
Practical

Parallel and Concurrent

Programming

Course Overview

http://ppcp.codeplex.com/

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com
19/4/2010

These Course Materials

Brought to You By

• Microsoft Research (MSR)

– Research in Software Engineering (RiSE)

• University of Utah

– Computer Science

• With support from

– MSR External Research (Judith Bishop)

– Microsoft Parallel Computing Platform (Stephen

Toub, Sherif Mahmoud, Chris Dern)

9/4/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 2

Courseware Authors

• Thomas Ball, MSR Redmond

• Sebastian Burckhardt, MSR Redmond

• Ganesh Gopalakrishnan, Univ. Utah

• Joseph Mayo, Univ. Utah

• Madan Musuvathi, MSR Redmond

• Shaz Qadeer, MSR Redmond

• Caitlin Sadowski, Univ. California Santa Cruz

9/4/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 3

Acknowledgments

• This slide deck contains material courtesy of

– Tim Harris, MSR Cambridge

– Burton Smith, MSR Redmond

• The headshot of the alpaca used throughout the
lectures is licensed under

– the Creative Commons Attribution-Share Alike 2.0
Generic license

– http://en.wikipedia.org/wiki/File:Alpaca_headshot.jpg

9/4/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 4

Overview

• Context

– Trends

– Applications

– System and environment

• Concepts

• Units, Materials and Tools

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 59/4/2010

Technology Trends

• Increasing parallelism in a “computer”

– multi-core CPU

– graphical processing unit (GPU)

– cloud computing

• Increasing disk capacity

– we are awash in interesting data

– data-intensive problems require parallel processing

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 69/4/2010

Technology Trends (2)

• Increasing networks and network bandwidth

– wireless, wimax, 3G, …

– collection/delivery of massive datasets, plus

– real-time responsiveness to asynchronous events

• Increasing number and variety of computers

– smaller and smaller, and cheaper to build

– generating streams of asynchronous events

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 79/4/2010

Parallelism and Concurrrency:

System and Environment

• Parallelism: exploit system

resources to speed up

computation

• Concurrency: respond

quickly/properly to events

– from the environment

– from other parts of system

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 8

Environment

System

Events

9/4/2010

Application Areas

• Entertainment/games

• Finance

• Science

• Modeling of real-world

• Health care

• Telecommunication

• Data processing

• …

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 99/4/2010

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 109/4/2010

Discuss application areas in

context of

Trends

Parallelism/Concurrency

System/Environment

Practical Parallel and Concurrent

Programming (PP&CP)

P&C Parallelism Concurrency

Performance Speedup Responsiveness

Correctness

Atomicity, Determinism,

Deadlock, Livelock,

Linearizability, Data races, …

P&C

9/4/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 11

Overview

• Context

• Concepts

1. Multi-core computer

2. Speedup

3. Responsiveness

4. Correctness

• Units, Materials and Tools

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 129/4/2010

Concept #1:

System = Multi-core Hardware

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 139/4/2010

What is Today’s Multi-core?

• What is the architecture?

• What are its properties?

– Computation

– Communication

• Delivery guarantees

• Latency

• Throughput

– Consistency

– Caching

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 149/4/2010

Main memory

Processor core

ALU

1

2

3

4

5

...

Instruction

stream

Instruction

stream

Clock: 0Clock: 1Clock: 2Clock: 3Clock: 4Clock: 5Clock: 6Clock: 7Clock: 8Clock: 9

22

44

66

99

Completion

time

Completion

time

A simple microprocessor model ~ 1985

Clock: 10

1212

Clock: 11

• Single h/w thread

• Instructions execute

one after the other

• Memory access time

~ clock cycle time

Clock: 12

ALU: arithmetic logic unitPractical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 159/4/2010

Main memory

Instruction

stream

Instruction

stream
22

22

22

204 (main memory)204 (main memory)

Completion

time

Completion

time

FastFwd Two Decades (circa 2005):

Power Hungry Superscalar with Caches

226 (hit in L2)226 (hit in L2)

Multiple levels of

cache, 2 cycles for L1,

20 cycles for L2, 200

cycles for memory

ALU

ALU

ALU

1

2

3

4

5

...
L2 cache (4MB)

L1 cache (64KB)

• Dynamic out-of-

order

• Pipelined memory

accesses

• Speculation

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 169/4/2010

9/4/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 17

Power wall + ILP wall + memory wall =

• Power wall

– we can’t clock processors faster

• Memory wall

– many workload’s performance is dominated by

memory access times

• Instruction-level Parallelism (ILP) wall

– we can’t find extra work to keep functional units

busy while waiting for memory accesses

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 189/4/2010

Core

1

2

3

4

5

...

Multi-core h/w – common L2

1

2

3

4

5

...
L2 cache

Core

Main memory

L1 cache L1 cache

ALU

ALU

ALU

ALU

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 199/4/2010

1

2

3

4

5

...

Multi-core h/w – additional L3

1

2

3

4

5

...

Main memory

Single-

threaded

core

L1 cache

Single-

threaded

core

L1 cache

L2 cache L2 cache

L3 cache

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 209/4/2010

SMP multiprocessor

Single-

threaded

core

1

2

3

4

5

...

1

2

3

4

5

...

L1 cache

Single-

threaded

core

L1 cache

L2 cache L2 cache

Main memory

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 219/4/2010

Interconnect

NUMA multiprocessor

Single-

threaded

core

L1 cache

Single-

threaded

core

L1 cache

Memory & directory

L2 cache L2 cache

Single-

threaded

core

L1 cache

Single-

threaded

core

L1 cache

Memory & directory

L2 cache L2 cache

Single-

threaded

core

L1 cache

Single-

threaded

core

L1 cache

Memory & directory

L2 cache L2 cache

Single-

threaded

core

L1 cache

Single-

threaded

core

L1 cache

Memory & directory

L2 cache L2 cache

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 229/4/2010

Three kinds of parallel hardware

• Multi-threaded cores
– Increase utilization of a core or memory b/w

– Peak ops/cycle fixed

• Multiple cores

– Increase ops/cycle

– Don’t necessarily scale caches and off-chip resources
proportionately

• Multi-processor machines
– Increase ops/cycle

– Often scale cache & memory capacities and b/w proportionately

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 239/4/2010

Concept #2:

Speedup

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 249/4/2010

Speedup Concerns

1. Focus on the longest running parts of the program first

– be realistic about possible speedups

– different parts may need to be parallelised with different techniques

2. Understand the different resource requirements of a program

– computation, communication, and locality

3. Consider how data accesses interact with the memory system:

– will the computation done on additional cores pay for the data to be

brought to them?

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 259/4/2010

Abstractions for Speedup

• Imperative parallelism
– Parallel.For/ForEach

– Lightweight tasks (not threads)

• Functional parallelism
– Functional programming (F#)

– Parallel Language Integrated Queries (PLINQ)

– Array parallel algorithms (Accelerator)

• Concurrent components
– for example, data structures that can efficiently

accommodate many clients

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 269/4/2010

Concept #3:

Responsiveness

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 279/4/2010

Responsiveness Concerns

1. Quick reaction to conditions over event

streams

2. Handle multiple tasks at the same time

3. Don’t block essential tasks unnecessarily

4. Coordinate responses to requests

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 289/4/2010

Abstractions for Responsiveness

• Asynchronous computation

– lightweight tasks (not threads)

– F#’s async

• Application-specific scheduling

• Complex event handling

– IObservable

– Reactive extensions (RX) to .NET

• Actors/agents

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 299/4/2010

Concept #4:

Correctness

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 309/4/2010

Correctness Concerns

• All those we have for sequential code

– Assertions, invariants, contracts,

– buffer overflows, null reference,

– …

• Plus those related to parallelism/concurrency

– Data races, deadlocks, livelocks, …

– Memory coherence/consistency

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 319/4/2010

Correctness Abstractions

• Atomicity

• Determinism

• Linearizability

• Serializibility

• Temporal logic

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 329/4/2010

Outline

• Context

• Concepts

• Units, Materials and Tools

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 339/4/2010

Units 1 – 4

• Unit 1: Imperative Data Parallelism

– Data-intensive parallel programming (Parallel.For)

– Concurrent Programming with Tasks

• Unit 2: Shared Memory

– Data Races and Locks

– Parallel Patterns

• Unit 3: Concurrent Components

– Thread-Safety Concepts (Atomicity, Linearizability)

– Modularity (Specification vs. Implementation)

• Unit 4: Functional Data Parallelism

– Parallel Queries with PLINQ

– Functional Parallel Programming with F#

Units 5 – 8

• Unit 5: Scheduling and Synchronization

– From {tasks, DAGs} to {threads, processors}

– Work-stealing

• Unit 6: Interactive/Reactive Systems

– External vs. internal concurrency

– Event-based programming

• Unit 7: Message Passing

– Conventional MPI-style programming

• Unit 8: Advanced Topics

– Parallelization, Transactions, Revisions

Unit Dependences

9/4/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 36

Unit 1:

Imperative Data

Parallelism

Unit 3:

Concurrent

Components

Unit 2:

Shared Memory

Unit 4:

Functional Data

Parallelism

Unit 6:

Reactive Systems

Unit 7:

Message Passing

Unit 8:

Advanced Topics

Unit 5:

Scheduling and

Synchronization

IDE, Libraries, Tools, Samples, Book

• Visual Studio 2010

– C# and F# languages

– .NET 4: Libraries for multi-core

parallelism and concurrency

• Other Libraries

– Accelerator

– Code Contracts

– Rx: Reactive Extensions for

.NET

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 379/4/2010

• Alpaca

– A lovely parallelism and

concurrency analyzer

– Source code

• Code for all units, with Alpaca

tests

• Parallel Extensions Samples

• Free book: Parallel

Programming with Microsoft

.NET

Icon Guide

9/4/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 38

Aside

Performance

Concept

Run

Correctness

Concept
Code

Concept

Discuss

Alpaca

Project

.NET 4 Libraries

for Parallelism and Concurrency

Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 399/4/2010

Alpaca: A lovely parallelism

and concurrency analyzer

• Atttribute-based testing, for performance and
correctness concepts

• [UnitTestMethod]

– simply run this method normally, and report failed assertions or
uncaught exceptions.

• [DataRaceTestMethod]

– Run a few schedules (using CHESS tool) and detect data races.

• [ScheduleTestMethod]

– Run all possible schedules of this method (with at most two
preemptions) using the CHESS tool.

• [PerformanceTestMethod]

– Like UnitTestMethod, but collect & graphically display execution timeline
(showing intervals of interest)

9/4/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 40

Alpaca

Project

Why Alpaca?

• Improve the learning experience for concurrent and

parallel programming

• Vehicle for including instantly runnable sample code

(incl. bugs)

• Unit tests: A quick way to validate / invalidate

assumptions, about correctness or performance

• Provide simple graphical front end for various tools

PPCP – Unit X - *.sln

• Each Unit has a

VS2010 Solution

– supporting

examples

– Alpaca Project

9/4/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 42

Parallel Extensions Samples

• http://code.msdn.microsoft.com/ParExtSamples

• Over 15 Samples

– applications illustrating use of .NET 4

– some included in courseware

• ParallelExtensionsExtras.csproj

– helper classes built on .NET 4

9/4/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 43

Run

Sample: Ray Tracer

9/4/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 44

Animated, ray traced bouncing balls. Sequential and

parallel implementations are provided, as is a special

parallel implementation that colors the animated image

based on which thread was used to calculate which regions.

Run

Sample: Image Morphing

9/4/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 45

Implements a morphing algorithm between two

images. Parallelization is done using the Parallel class.

Run

Sample: N-Body Simulation

9/4/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 46

Implements a classic n-body simulation using C# and WPF

for the UI and using F# for the core computation.

Parallelism is achieved using the Parallel class.

Run

Free book:

Parallel Programming with Microsoft .NET

Design Patterns for

Decomposition and

Coordination on

Multicore Architectures

Colin Campbell, Ralph

Johnson, Ade Miller and

Stephen Toub

9/4/2010
Practical Parallel and Concurrent Programming

DRAFT: comments to msrpcpcp@microsoft.com 47

