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Overview

• Context

– Trends

– Applications

– System and environment

• Concepts

• Units, Materials and Tools
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Technology Trends

• Increasing parallelism in a “computer”

– multi-core CPU

– graphical processing unit (GPU)

– cloud computing

• Increasing disk capacity

– we are awash in interesting data

– data-intensive problems require parallel processing
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Technology Trends (2)

• Increasing networks and network bandwidth

– wireless, wimax, 3G, …

– collection/delivery of massive datasets, plus

– real-time responsiveness to asynchronous events

• Increasing number and variety of computers

– smaller and smaller, and cheaper to build

– generating streams of asynchronous events 
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Parallelism and Concurrrency: 

System and Environment

• Parallelism: exploit system 

resources to speed up 

computation 

• Concurrency: respond 

quickly/properly to events 

– from the environment

– from  other parts of system
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Application Areas

• Entertainment/games

• Finance

• Science

• Modeling of real-world

• Health care

• Telecommunication

• Data processing

• …
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Discuss application areas in 

context of

Trends

Parallelism/Concurrency

System/Environment



Practical Parallel and Concurrent 

Programming (PP&CP)

P&C Parallelism Concurrency

Performance Speedup Responsiveness

Correctness

Atomicity, Determinism, 

Deadlock, Livelock, 

Linearizability, Data races, … 

P&C
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Overview

• Context

• Concepts

1. Multi-core computer

2. Speedup

3. Responsiveness

4. Correctness

• Units, Materials and Tools
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Concept #1:

System = Multi-core Hardware
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What is Today’s Multi-core?

• What is the architecture?

• What are its properties?

– Computation

– Communication 

• Delivery guarantees

• Latency

• Throughput

– Consistency

– Caching
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Main memory

Instruction 
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• Dynamic out-of-

order
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Power wall + ILP wall + memory wall = 

• Power wall 

– we can’t clock processors faster

• Memory wall

– many workload’s performance is dominated by 

memory access times

• Instruction-level Parallelism (ILP) wall

– we can’t find extra work to keep functional units 

busy while waiting for memory accesses
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SMP multiprocessor
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Interconnect
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Three kinds of parallel hardware

• Multi-threaded cores
– Increase utilization of a core or memory b/w

– Peak ops/cycle fixed

• Multiple cores

– Increase ops/cycle

– Don’t necessarily scale caches and off-chip resources 
proportionately

• Multi-processor machines
– Increase ops/cycle

– Often scale cache & memory capacities and b/w proportionately
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Concept #2: 

Speedup
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Speedup Concerns

1. Focus on the longest running parts of the program first

– be realistic about possible speedups

– different parts may need to be parallelised with different techniques

2. Understand the different resource requirements of a program

– computation, communication, and locality

3. Consider how data accesses interact with the memory system:

– will the computation done on additional cores pay for the data to be 

brought to them?
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Abstractions for Speedup

• Imperative parallelism
– Parallel.For/ForEach

– Lightweight tasks (not threads)

• Functional parallelism
– Functional programming (F#)

– Parallel Language Integrated Queries (PLINQ)

– Array parallel algorithms (Accelerator)

• Concurrent components
– for example, data structures that can efficiently 

accommodate many clients
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Concept #3: 

Responsiveness

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com 279/4/2010



Responsiveness Concerns

1. Quick reaction to conditions over event 

streams

2. Handle multiple tasks at the same time

3. Don’t block essential tasks unnecessarily

4. Coordinate responses to requests
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Abstractions for Responsiveness

• Asynchronous computation

– lightweight tasks (not threads)

– F#’s async

• Application-specific scheduling

• Complex event handling

– IObservable

– Reactive extensions (RX) to .NET

• Actors/agents
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Concept #4: 

Correctness
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Correctness Concerns

• All those we have for sequential code

– Assertions, invariants, contracts,

– buffer overflows, null reference, 

– …

• Plus those related to parallelism/concurrency

– Data races, deadlocks, livelocks, …

– Memory coherence/consistency
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Correctness Abstractions 

• Atomicity

• Determinism

• Linearizability

• Serializibility

• Temporal logic

Practical Parallel and Concurrent Programming 

DRAFT: comments to msrpcpcp@microsoft.com 329/4/2010



Outline

• Context

• Concepts

• Units, Materials and Tools
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Units 1 – 4

• Unit 1: Imperative Data Parallelism

– Data-intensive parallel programming (Parallel.For)

– Concurrent Programming with Tasks

• Unit 2: Shared Memory 

– Data Races and Locks

– Parallel Patterns

• Unit 3: Concurrent Components

– Thread-Safety Concepts  (Atomicity, Linearizability)

– Modularity (Specification vs. Implementation)

• Unit 4: Functional Data Parallelism

– Parallel Queries with PLINQ

– Functional Parallel Programming with F#



Units 5 – 8

• Unit 5: Scheduling and Synchronization

– From {tasks, DAGs} to {threads, processors}

– Work-stealing

• Unit 6: Interactive/Reactive Systems

– External vs. internal concurrency

– Event-based programming

• Unit 7: Message Passing

– Conventional MPI-style programming

• Unit 8: Advanced Topics

– Parallelization, Transactions, Revisions



Unit Dependences
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IDE, Libraries, Tools, Samples, Book

• Visual Studio 2010 

– C# and F# languages

– .NET 4: Libraries for multi-core 

parallelism and concurrency

• Other Libraries

– Accelerator

– Code Contracts

– Rx: Reactive Extensions for 

.NET
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• Alpaca

– A lovely parallelism and 

concurrency analyzer

– Source code

• Code for all units, with Alpaca 

tests

• Parallel Extensions Samples

• Free book: Parallel 

Programming with Microsoft 

.NET



Icon Guide
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.NET 4 Libraries 

for Parallelism and Concurrency
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Alpaca: A lovely parallelism 

and concurrency analyzer

• Atttribute-based testing, for performance and 
correctness concepts

• [UnitTestMethod]

– simply run this method normally, and report failed assertions or 
uncaught exceptions.

• [DataRaceTestMethod]

– Run a few schedules (using CHESS tool) and detect data races.

• [ScheduleTestMethod]

– Run all possible schedules of this method (with at most two 
preemptions) using the CHESS tool.

• [PerformanceTestMethod]

– Like UnitTestMethod, but collect & graphically display execution timeline 
(showing intervals of interest)
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Why Alpaca?

• Improve the learning experience for concurrent and 

parallel programming

• Vehicle for including instantly runnable sample code 

(incl. bugs)

• Unit tests: A quick way to validate / invalidate 

assumptions, about correctness or performance

• Provide simple graphical front end for various tools



PPCP – Unit X - *.sln

• Each Unit has a 

VS2010 Solution

– supporting 

examples 

– Alpaca Project
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Parallel Extensions Samples

• http://code.msdn.microsoft.com/ParExtSamples

• Over 15 Samples

– applications illustrating use of .NET 4

– some included in courseware

• ParallelExtensionsExtras.csproj

– helper classes built on .NET 4  
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Sample: Ray Tracer
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Animated, ray  traced bouncing balls. Sequential and 

parallel implementations are provided, as is a special 

parallel implementation that colors the animated image 

based on which thread was used to calculate which regions.

Run



Sample: Image Morphing
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Implements a morphing algorithm between two 

images. Parallelization is done using the Parallel class.

Run



Sample: N-Body Simulation
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Implements a classic n-body simulation using C# and WPF 

for the UI and using F# for the core computation. 

Parallelism is achieved using the Parallel class. 

Run



Free book: 

Parallel Programming with Microsoft .NET

Design Patterns for 

Decomposition and 

Coordination on 

Multicore Architectures

Colin Campbell, Ralph 

Johnson, Ade Miller and 

Stephen Toub
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