Chapter 1 – Basic Number Representations and Arithmetic Algorithms

Arithmetic Processing

- AP = (operands, operation, results, conditions, singularities)
 - Operands are:
 - Set of numerical values \(x \in \mathcal{N} \)
 - Range \(V_{\text{min}} \leq x \leq V_{\text{max}} \)
 - Precision (number of bits)
 - Number Representation System (NRS)
 - Operand: +, -, *, \, \text{etc.}
 - Conditions: Values of results (zero, neg, etc.)
 - Singularities: Illega results (overflow, NAN, etc.)
Number Representation

- Need to map numbers to bits
 - (or some other representation, but we’ll use bits)
- Representation you choose matters!
 - Complexity of arithmetic operations depends heavily on representation!
 - But, be careful of conversions
 - Arithmetic that’s easy in one representation may lose its advantage when you convert back and forth…

Basic Fixed Point NRS

- Number represented by ordered n-tuple of symbols
 - Symbols are digits
 - n-tuple is a digit-vector
 - Number of digits in digit-vector is precision
 - \(X = (X_{n-1}, X_{n-2}, \ldots, X_1, X_0) \)
Digit Values

- A set of numerical values for the digits
 - D_i is the set of possible values for X_i
 - $|D_i|$ is the cardinality of D_i
 - Binary (cardinality 2) is $\{0,1\}$
 - Decimal (cardinality 10) is $\{0,1,2,3,4,5,6,7,8,9\}$
 - Balanced ternary (cardinality 3) is $\{-1,0,1\}$
 - Set of integers represented by a digit-vector with n digits is a finite set with max elements of
 $$K = \prod_{j=0}^{n-1} |D_j|$$

Rule of Interpretation

- Mapping of set of digit-vectors to numbers

Digit-Vectors: (1,3)
Numbers (N, Z, R, …): “Thirteen”
Mappings...

Positional Weighted Systems

- Integer x represented by digit vector
 - $X = (X_{n-1}, X_{n-2}, \ldots, X_1, X_0)$

- Rule of interpretation
 - $X = \sum_{i=0}^{n-1} X_i W_i$

- Where weight vector is
 - $W = (W_{n-1}, W_{n-2}, \ldots, W_1, W_0)$
Radix Number Systems

- Weights are not arbitrary
 - they are related to a radix vector
 \[R = (R_{n-1}, R_{n-2}, \ldots, R_1, R_0) \]
 - So that
 \[W_0 = 1; \quad W_i = W_{i-1} \cdot R_{i-1} \quad (1 \leq i \leq n-1) \]
 - Or
 \[W_0 = 1; \quad W_i = \prod_{j=0}^{i-1} R_j \]

Fixed-Radix Systems

- In fixed-radix system all elements of the radix vector have the same value \(r \) (the radix)
 - Weight vector is
 \[W = (r_{n-1}, r_{n-2}, \ldots, r_2, r, 1) \]
 - So
 \[x = \sum_{i=0}^{n-1} X_i \cdot r^i \]
 - Radix 2: \(W = (\ldots 16, 8, 4, 2, 1) \)
 - Radix 4: \(W = (\ldots 256, 64, 16, 4, 1) \)
 - Radix 10: \(W = (\ldots 10000, 1000, 100, 10, 1) \)
Mixed-Radix Systems

- Time is the most common...
 - Hours, Minutes, Seconds
 - $R = (24, 60, 60)$
 - $W = (3600, 60, 1)$
 - $X = (5, 37, 43) = 20,263$ seconds
 - $5 \times 3600 = 18,000$
 - $37 \times 60 = 2,220$
 - $43 \times 1 = 43$
 - Total = 20,263 seconds

Canonical Systems

- Canonical if $D_i = \{0, 1, \ldots, R_{i-1}\}$ with $|D_i| = R_i$
 - Binary = $\{0, 1\}$
 - Octal = $\{0, 1, 2, 3, 4, 5, 6, 7\}$
 - Decimal = $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

- Range of values with n radix-r digits is
 - $0 \leq x \leq r^n - 1$
Non-Canonical Systems

- Digit set that is non canonical...
 - Non-canonical decimal \(D_i = \{-4,-3,-2,-1,0,1,2,3,4,5\} \)
 - Non-canonical binary \(D_i = \{-1,0,1\} \) or \(\{0,1,2\} \)
 - Redundant if non-canonical \(D_i \) s.t. \(|D_i| > R_i \)
 - I.e. binary system with \(D_i = \{-1,0,1\} \)
 \((1,1,0,1)\) and \((1,1,1,-1)\) both represent “thirteen”

Conventional Number Systems

- A system with fixed positive radix \(r \) and canonical set of digit values
 - Radix-\(r \) conventional number system
 - After all this fuss, these are what we’ll mostly worry about...
 - Specifically binary (radix 2)

- We’ll also see some signed-digit redundant binary (carry-save, signed-digit)
Aside – Residue Numbers

- Example of a non-radix number system
 - Weights are not defined recursively
 - Residue Number System (RNS) uses a set of pairwise relatively prime numbers \(P = (P_{n-1}, \ldots, P_0) \)
 - A positive integer \(x \) is represented by a vector
 \[X_i = x \mod P_i \]
 - Can allow fast add and multiply
 - No notion of digits on left being more significant than digits on the right (i.e. no weighting)

Aside – Residue Numbers

- \(P = (17, 13, 11, 7, 5, 3, 2) \)
- Digit-vector \((13 4 8 2 0 0 0) \)
- Number = “thirty”
 - 30 mod 17 = 13
 - 30 mod 13 = 4
 - 30 mod 11 = 8
 - Etc…
Lots of Choices...

- Non-negative integers — digits = \{0,1\}
- Range with n bits is \(0 \leq x \leq 2^n - 1\)
- Higher power of 2 radix — group bits in to groups with \(\log_2 r\) bits
 \(X = (1, 1, 0, 0, 1, 0, 1, 1, 1, 0, 1)\)
 = \(((1,1), (0,0), (0,1), (0,1), (1,1), (0,1)))\)
 = (3, 0, 1, 1, 3, 1) base 4 (quaternary)
 = ((1,1,0), (0,0,1), (0,1,1), (1,0,1))
 = (6,1,3,5) base 8 (octal)
 = ((1,1,0,0)(0,1,0,1)(1,1,0,1))
 = (C, 5, D) base 16 (hexadecimal)
Signed Integers

- Three choices for representing signed ints
 - Directly in the number system
 - Signed digit NRS, i.e. {-1, 0, 1}
 - Use extra symbol to represent the sign
 - Sign and Magnitude
 - Additional mapping on positive integers
 - True and Complement system
 - Signed integer X
 - Positive Integer X_R
 - Digit-Vector X

Transformation

- Transform signed numbers into unsigned, then use conventional systems
 - "minus two" X
 - "six" X_R
 - (1,1,0)
 - Z (signed) N (unsigned) Digit vectors
True and Complement System

- Signed integers in the range \(-k \leq x \leq k\)
 - Negative represented by \(x_R\)
 - Such that \(x_R = x \mod C\)
 - \(C\) is the Complementation constant
 - Unambiguous if \(k < C/2\)

Mapping is

\[
x_R = \begin{cases}
 x & \text{if } x \geq 0 \\
 C - |x| & \text{if } x < 0
\end{cases}
\]

Converse Mapping

- Convert back and forth

\[
x = \begin{cases}
 x_R & \text{if } x_R < C/2 \\
 x_R - C & \text{if } x_R \geq C/2
\end{cases}
\]
Boundary conditions

- If $x_R = C/2$ can be represented, you can assign it to either $x = -C/2$ or $x = C/2$
 - Representation is no longer symmetric
 - Not closed under sign change operation

- If $x_R = C$ can be represented, then there are two representations of 0

Two standard forms

- Range complement system $C = r^n$
 - Also called Radix Complement
 - Two’s complement in radix 2

- Digit Complement System $C = r^n - 1$
 - Also called Diminished Radix Complement
 - One’s complement in radix 2
Two’s Compliment

- For n bits in the digit vector, $C = 2^n$
 - Example three bits: $C = 8$
- $x_R = C$ is outside the range
 - With 3 bits, you can't represent 8
 - So, only one representation of 0
- $x_R = C / 2$ can be represented, so you have a choice x_R is either $x = 2^{n-1}$ or $x = -2^{n-1}$
 - Usually choose second for sign detection
- Range is then $-2^{n-1} \leq x \leq 2^{n-1} - 1$
 (asymmetric)

One’s Compliment

- For n bits in the digit vector $C = 2^n - 1$
 - Example three bits: $C = 7$
- $x_R = C$ is representable in 3 bits
 - Two representations of 0
 - $x = 0 : x_R = 0$ and $x_R = 2^n - 1$
- $x_R = C / 2$ cannot be represented
 - Symmetric range...
- Range is then $-(2^{n-1} - 1) \leq x \leq 2^{n-1} - 1$
Examples (n=3 bits)

- **Two’s compliment**
 - \[C = 2^3 \]
 - \[x = -3 \] so \[x_R = C - |x| = 8 - 3 = 5 \]
 - -3 represented as 101
 - \(x_R = 111 = 7, \quad 7 > C/2, \quad x_R - C = 7 - 8 = -1 \)
 - 111 represents -1

- **One’s compliment**
 - \[C = 2^3 - 1 \] \[x = -3 \] so \[x_R = C - |x| = 7 - 3 = 4 \]
 - -3 represented as 100
 - \(x_R = 111 = 7, \quad 7 > C/2, \quad x_R - C = 7 - 7 = 0 \)

Range Comparison (3 bits)

<table>
<thead>
<tr>
<th>Decimal (unsigned)</th>
<th>Binary</th>
<th>Sign & Magnitude</th>
<th>Two’s compliment</th>
<th>One’s Compliment</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>111</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>110</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>101</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>011</td>
<td>011</td>
<td>011</td>
<td>011</td>
</tr>
<tr>
<td>2</td>
<td>010</td>
<td>010</td>
<td>010</td>
<td>010</td>
</tr>
<tr>
<td>1</td>
<td>001</td>
<td>001</td>
<td>001</td>
<td>001</td>
</tr>
<tr>
<td>0</td>
<td>000</td>
<td>000/100</td>
<td>000</td>
<td>000/111</td>
</tr>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td>101</td>
<td>111</td>
</tr>
<tr>
<td>-2</td>
<td></td>
<td></td>
<td>110</td>
<td>110</td>
</tr>
<tr>
<td>-3</td>
<td></td>
<td></td>
<td>111</td>
<td>101</td>
</tr>
<tr>
<td>-4</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
Example: 2’s comp, n=4

Example: 1’s comp, n=4
Converse Mapping (2’s comp)

\[x = \begin{cases}
 x_R & \text{if } x_R < C / 2, X_{n-1} = 0 \\
 x_R - C & \text{if } x_R \geq C / 2, X_{n-1} = 1
\end{cases} \]

\[x = x_R \cdot 2^{n-1} + \sum_{i=0}^{n-2} X_i 2^i \]

Most significant bit has negative weight, remaining have positive weight.

Two’s Comp. Example

\[x = -X_{n-1} \cdot 2^{n-1} + \sum_{i=0}^{n-2} X_i 2^i \] Most significant bit has negative weight, remaining have positive weight.

n=5: \(X = 11011 = -16 + 8 + 0 + 2 + 1 = -5 \)
\(X = 01011 = 0 + 8 + 0 + 2 + 1 = 11 \)
Converse Mapping (1’s comp)

- Similar in one’s complement (case for $X_{n-1} = 1$)

$$x = x_R - C = 1 \times 2^{n-1} + \sum_{i=0}^{n-2} X_i \cdot 2^i - (2^n - 1)$$

$$= -2^n + 2^{n-1} + 1 + \sum_{i=0}^{n-2} X_i \cdot 2^i = -(2^{n-1} - 1) + \sum_{i=0}^{n-2} X_i \cdot 2^i$$

$$x = -X_{n-1} (2^{n-1} - 1) + \sum_{i=0}^{n-2} X_i \cdot 2^i$$

Remember this! We’ll use it later when we need to adjust things in arrays of signed addition. Think of partial product arrays in multiplication….

One’s Comp. Example…

- Most significant bit has negative weight, remaining have positive. Weight of MSB is different because $C=2^n-1$. Intuition is that you have to add 1 to jump over the extra representation of 0.

$n=5$: $X = 11011 = -(16-1) + 8 + 0 + 2 + 1 = -4$

$X = 01011 = 0 + 8 + 0 + 2 + 1 = 11$
Sign Bits

- Conveniently, sign is determined by high-order bit X_{n-1}
 - Because $|x| \leq C/2$

$$\text{sign}(x) = \begin{cases} 0 & \text{if } x_R < C/2 \\ 1 & \text{if } x_R \geq C/2 \end{cases}$$

(Assuming $x_R = C/2$ is assigned to represent $x = -C/2$)

Addition (unsigned)

- Adding two n-bit operands results in n+1 result bits
 - Usually call the n+1 bit Cout

$$Z = (x + y + c_{in}) \mod r^n$$

$$c_{out} = \begin{cases} 1 & \text{if } (x + y + c_{in}) \geq r^n \\ 0 & \text{otherwise} \end{cases}$$

- In terms of digit vectors
- $C_{out} = \text{overflow!}$ $(c_{out}, Z) = \text{ADD}(X, Y, c_{in})$
Addition (Signed)

- Assume no overflow for a moment...
 - \(z = x + y \) computed as \(z_R = (x_R + y_R) \mod C \)

- Use the property \((a \mod C) \mod C = a \mod C\)

\[
(x_R + y_R) \mod C = ((x \mod C) + (y \mod C)) \mod C \\
= (x + y) \mod C \\
= z \mod C = z_R
\]

Addition: two’s comp.

- \(C=2^n \), and \(\mod 2^n \) means ignore \(X_n \) (the carry out)!
 - Makes addition simple – add the numbers and ignore the carry out \(z_R = (x_R + y_R) \mod 2^n \)

![Addition Diagram](attachment:image.png)
Addition: one’s comp.

- \(C = 2^n - 1 \), so mod operation is not as easy
 - \(z_R = w_R \mod (2^n - 1) \)
 - If \(X_R + Y_R < 2^n - 1 \) then \(w_n = 0 \) and \(W_R \mod (2^n - 1) = W_R \)
 - If \(X_R + Y_R = 2^n - 1 \) then \(w_n = 0 \) and \(W_R \mod (2^n - 1) = 0 \)
 - If \(2^n - 1 < X_R + Y_R \leq 2(2^n - 1) \)
 - then \(w_n = 1 \) and \(W_R \mod (2^n - 1) = W_R - 2^n + 1 \)

So:

\[
\begin{array}{l}
\text{if } w_n = 0 \implies Z_R = W_R, \\
\text{if } w_n = 1 \implies Z_R = W_R - 2^n + 1 = W_R + 1
\end{array}
\]

Addition: one’s comp.

- If the \(c_{out} \) is 1, subtract \(2^n \) (ignore \(c_{out} \)), and add 1 (end-around carry)
Change of Sign

- **Start with bitwise negation**
 - Flip every bit in the digit vector
 - Boolean style: \(\overline{a} = (r - 1) - a \)
- **Fundamental property of n-digit radix-r**
 - \(A + \overline{A} + 1 = r^n \)

\[
\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 \\
+ & 1 & 0 & 0 & 1 & 1 \\
\hline
1 & 1 & 1 & 1 & 1 \\
+ & 0 & 0 & 0 & 0 & 1 \\
\hline
1 & 0 & 0 & 0 & 0 & 0
\end{array}
\]

Change of Sign

- **One’s Complement**: \(-A = \overline{A} \)

\[
\begin{cases}
-A = C - A = r^n - 1 - A = \overline{A} & \text{if } A \geq 0
\end{cases}
\]

- **Two’s Complement**: \(-A = \overline{A} + 1 \)

\[
\begin{cases}
-A = C - A = r^n - A = \overline{A} + 1 & \text{if } A \geq 0
\end{cases}
\]
Another two’s comp. check

- Verify the property \(A + \overline{A} = -1 \)
- Use two’s complement definition…

\[
\left(-X_{n-1}2^{n-1} + \sum_{i=0}^{n-2} X_i 2^i \right) + \left(-\overline{X}_{n-1}2^{n-1} + \sum_{i=0}^{n-2} \overline{X_i} 2^i \right) =
\]

\[
-(X_{n-1} + \overline{X}_{n-1}) \cdot 2^{n-1} + \sum_{i=0}^{n-2} (X_i + \overline{X_i}) \cdot 2^i =
\]

\[
-2^{n-1} + \sum_{i=0}^{n-2} 2^i = -1
\]

Two’s comp subtract

- \(X - Y = X + (-Y) = X + \overline{Y} + 1 \)
Two’s comp add/subtract

- \(X - Y = X + (-Y) = X + \bar{Y} + 1 \)

Overflow?

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>01</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Overflow (unsigned)

- Overflow condition means that the result can’t be represented in n bits
 - For unsigned addition, this simply means that the cout was 1
 - For n=4, this means the result was bigger than 15
 - $1010_2 (10_{10}) + 1100_2 (12_{10}) = 10110_2 (22_{10})$

Overflow (signed)

- Still the same definition – the result can’t be represented in n bits
 - But, now not as easy as looking at cout
 - For 4 bits, and two’s comp, answer was smaller than –8 or larger than 7
 - Overflow if (pos) + (pos) = (neg) $5 + 6 = 11$ or (neg) + neg) = (pos) $-5 + -6 = -11$
 - Can you ever have overflow with (pos) + (neg)?
Example: 2’s comp, n=4

Overflow (signed)

- Overflow only possible if args are same sign
- Overflow if result is different sign

\[OVF = X'_{n-1} \cdot Y'_{n-1} \cdot Z_{n-1} \land X_{n-1} \cdot Y_{n-1} \cdot Z'_{n-1} \]
Overflow (signed)

- Or, consider all possible cases around MSB...

<table>
<thead>
<tr>
<th>Xn-1</th>
<th>Yn-1</th>
<th>Cn-1</th>
<th>Cn</th>
<th>Zn-1</th>
<th>OVF</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>Yes</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>No</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>Yes</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>No</td>
</tr>
</tbody>
</table>

\[OVF = c_n \oplus c_{n-1} \]

Implied Digits (unsigned)

- Unsigned numbers have an infinite number of leading 0’s
 - \(5,243 = \ldots0,000,000,000,005,234\)
 - \(11010 = \ldots0\ 0000\ 0000\ 0001\ 1010\)

- Changing from \(n\) bits to \(m\) bits \((m>n)\) is a simple matter of padding with 0’s to the left
Changing number of bits (signed)

- Signed numbers can be thought of as having infinite replicas of the sign bit to the left

 Four bits: \(1101_2\)

 \[-2^3 + 2^2 + 0 + 2^0 \rightarrow -3\]

 \[-8 + 4 + 1 = -3\]

- **Eight bits:** \(11111011_2\)

 \[-2^7 + 2^6 + 2^5 + 2^4 + 2^3 + 2^2 + 0 + 2^0 \rightarrow -3\]

 \[-128 + 64 + 32 + 16 + 8 + 4 + 1 = -3\]

Shifting

- Shifting corresponds to multiply and divide by powers of 2

- **Left arithmetic shift**

 \[z = 2x \quad \text{or} \quad z = 2^nx \quad \text{for an n-bit shift}\]

 Shift in 0's in LSB, OVF if \(X_{n-1} \neq X_{n-2}\)

- **Right arithmetic shift**

 Divide by 2 (integer result)(1-bit shift)

 \[z = 2^{-1}x - \varepsilon, \quad |\varepsilon| < 1\]

 Remember to copy the sign bit in empty MSB!
Multiplication (unsigned)

- Pencil and paper method
 \[p = x \times y = x \sum_{i=0}^{n-1} Y_i r^i = \sum_{i=0}^{n-1} x r^i Y_i \]
 - Compute \(n \) terms of \(x r^i Y_i \) and then sum them
 - The \(i \)th term requires an \(i \)-position shift, and a multiplication of \(x \) by the single digit \(Y_i \)
 - Requires \(n-1 \) adders
Multiplication (unsigned)

\[
\begin{array}{c|c|c|c|c}
A_3 & A_2 & A_1 & A_0 \\
B_3 & B_2 & B_1 & B_0 \\
\hline
A_3 \cdot B_3 & A_2 \cdot B_2 & A_1 \cdot B_1 & A_0 \cdot B_0 \\
A_3 \cdot B_1 & A_2 \cdot B_0 & A_1 \cdot B_0 & A_0 \cdot B_1 \\
A_3 \cdot B_2 & A_2 \cdot B_1 & A_1 \cdot B_1 & A_0 \cdot B_2 \\
A_3 \cdot B_0 & A_2 \cdot B_0 & A_1 \cdot B_0 & A_0 \cdot B_0 \\
\end{array}
\]

Multiplication (unsigned)

\[
\begin{array}{c|c|c|c|c}
A_3 & A_2 & A_1 & A_0 \\
B_3 & B_2 & B_1 & B_0 \\
\hline
A_3 \cdot B_3 & A_2 \cdot B_2 & A_1 \cdot B_1 & A_0 \cdot B_0 \\
A_3 \cdot B_1 & A_2 \cdot B_0 & A_1 \cdot B_0 & A_0 \cdot B_1 \\
A_3 \cdot B_2 & A_2 \cdot B_1 & A_1 \cdot B_1 & A_0 \cdot B_2 \\
A_3 \cdot B_0 & A_2 \cdot B_0 & A_1 \cdot B_0 & A_0 \cdot B_0 \\
\end{array}
\]
Multiplication (unsigned)

- Instead of using $n-1$ adders, can iterate with 1
 - $p[0] = 0$
 - $p[j + 1] = r^{-1}(p[j] + x \cdot r^j)$ for $j = 0, 1, ..., n - 1$
 - $p = p[n]$
- Takes n steps for n bits

Serial Multiplication (unsigned)
Multiplication (signed!)

- Remember that MSB has negative weight
- Add partial products as normal
- Subtract multiplicand in last step...

-\[
\begin{array}{c}
-5 \\
\times -3 \\
\end{array}
\begin{array}{c}
1011 \text{ multiplicand} \\
\times 1101 \text{ multiplier} \\
\hline
00000 \text{ partial product} \\
11011 \text{ shifted multiplicand} \\
\hline
111011 \text{ partial product} \\
00000000 \text{ shifted multiplicand} \\
\hline
1111011 \text{ partial product} \\
11011 \Downarrow \text{ shifted multiplicand} \\
\hline
11100111 \text{ partial product} \\
00101 \Downarrow \Downarrow \text{ shifted and negated multiplicand} \\
\hline
00001111 \text{ product}
\end{array}
\]

Division (unsigned)

- \(x = qd + w \) (quotient, divisor, remainder)
- Consider 0<\(d \), \(x < r^nd \) (precludes \(/0 \) and OVF)
- Basic division is \(n \) iterations of the recurrence
 \[
 w[0] = x \\
w[j+1] = rw[j] - d^*q_{n-1-j} \quad j = 0, \ldots, n-1
 \]
 where \(q = \sum_{i=0}^{n-1} q_i r^i \) and \(d^* = dr^n \)

- i.e. divisor is aligned with most-significant half of residual
Division (unsigned)

- In each step of the iteration
 - Get one digit of quotient \(q_{j+1} = SEL(w[j], d) \)
 - Value of digit is bounded such that
 \[0 \leq w[j + 1] < d^* \]
 - This means you find the right digit such that the current remainder is less than (shifted) divisor

- In binary you only have to guess 1 or 0
- Guess 1 and fix if you're wrong (restoring)

Long Division

\[
\begin{array}{cccccccc}
19 & 11 & 1011 & 10011 & \text{quotient} \\
11 \overline{217} & 1011 & 11011001 & \text{dividend} \\
11 & 1011 & 1011 & \text{shifted divisor} \\
107 & 0101 & 0000 & \text{reduced dividend} \\
99 & 0000 & 1010 & \text{shifted divisor} \\
8 & 1011 & 10100 & \text{reduced dividend} \\
& & 1011 & \text{shifted divisor} \\
& & 10011 & \text{reduced dividend} \\
& & 1011 & \text{shifted divisor} \\
& & 1000 & \text{remainder}
\end{array}
\]
Restoring Division

1. Shift current result one bit left
2. Subtract divisor from this result
3. If the result of step 2 is neg, q=0, else q=1
4. If the result of step 2 is neg, restore old value of result by adding divisor back
5. Repeat n times...

This is what the recurrence in the book says...

Restoring Division

Algorithm RD: Restoring Divide

1. [Initialize] w[0] = x
2. [Recurrence]
 for j = 0...n - 1
 2.1 \(\tilde{w}[j + 1] = 2w[j] - d^* \)
 2.2 if \(\tilde{w}[j + 1] \geq 0 \) then
 \(q_{n−1−j} = 1; w[j + 1] = \tilde{w}[j + 1] \)
 else
 \(q_{n−1−j} = 0; w[j + 1] = \tilde{w}[j + 1] + d^* \)
 end for

In an implementation the tentative and the true residuals are stored in the same register. Thus a “restoration” operation \(\tilde{w} + d^* \) is performed whenever the tentative residual is negative.
Restoring Division Example

Dividend: $x = 11_2 \equiv (00010111)_2$, divisor: $d = 2 = (0010)_2$

<table>
<thead>
<tr>
<th>Step</th>
<th>Operation</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$x[0]$</td>
<td>000001</td>
</tr>
<tr>
<td>1</td>
<td>$2x[0]$</td>
<td>000010</td>
</tr>
<tr>
<td></td>
<td>$-d'$</td>
<td>11110</td>
</tr>
<tr>
<td>2</td>
<td>$x[1]$</td>
<td>1111</td>
</tr>
<tr>
<td>3</td>
<td>$2x[1]$</td>
<td>11110</td>
</tr>
<tr>
<td></td>
<td>$-d'$</td>
<td>11110</td>
</tr>
<tr>
<td>4</td>
<td>$x[2]$</td>
<td>000001</td>
</tr>
<tr>
<td>5</td>
<td>$2x[2]$</td>
<td>000010</td>
</tr>
<tr>
<td></td>
<td>$-d'$</td>
<td>11110</td>
</tr>
<tr>
<td>6</td>
<td>$x[3]$</td>
<td>00001</td>
</tr>
<tr>
<td>7</td>
<td>$2x[3]$</td>
<td>000010</td>
</tr>
<tr>
<td></td>
<td>$-d'$</td>
<td>11110</td>
</tr>
<tr>
<td>8</td>
<td>$x[4]$</td>
<td>000001</td>
</tr>
</tbody>
</table>

Quotient: $q = (01)_2 = 5$, remainder: $r = (0001)_2 = 1$. Check: $11 = 2 \times 5 + 1$.

Divide 14 by 3. Always contains 0011.
Non-performing Division

- Consider what happens
 - Result at each step is 2r-d (r is current result)
 - If the result is negative, we restore by adding d back in
 - But, if you store the result in a separate place and don’t update the result until you know if it’s negative, then you can save some restoring steps

Non-restoring Division

- Consider again
 - At each step 2residual-d
 - If it’s negative, restore to 2r by adding d back in
 - Then shift to get 4r, then subtract getting 4r-d
 - Suppose you don’t restore, but continued with the shift resulting in 4r-2d
 - Now add d instead of subtract resulting in 4r-d
 - That’s what you wanted!
Non-restoring Division

Algorithm NRD: Nonrestoring Divide

1. [Initialize]
 \(w[0] = x \)
2. \(w[1] = 2w[0] - d^* \)
3. [Recurrence]
 for \(j = 1 \ldots n - 1 \)
 if \(w[j] \geq 0 \) then
 \(q_{n-j} = 1; w[j + 1] = 2w[j] - d^* \)
 else
 \(q_{n-j} = 0; w[j + 1] = 2w[j] + d^* \)
 endfor

For positive partial residual – subtract divisor

4. [Correct]
 if \(w[n] < 0 \) then
 \(q_0 = 0; w[n] = w[n] + d^* \)
 else
 \(q_0 = 1 \)
 endif

If the last residual is negative – do one final restoration

Non-restoring Division Example

```
00000 1110  Divide 14 = 1110 by 3 = 11. B always contains 0011
00001 110   step (1b): shift
+1110   step (2b): subtract b (add 2's complement)
11110 1100  step (3): P is negative, so set quotient bit to 0
11101 100   step (1a): shift
+0001   step (2a): add b
00000 1001  step (3): P is nonnegative, so set quotient bit to 1
00001 001   step (1b): shift
+1110   step (2b): subtract b
11110 0010  step (3): P is negative, so set quotient bit to 0
11100 010   step (1a): shift
+0001   step (2a): add b
11111 0100  step (3): P is negative, so set quotient bit to 0
+0001   remainder is negative, so do final restore step
00010 The quotient is 0100 and the remainder is 00010
```
Whew!

- Basic number representation systems
 - Unsigned, signed
 - Conversions
- Basic addition, subtraction of signed numbers
- Multiplication of unsigned and signed
- Division of signed

- Now let’s speed up the operations!