Floating Point Circuits

• Topics
 ▪ Addition and Subtraction
 » Go for the hard one first
 ▪ Multiply
 ▪ Fused Multiply Add – FMA/MAF
 ▪ Divide
 ▪ Sqrt

Addition Algorithm

• Basic algorithm for add
 ▪ subtract exponents to see which one is bigger \(d = Ex - Ey \)
 ▪ swap values so biggest exponent addend is in a fixed register
 ▪ alignment step
 » shift smallest significand \(d \) positions to the right
 » copy largest exponent into exponent field of the smallest
 ▪ add or subtract significands
 » add if signs equal – subtract if they aren’t
 » (Opposite for FP subtract (subtract if signs equal, add it not))
 ▪ normalize result
 » details next slide
 ▪ round according to the specified mode
 ▪ generate exceptions if they occur
Normalization Cases

- Result already normalized
 - no action needed
- On an add
 - you may have 2 leading bits before the ".”
 - hence significand shift right one & increment exponent
- On a subtract
 - the significand may have n leading zero’s
 - hence shift significand left by n and decrement exponent by n
 - note: common circuit is a LOD := leading 0 detector

Value = (-1)^s x 1.F x 2^{E-127}

Basic Addition Circuit

Eop is “Effective op” and depends on add/sub and Sx and Sy
Devil is in the Details

- For now let's assume we're dealing with normals
- ExpSub
 - 2 8-bit unsigned numbers
 » subtract can't generate an overflow
 - 2 choices
 » unsigned subtract
 • borrow out becomes the sgn(d)
 » turn into 2's complement and add them
 • requires 9 bits ➔ suboptimal choice
- Eop is simple
 - XOR of Sx and Sy
- 2 mux stages
 - both are 2:1
 » SWAP is 24 bits wide, and the 2:1 is 8 bits for the exponent
 • why 24?
 • in order to allow both normals and denormals

R-Shift Alignment Step

- Again 2 options
 - simple shift mantissa and decrement d
 » problem – for large d this is too slow
 - barrel shift
 » how many stages?
 » note that d is an 8 bit unsigned number
R-Shift Alignment Step

- Again 2 options
 - simple shift mantissa and decrement d
 » problem – for large d this is too slow
 - barrel shift
 » how many stages?
 » note that d is an 8 bit unsigned number
- Answer
 - 5 stages + a conditioner + a sticky circuit
 - take advantage of the fact that 24 is the biggest shift that makes sense
 - hence OR the high order 3 bits of d
 » if 1: zero the fraction
 • sticky is an OR of the full 24 bit fraction of the moment
 • usually just a tree of NOR gates
 » if 0: barrel shift based on the other 5 bits
 • each shift stage has a sticky NOR tree of the shift amount

5-stage Barrel Shifter (bottom half)

- Simple Wire Fanout
- sticky-OR
Barrel Shifters Ain’t Cheap

- Lots of 2:1 muxes and lots of wires
- Important trick
 - for any Eop
 - there is a max of one long shift
 - and the other shift is at most 1
 - hence
 - mux the barrel shifter where it’s needed
- Note barrel shifter may get used twice
 - alignment when exponents differ significantly
 - on an effective subtract during normalization
 - lots of leading zero’s in the significand
 - so hefty structure gets amortized

S-Add-Sub

- Add or subtract significands
 - what you do depends on the Eop = XOR(Mx, My)
 - same as the integer world
 - either build an adder subtractor
 - or on an effective subtract – complement and add
- Note
 - we didn’t do a magnitude compare on the significands
 - hence the result may be negative
 - ➔ sign of result must be kept
 - influences the sign of the result NOT the result value
 - one minor advantage of floating point
 - no need to worry about calculating overflow in this step
L0D

- Detecting the number of leading order 0
 - 24 places to look – need a 5 bit result
- several methods
 - 5 boolean functions of 24 variables
 » it’s not as bad as it looks
 - priority encoder
 » if all higher order bits are 0 select a hardwired 5 bit code
 » also not too bad but a bit slower
 - table lookup
 » small table 24x5 bits
 » the worst choice

L/R1 Shifter

- variable number of left shifts or 1 right shift
 - right shift 1 is easy
 » contributes to the sticky bit
 - variable left shift
 » remember the guard bits
 • G + R are shifted
 • 0’s injected from the right
 • sticky bit keeps its value
 » if you implemented a barrel shifter for rounding
 • you probably want to re-use it rather than building 2 of them
 » compensating for left vs. right
 • requires an additional mux at the front and back
 • to handle bit reversal chores
Rounding

- **Add**
 - Add \(\text{rnd} \) to the 24 bit value based on the rounding mode
 - unbiased: \(\text{rnd}=G(L+R+S) \) or the add 1 to \(G \) and maybe zero \(L \) trick
 - \(+\infty\): \(\text{rnd} = \text{sgn}'(G+R+S) \)
 - \(-\infty\): \(\text{rnd} = \text{sgn}(G+R+S) \)
 - 0 \(\rightarrow \) truncate: \(\text{rnd}=0 \)
 - simple boolean function of 7 variables
 - 2 mode bits
 - 3 guard bits
 - \(\text{sgn} \)
 - \(L \)

- **Shift**
 - if carry into high order bit of add
 - shift result 1 bit to the right
 - signal overflow to exponent update

Exponent Update

- **Just a loadable saturating counter**
 - loaded with result of 2:1 exponent mux

- **w/ an associated subtracter**
 - \(L \) value during normalization is subtrahend
 - incremented if ovf_rnd is signalled
 - confusion about ovf on a effective subtract???? Grr!!

- **Other tactics exist**
 - but these depend on a bunch of timing issues that we’re ignoring at this point

- **Whew – at last something is really simple**
Sign Calculation

• This one is a bit hairy
 • logic is simple – boolean function of 5 variables
 » sign of the exponent subtract
 » sign of the result
 » Sx, Sy, and Op
 • note this was the confusion in class (in the book as well)
 • Eop can be figured out from Sx and Sy and Op
 • but getting it correct is hard
 » getting the truth table right always makes me crazy

• Let
 • Eop = 0 \Rightarrow add
 • Sx or Sy or Ss or sgn(d) = 0 \Rightarrow positive (normal convention)
 » sgn(d) = 0 \Rightarrow Ex >= Ey

• Interactive phase begins

Sign Function \(\text{sgn}(d) = 0 \)

<table>
<thead>
<tr>
<th>(\text{sgn}(d))?</th>
<th>Sx</th>
<th>Sy</th>
<th>Op</th>
<th>Ss</th>
<th>Sz</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
\[\text{Sign Function } \text{sgn}(d) = 1 \]

<table>
<thead>
<tr>
<th>sgn(d)</th>
<th>S_x</th>
<th>S_y</th>
<th>E_{op}</th>
<th>S_s</th>
<th>S_z</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

$s_{\text{sgn}}(d) = 1$

\Rightarrow $E_y < E_x$

no possible

$= \text{then ignore } S_s$

And the Answer Is

\[
\text{Sign-of-Result} = \text{sgn}^{'}S_y^{'}E_{op}^{'} + S_xS_yE_{op} + \text{sgn}^{'}S_xS_s + S_y^{'}E_{op}S_s + \text{sgn}^{'}S_y^{'}E_{op}^{'} + S_y^{'}E_{op}S_s
\]

Note: I'm pretty sure this is right
but send email to ald@cs.utah.edu if you
suspect an error – it's complicated and I
haven't simulated it yet
Exceptions

- **Overflow**
 - **causes**
 - exponent incremented during normalization or rounding overflow
 - **detect**
 - when carry out of exponent update counter happens
 - note one of the operands could have been infinity
 - don't need to special case for an add
 - OR when exponent is all 1's
 - **action**
 - set result to \(\infty \)
 - hence saturating counter
 - and carry out or all 1's \(\Rightarrow \) 0'ing Mz
 - sign takes care of itself
 - set overflow flag

- **Underflow**
 - **NOTE:** Al's view and the book's differ
 - **Book:**
 - cause: if exponent decremented during normalization
 - result: \(E \leftarrow 0 \), fraction left un-normalized
 - **My view:**
 - \(E \) goes to 0 or below for any reason
Other Exceptions

- Zero
 - cause
 » significand (after rounding) goes to zero
 - action
 » set E to 0, and set zero flag
- Inexact
 - set flag if prior to rounding G+R+S = 1
- NaN
 - here's the weird one
 - must check X and Y operands
 » if either is a NaN
 » then set flag and force result to NaN

Basic Implementation Analysis

- Worst case path analysis
A Improved “Single Path” Implementation

Main savings is removal of the LOD hence minor win
What Changed?

- **S-Add/Sub**
 - replaced by 2’s complement adder
 - on eff-sub complement subtrahend
 - bit invert and then put carry in to adder
 - to avoid re-complementing the result
 - smallest operand is complemented ➔ result positive
 - complicates the compare however
 - need to compare the exponents & significands
 - since exponents may be =

- **LZA – leading zero anticipation**
 - calculates the position of the leading 1
 - similar to the add in complexity but done in parallel

More Changes

- **Round and Big (>3) left shift in parallel**
 - claim if big left shift occurs then G,R,S=0 hence no rounding needed
 - I claim this isn’t quite true
 - you don’t know how many bits were shifted right and there might be a 1 out there.
 - hence R-shift count would also be required to determine role of sticky bit
Improving Further

- 2 paths
 - CLOSE – for subtraction and exponent difference of 0 or 1
 - FAR - for addition and subtraction when d > 1

- However
 - path latencies are quite different
 - not substantially evil
 » can always signal a ready bit
 - but this complicates the processor pipeline
 » and makes forwarding super weird
 - can always fix with a non-laminar pipeline
 » but it is non-laminar

figure 8.10 from the text

Pipelined Single and Double Path

figure 8.11 from text
Comments on Text Pipeline

• Basically it depends where you are in the timing regime
 ▪ for slow clock rates and a good process
 » the previous pipeline model is fine
 ▪ for high performance processors on a best process
 » every non-trivial module will be pipelined
 » Horowitz example
 • 4-cycle pipelined floating-point adder
 • runs at 30 FO4 delays per cycle in standard cell
 • implementation (5 FO4 from clocking overhead)
 » ~10,000λ x 3300λ
 ▪ however
 » both area and frequency are hugely dependent on FO4 budget
 » 15 FO4 designs exist with 20+ stages
 • these designs are very laminar
 • you have to be at 15 FO4

Floating Point Multiplication

• Basic algorithm
 ▪ multiply significands & add exponents
 » exponent add
 • slightly tricky – why?
 » multiply of m bits → 2m bit result
 • only need to keep 2 bits from lower order half for rounding
 – G & Sticky
 ▪ normalize result and update exponent
 » exponent update needs to check for all 1’s and overflow
 ▪ round
 ▪ checks for special values and set exception flags
 » NaN in → NaN out → should be a qNaN
 » Infinity
 – overflow on carry out → ∞ → E = all 1’s, f = all 0’s
 – exponent can still go to all 1’s even with no overflow
 – hence a all 1’s check circuit is required
Exponent Addition

- **Biased representation**
 - \(E = \text{actual value} + \text{bias} \)
 - \(Ex = Vx + B \)
 - \(Ex + Ey = Vx + Vy + 2B \)
 - \(\Rightarrow \) need to subtract the bias to get the proper representation
 - **0's and denormals**
 - if \(Ex \) or \(Ey \) is 0 then must set carry in
 - since actual \(V = 1 \)-bias in this case
 - \(Ez = Ex + Ey - B \)

- **Mz overflow**
 - effectively need a 9 bit add/subtract
 - \(Mx + My \) step can produce a carry out
 - but on the bias subtract step the carry out bit may clear
 - if not then the exponent must be set to all 1's

- **Sign of the result**
 - \(Sz = \text{XOR}(Sx, Sy) \)

Normalization & Rounding

- **Normalization**
 - similar to what happened with addition except
 - inputs in range 1:2 \(\Rightarrow \) result in range 1:4
 - hence may need one right shift & increment exponent
 - right shift \(\Rightarrow \) update sticky

- **Rounding**
 - also similar to addition but with only 2 guard bits: G & S
 - let
 - \(L = \text{low order bit of mantissa} \ldots \ldots \text{LGS} \)
 - \(\text{sgn is sign of the result} \)
 - **unbiased**
 - \(\text{rnd} = GS + GS'L = G(S + L) \)
 - **toward 0**
 - \(\text{simple truncation: } \text{rnd} = 0 \)
 - \(\Rightarrow +\infty \)
 - \(\text{rnd} = \text{sgn}'(G + T) \)
 - \(\Rightarrow -\infty \)
 - \(\text{rnd} = \text{sgn}(G + T) \)
Exceptions and Special Values

• Exceptions (same as for addition)
 • exponent overflow after normalization ➔ set overflow flag
 » and result is set to infinity
 • exponent = 0 ➔ set underflow flag (zero or denormal)
 • zero flag set (2 options)
 » check for 0 operand and other not infinity
 • OK since need to check for NaN's and infinity anyway
 » check result
 • inexact set if \(G + T = 1 \)
 • NaN set
 » if one operand is 0 and the other is infinity
 » or if one or both operands are NaN's

• Denormals
 • possible when one or both operands are denormals
 » hence left shift during normalization and exponent subtract
 • also when exponent underflows the mantissa is shifted right
 » creates denormal
Denormal Conundrum

- **Whacky method**
 - normalization phase shifts left and decrements exponent
 - then if exponent underflows
 - increment exponent and then right shift significand until exponent gets back to zero
 - can you say SLOW!
 - one trick is to notice if an operand is denormal
 - if not then this step won’t happen

- **Alternative**
 - negative exponent \(\Rightarrow \) shift amount

Improving on the Basic Algorithm

- **Multiplier is the slowest phase**
 - pipeline it and use the tactics you already know about
 - output of multiplier’s high half is in carry-save form
 - then use row compressors to speed up partial product add

- **Overlap multiply with sticky bit computation**
 - basic method
 - use conventional representation for low-half
 - \(\Rightarrow \) carry-propagate adders for partial product add
 - then take bit-wise OR of the result and OR that to Sticky
 - **improvement 1**: use a trick
 - number of trailing result 0’s is the sum of the operand trailing 0’s
 - if > 25 (24 bit significand plus G) then S=0 otherwise S=1
 - **improvement 2**: use faster carry-save for low half as well
 - determine sticky from carry-save representation of the low-half
The Carry-Save Sticky

- Basic idea
 - add -1 (all 1’s in 2’s complement) to partial product
 » effect: add one more row of partial products – e.g. -1
 » if result would have been zero then result will be -1

S	cccccccc
C	11111111
-1	

Note: I don’t see the performance adv. here

- \[Z_i = (S_i \text{xor} C_i)' \]
- \[T_i = S_{i+1} + C_{i+1} \]
- \[W_i = Z_i \text{xor} T_i \]
- Sticky = NAND(W_i)

Multiply-Add Fused

- MAF advantages (note text views the glass as half full)
 - increased precision
 » single round and normalize as opposed to two
 - common operation
 » hardware support for the common case principle
 » benefit to the compiler as well
 - simplifies forwarding/bypass logic
 » particularly important for long latency operations
 - reduces register file pressure
 » savings in power and increases performance
 - one of the few times you can win on both fronts
 - easy to use for either ADD or Multiply
 » \(X \times Y + W \)
 - \(Y \) set to 1 for an add
 - \(W \) set to 0 for a multiply
Other FMA/MAF Issues (the book elides)

- IEEE 754 spec doesn’t include MAF as an operation
 - Wedge it in as follows
 » define new super extended format
 - allows doubles to be exactly represented
 » define multiplication to silently cast operands to SEF and return exact result
 » define addition to silently cast the W operand to SEF and return the result in the desired precision
 - SEF’s added accuracy simplifies iterative divide and SQRT operations
 - Some serious software issues about when it should and shouldn’t be used
 » e.g.: SQRT(X*X-(Y*Y)) when X==Y
 - could return Zero, NaN, or a small positive number from MAF
 - non-MAF will return 0
 - oops!!

MAF’s and Compilers (also elided)

- Basic MAF facts
 - requires compiler support or custom assembly language
 - compilers are never forced to use MAF’s
 - hence difficult in saying anything definitive about rounding behavior on systems with MAF hardware
 - compilers should have a switch that disables MAF code generation
- Register pressure
 - actually worse for an individual instruction
 » 3 reads and 1 write for a MAF instruction
 » increase of register read ports may result
 - at algorithm level register pressure is less
 » 3 reads and 1 write vs. 4 reads and 2 writes for non-MAF
- HW benefits
 - parallel partial product accumulation and addend alignment
 - add is done to product still in carry-save form
 - potential better support for denormals
Basic MAF Algorithm

• \(Z = X \cdot Y + W \)
 - \(M_x \cdot M_y; E_x + E_y = E_{xy} \)
 » product must be kept in full double precision
 • since add may cancel the high-order half
 » partial product adds can be in carry-save format
 - compare \(E_{xy} \) and \(E_w \)
 » produces alignment shift
 » shift addend significand
 • double precision result removes need to shift smaller significand
 - select max(\(E_{xy}, E_w \)) for exponent
 - add product and aligned addend
 » result here needs to be in conventional form
 - normalize result and update exponent
 - round
 - determine exception flags and special values

Alignment of W

• Basic trick
 - By comparing \(E_{xy} \) and \(E_w \) you can determine
 » least significant bit of the product and the addend
 - However the distance between them can be enormous in either direction
 » consider
 • large*large+tiny OR tiny*tiny+large
 » need to avoid storing all the bits in between
 » ideas?
Alignment Cases

- W is much smaller than X*Y
 - then W is crushed to sticky before being added
- W is much larger than X*Y
 - then add it with a single 0 separator and crush X*Y to sticky
- W is smaller than X*Y
 - low-order part is crushed to sticky
 - high order part is added
- W is larger than X*Y
 - simple align and add

Bottom line
- adder stage requires 3m+2 bits
 - m bits for addend, separator, 2m for product, and guard
- the sticky bit is out there too

Basic Implementation
Devil is Still in the Details

• For biased exponent \(\max(Ex+Ey, Ew) \)
 - \(\Rightarrow \max(Ebx + Eby – \text{bias}, Ebw) \)
• Alignment of \(W \) w.r.t double precision product performed concurrently
 - since product isn't aligned
 - left shift can be up to \(m+3 \) positions
 - right shift can be up to \(2m-1 \) positions
 - avoid the need for bidirectional shift
 - position addend \(m+3 \) positions to the left of the product
 - then shift right by \(d \)
 - where \(d=Ex+Ey-Ew+m+3 \)
 - which for a biased representation really means
 - \(d = Ebx + Eby – Ebw – \text{bias} + m+3 \)
 - no shift is performed if \(d<=0 \)
 - max shift is \(3m+1 \)

More Devils

• Adder output may require realignment
 - since add may cancel high-order product bits
 - max left shift of up to \(2m \) bits may be required
 - fast method (same as with Fadd)
 - leading one position (LOP)
 - note book terminology change – LOD for Fadd discussion
 - replaced by LZA (leading zero anticipator)
 - same complexity as adder
 - LZA and add step done in parallel
• Pipelining the design for higher throughput
 - not nearly as easy as the book would lead you to believe
 - a good pipeline is all about timing
 - and timing is always a serious pain in the tuckus
Alternative Implementation

- Source Intel FPCOE

Alignment Shifter for W

Multiplier Array for X*Y

Mul-Hi-Carry, Mul-Hi-Save

Mul-Lo-Carry, Mul-Lo-Save

Partial Product CSA

(3,2) CSA

aligned addend

m bits 1 bit sep m bits m bits G

LZA/CPA/normalization shift/exponent update

round, exponent update, special values and exceptions

MAF Special Values and Exceptions

- Final operation is an ADD
 - hence all of this is the same as with Fadd
 - refer to slides 18, 19, 20
Floating Point Division

- For \(q = x/d \)

- Basic algorithm
 - divide the significands, subtract the exponents
 - \(M_q = M_x / M_d \)
 - use the methods you already know about
 - SRT (Sweeney, Robertson, Tocher developed this algo. independently)
 - the only nice thing about division is that \(q \) fits in the same m bits as \(x \) and \(d \).
 - \(E_q = E_x - E_d \)
 - but we need to remember that the exponents are biased
 - hence: \(E_bq = E_bx - E_by + \text{bias} \)
 - \(S_q = \text{XOR}(S_x, S_d) \)
 - normalize \(M_q \) and update exponent
 - round
 - determine exception flags and special values

Divider Data Path

[Diagram of Divider Data Path]

text figure 8.24
Devil is STILL in the Details

• Normalization depends on range of significands
 • x and d are between $1:2$ if they are normals
 • hence q is between $\frac{1}{2}$ and 1
 » a possible left shift of one position might be needed
 » means the guard bit is needed as the shift-in value

• Rounding
 • things to notice
 » G was used in normalization
 » infinite number of bits might be needed for an exact result
 • as if FP ops are ever exact
 » anything else?
 • yep – shows up in 2 slides
 » need R and Sticky
 » sticky is tricky (next slide)

Tricky Stuff

• Sticky is tricky
 • Sticky bit is effectively
 » 0 if the remainder is 0
 » 1 if it isn’t
 • Hence you need to check for the remainder = 0

• Rounding to Nearest has a trick you can exploit
 • the tie case can’t happen
 • tie case $\Rightarrow f+1$ bit exact quotient for an f-bit fraction
 » $Mq=1d_1\ldots d_{f+1}q_1\ldots q_f1x2^e = 1x_1\ldots x_f2^{+2}$
 • e is 0 or 1 since result may be normalized or not
 – remember the 1 bit shift
 » LHS has an odd number of terms $\Rightarrow < f+1$ leading 0’s
 » RHS has at least $f+2$ leading 0’s
 » hence can’t be true so tie can’t happen
Digit Recurrence Rounding

- Digit recurrence division (text 5.2.2)
 - do recurrent division
 - need to do m + 2 + p steps
 - need m for the quotient
 - +2 for Guard and Round
 - p is either 1 or 2 based on the redundant digit representation
 - then correct,
 - in the floating point case we then normalize and round
- What might happen
 - if final residual is negative we may need to decrement the last bit of the quotient q_L
 - rounding might then increment it again
- Opportunity to combine correct, normalize and round steps

Rounding to Nearest

- $Q_1...Q_mGR$
 - sign = sign of the residual
- Correction
 - Q_m-sign
- Rounding
 - if quotient is normalized then add Sticky-sign to position G
 - if quotient is not normalized then add Sticky-sign to position R
- Note book has a lot of notation (you've noticed)
 - but this is the idea
Floating Point SQRT

- \(S = \text{Sqrt}(X) \)
- Basic algorithm
 - \(Ms = \text{SQRT}(Mx) \)
 - \(Es = Ebx/2 \) (problem with this?)
 - oops problem \(Es \) may not be an integer
 - if low order bit = 0
 - then shift exponent right 1
 - compute the square root of \(Mx \)
 - done using iterative approximation methods (overview shortly)
 - if low order bit = 1
 - then \(Ms = Mx/2 \) and \(Es = Ex+1 \)
 - note this can happen at most once since what you care about is the real unbiased value of the exponent being even – if it was odd then this step fixes the problem but creates another
 - what is it?
 - Normalize and update exponent
 - Round
 - Determine flags and special values

Ex low order bit test

- Remember the bias
 - \(Ebx = Ev + \text{bias} \)
 - Hence \(Ebx/2 = Ev/2 + \text{bias}/2 \) != \(Ev/2 + \text{bias} = \text{what we want} \)
 - therefore must add bias to \(Ebx \) before the check
 - \((Ebx + \text{bias})/2 = Ev/2 + \text{bias}/2 + \text{bias}/2 = Ev/2 + \text{bias} \)
- Trick
 - do we need to do the whole addition to determine
 - yes and no
 - yes if the \(Ebx+\text{Bias} \) is even then we keep the value
 - no: if \(Ebx+\text{Bias} \) is odd then we throw the sum away
 - note bias is always odd in IEEE 754
 - hence if \(Ebx \) is even then we don’t do the add

School of Computing

Page 28
Other Issues

• Normalization
 • since x is between $\frac{1}{2}$ and 2
 » the $\frac{1}{2}$ results from the adjustment step for an odd true exponent value
 • \sqrt{x} then has a range $1/(\sqrt{2})$: $\sqrt{2}$
 » hence a max left shift of 1 is required for values < 1

• Rounding modes
 » these are similar to division
 • G could have been shifted
 • hence we need R and Sticky
 – Sticky is needed for rounding to +/- ∞
 – Sticky is not needed for unbiased since the tie can’t happen
 – rounding to zero is simple truncation

Iterative Approximation

• We didn’t have time to cover Chapter 7
 • serious arithmites should look at this
 » useful for all weird stuff
 • Cordic algorithms for trigonometric functions
 • SQRT or iterative division
 – since both are somewhat rare
 – minimizing hardware maybe a better choice than fast hardware

• Hence this is just an overview
 • purpose = awareness
 • note: FMA/MAF circuits are very useful for this
Newton’s Method

- note: also called Newton-Raphson method

- Idea
 - use a Taylor’s series to find solutions to an equation in the area of a suspected root
 - problems – convergence and singularities if you guess wrong
 - Taylor’s series of $f(x)$ about a point $x=x_0+e$
 - $f(x_0+e) = f(x_0)+f'(x_0)e+1/2f''(x_0)e^2+…$
 - keep first order terms and set $f(x_0+e)=0$
 - solve for $e=e_0$
 - $e_0 = - (f(x_0))/(f'(x_0))$
 - eventually leads to a recurrence relation which says
 $$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

Iterative Divide w/ FMA’s

- Use Newton-Raphson
 $$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

- For approximation to $1/B$
 - $f(x) = 1/(x-B)$
 - $f'(x) = -1/x^2$

- Then
 - $x_{n+1} = x_i + x_i*(1-B^*x_i)$
 - requires 2 FMA’s

- Accuracy doubles until it reaches precision of calculation

- Important
 - want to use unbiased rounding for all intermediate values
 - to avoid accumulated error
 - final round needs to be to user specified mode
Devil in the Details again

- Need to pick a suitable value for x_0
 - lots of methods to do this
 - plus a lot of theory involved in the choice
 - fortunately for division
 - trick is to not pick a value near 0
 - given the range of the right answer is between $1/2$ and 1
 - this shouldn't be hard
 - picking somewhere in the middle makes sense
 - how about $\frac{3}{4}$
 - more practically
 - use high order bits as a table index to an initial value choice
 - more index bits \Rightarrow more rapid convergence
- Stopping point
 - when nothing changed right of the sticky bit

Iterative SQRT with FMA's

Also Newton-Raphson

\[x_{i+1} = x_i - \frac{f(x_i)}{f'(x_i)} \]

- For approximation to $1/(\text{Sqrt}(B))$ set
 - $f(x) = 1/(x^2 - A)$
 - $f'(x) = -2/x^3$
- Then
 - $x_{i+1} = x_i + x_i^* (1/2 - (A/2^* x_i^*)^* x_i^*)$
 - requires 3 FMA's
- Initial value
 - know answer can be between $1/\text{sqrt}(2)$ and $\text{sqrt}(2)$
 - pick $\frac{3}{4}$ again or use index trick
- Note
 - inverse sqrt is easier than sqrt
Whew

- That’s it for floating point

Bottom line

- most of the hard stuff you already knew
 - good algorithms for add/sub/mul/div
 - they get used again
- the school book algorithms are a start
- but there is a lot of hair
 - input operand checks
 - result checks
 - forcing special values
 - multiplexors and hardwired values selected conditionally
- result of the hair
 - floating point circuits tend to be larger and slower than their integer counterparts

The hope

- you got the basics
- and you have a deeper appreciation of the dangers of using FP in your programs