is the take away message for this overall collection of slides?
Caitlin Sadowski, 7/7/2010



Sequential Merge Sort

16MB input (32-bit integers)

Recurse(left)

Recurse(right)

Copy back to input array

Merge to scratch array

Time

Sequential

Execution



Parallel Merge Sort 

(as Parallel Directed Acyclic Graph)  

16MB input (32-bit integers)

Recurse(left) Recurse(right)

Copy back to input array

Merge to scratch array

Time Parallel

Execution



Parallel DAG for Merge Sort 

(2-core)

Sequential  Sort

Merge

Sequential Sort

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
166/16/2010

Time

tjb4



Slide 16

tjb4 time always goes down in PPCP - reorient
Tom Ball, 8/10/2010



Parallel DAG for Merge Sort 

(4-core)

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
176/16/2010



Parallel DAG for Merge Sort 

(8-core)

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
186/16/2010



Work and Span

• Work

– the total number of operations executed by a 

computation

• Span

– the longest chain of sequential dependencies 

(critical path) in the parallel DAG

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
196/16/2010



T∞ (span): Critical Path Length

(Sequential Bottleneck)

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
206/16/2010

�� = 	�(�)



T1 (work): Time to Run Sequentially

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
216/16/2010

�� = 	�(� log �)



Work ��, Span	��, and Running Time ��

��

�
≤ ��

Work Law

�� = time to run on P processors

“speedup is limited by P”

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
226/16/2010



Work ��, Span	��, and Running Time ��

�� = time to run on P processors

Speedup
��

� 
≤ �

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
236/16/2010



Work ��, Span	��, and Running Time ��

�� = time to run on P processors

�� ≤ ��Span Law

“speedup also is limited by critical path”

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
246/16/2010



Work ��, Span	��, and Running Time ��

�� = time to run on P processors

Parallelism
��

��
≤	
��

��

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
256/16/2010

“speedup is bounded above 

by available parallelism”

Speedup



Work/Span of Merge Sort 

(Sequential Merge)

• Work �� : � � log �

• Span �� : � �

– Takes � � time to merge �	elements

• Parallelism: 

–
��

�!
: � log � - really bad!

6/16/2010 Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
26



Main Message

• Analyze the Work and Span of your algorithm

• Parallelism is Work/Span

• Try to decrease Span

– the critical path

– a sequential bottleneck

• If you increase Span

– better increase Work by a lot more!

6/16/2010 Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
27



And Now, For Something 

Completely Different

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
286/16/2010

Alpaca

ProjectLambdasAndDelegates.cs



C# Lambda Expressions 

• Syntax
(input parameters) => expression
(input parameters) => {statement;}

• Examples:
x => x
(x,y) => x==y
(int x, string s) => s.Length > x
() => { return SomeMethod()+1; }

Func<int, bool> myFunc = x => x == 5;
bool result = myFunc(4);

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
296/16/2010



Some Useful Delegate Types

• delegate void Action()
– Action showMethod = () => WriteLine(“Hi!”);

• delegate void Action<T>(T t)
– Action<int> showPlusOne = (x) => WriteLine(x+1);

• delegate U Func<T,U>(T t)
– Func<int,int> plusOne = (x) => (x+1);

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
306/16/2010



Things to Know about C# Lambdas

• Lambda is an expression (with no type)

– Its “signature” is inferred by the compiler by what 

it’s being assigned to.

• Conversion to a delegate type

• Type inference for parameters

• Capture of free variables

– Locations referenced by free variables are 

converted to be on the heap (“boxed”)

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
316/16/2010



Parallel.For

public static ParallelLoopResult For(

int fromInclusive

, int toExclusive

, Action<int> body

);

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
326/16/2010

Alpaca

Project
ParallelSamples.cs

PoPP_ClosingOverSharedData.cs



Sequential Ray Tracing

void Render(Scene scene, Color[,] rgb)

{

for (int y = 0; y < screenHeight; y++)

{

for (int x = 0; x < screenWidth; x++) {

rgb[x,y] = TraceRay(new Ray(scene,x,y));

}

}

}

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
336/16/2010



Parallel Ray Tracing with

Lambda and Parallel.For

void Render(Scene scene, Color[,] rgb)

{  

Parallel.For(0, screenHeight, (y) => 

{

for (int x = 0; x < screenWidth; x++) 

{

rgb[x,y] = TraceRay(new Ray(scene,x,y));

}

});

}

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
346/16/2010

Run It!

Alpaca

ProjectRayTracerTest.cs

ValidateOutput_BasicParallelRaytracer



Thinking About Parallel.For

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
356/16/2010



Parallel DAG Edges (Happens-before)

Constrain Execution

• Implementation guarantees
– X completes execution before Y starts 

execution

– All effects of X are visible to Y

• No directed path between X,Y, no 
guarantees
– X,Y could happen in parallel, or

– X could happen before Y, or

– Y could happen before X

X

Y

X Y

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
366/16/2010



A;

Parallel.For(0, N, m: i => { B; });

C;

m(0) m(1) m(N-1)…

Parallel.For Happens-before Edges

A

CPractical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
376/16/2010



What .NET 4 Does For You

• Parallel.For automatically

– Assigns work to cores efficiently

– Dynamically partitions

– Balances load efficiently

– Handles exceptions

• And much more… 

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
386/16/2010



Example Partitioning on Two Cores

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  396/16/2010



Partitioning on Four Cores

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  406/16/2010



Unbalanced Workloads

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  416/16/2010



Parallel.For(0, N, i => { S });

• Desirable properties of statement S

–S does enough work, or

–N is large enough to compensate

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
426/16/2010



Some Typical Reasons for

Performance Problems

• Not enough work per parallel task

– Overhead of coordinating parallelism dominates

• Insufficient memory bandwidth

– Limitation of processor architecture

• False sharing

– Bad cache performance

– Exposed to memory wall

• Lock contention

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
436/16/2010



Nested Parallel.For

void Render(Scene scene, Color[,] rgb)

{  

Parallel.For(0, screenHeight, (y) => 

{

Parallel.For(0, screenWidth,  (x) => 

{

rgb[x,y] = TraceRay(new Ray(scene,x,y));

}

});

}

Is there enough 

work per parallel 

task? Experiment 

and find out!

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com  
446/16/2010

Alpaca

Project
FineVsCoarseGrainedRayTracer.cs

RayTracerTest.cs



http://code.msdn.microsoft.com/ParExtSamples

• Parallel.For/ForEach

– Game of Life

– Blend Images

– ImageColorizer

– Morph

– MandelbrotsFractals

– ComputePi

– Strassens

6/16/2010 Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com 
45



Parallel Programming 

with Microsoft .NET 

• Chapter 1 (Introduction)

• Chapter 2 (Parallel Loops) 

Parallel.For/ForEach

6/16/2010 Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com 
46


