ARTS AND TECHNOLOGY:
Strange Bedfellows or Congenial Colleagues?

Erik Brunvand

Agenda I

- I argue that arts/technology collaboration is a powerful framework for enhancing ideas in both arenas
 - I frame this in the context of “kinetic art” and its connection to “embedded systems”
 - Design Thinking vs. Computational Thinking?
Agenda II

- Start with a definition of Kinetic Art as an example of arts/tech collaboration
 - Embedded computer systems as a building block
- Brief history of Kinetic Art
 - Origins
 - Pioneers
 - Contemporary
- Finish with examples from a collaborative kinetic arts course at the University of Utah

Kinetic Art

- Kinetic art contains moving parts
 - Depends on motion, sound, or light for its effect
- Kinetic aspect often controlled by microcontrollers
 - Using motors, actuators, transducers, sensors
- The artwork can react to its environment
 - Distinct from “computer art”
 - The computer is usually behind the scenes
Embedded Systems

- Computer systems that are embedded into a complete device
 - Often small or special purpose computers or microprocessors
 - Designed to perform one or a few dedicated functions
 - Often reactive to environmental sensors
 - Often designed to directly control output devices

Jim Campbell’s “Formula”
Embedded Systems and Kinetic Art

- Cross-college collaborative course
 - Brings Art students and Computer Science students together
 - Design and build embedded-system-controlled kinetic art
 - Goal is that both groups of students benefit

- Fundamental nature of Design
 - Engineering design vs. creative design?
 - Computational thinking vs. design thinking?

Background

- Short survey of kinetic art
 - The avant garde in the 1920’s
 - Small steps in the 1950’s
 - The computer age

- Outline for a collaborative class
- Examples
Naum Gabo
(1890-1977)

- Kinetic Construction (Standing Wave) 1919-1920

Marcel Duchamp
(1887 – 1968)

- Rotary Glass Plates (Precision Optics) 1920
 - Built with the help of Man Ray
László Moholy-Nagy
(1895-1946)
- Light-Space Modulator
 (1922-30)

Alexander Calder
(1898 – 1976)
- Mobiles and Stabiles
- Wire and Circuses
Jean Tinguely (1925 – 1991)
Jump ahead to the Computer Age

- Electronic control
 - microprocessors or discrete electronics
- Mechanical actuators
 - motors, servos, relays, solenoids, etc.
 - speakers, buzzers, other noise makers
- Lights
 - LEDs, light bulbs, EL wire, etc.
- Sensors to interact with the viewer
 - distance, movement, sound, temperature, vibration, etc.

Jim Campbell (1956 -)
Alan Rath (1959 -)

Daniel Rozin (1961 -)
Daniel Rozin (1961 -)

Arthur Ganson (1955 -)
David Bowen

University of Minnesota, Duluth

Tele-present wind

date: 2009
Lots of others...

Jack Dollhausen, Peter Vogel, Rebecca Horn, Sabrina Raaf, Meridith Pingree, Roxy Paine, Tim Hawkinson, Krzysztof Wodiczko, etc...

Paul Stout
Kinetic Art / Embedded Systems

Class overview

- Basic reactive programming with embedded systems
 - Electronics fundamentals
 - Sensors and actuators as I/O

- Basic 3d art concepts
 - Formal elements: aesthetics, proportion, balance, tension
 - Material studies and mechanical linkages

- Studio-based instruction model

Class overview

- Individual and group projects
 - Everybody tries everything individually
 - Also work in interdisciplinary teams

- Design and build kinetic art

- Finish with a gallery show of results
 - 2009/2010: Invisible Logic
 - 2010/2011: Intersectio
 - Spring 2012: Drawing Machines
Enhancing Creativity

- Creative design and design-thinking are powerful concepts
 - One definition: enhanced creativity is generating many potential solutions instead of gravitating quickly to one

- Kinetic art is serious stuff…
 - … but not regular CS projects
 - CS students have the freedom to explore without worrying about getting it “right”

Course Infrastructure - HW

- Controller – Arduino
- Sensors
 - Potentiometers/knobs, light, motion (PIR), distance, vibration (piezo), sound, temperature, etc.

- Actuators and transducers
 - LEDs, servos, DC motors, DC stepper motors, sound, etc.

- Other parts
 - LED drivers, transistors, resistors, diodes
 - LCD displays, SPI/I2C peripherals
 - Power supplies, soldering stations, wire, etc.
Arduino

- Arduino open-source integrated development environment (IDE)
 - Good news – basically C
 - gcc is the back-end
 - Bad news – basically C
 - Moderately steep learning curve

Course Infrastructure - SW

```c
void loop()
{
  // here is where you'd put code that needs to be running all the time
  // check to see if it's time to blink the LED: that is, if the difference
  // between the current time and last time we blinked the LED is greater
  // than the interval at which we want to blink the LED
  if (millis() - previousMillis > interval)
    // now the last time you blinked the LED was...
    previousMillis = millis();
  // if the LED is off turn it on and vice-versa
  if (ledState == LOW)
    ledState = HIGH;
  else
    ledState = LOW;
  // set the LED with the ledState of the variable:
  digitalWrite(ledPin, ledState);
}
```
Invisible Logic

Projects from Engineering/Art Collaborations

Akin L. Gitire Gallery
Jan 14–29, 2010

Opening reception Thursday Jan 14, 5–7pm

Lawrence Boyer | Math Broes | Nicole Brower
Quinton Christopher | Rachel Gilder | Ronald Hammersley
Meyyusko Nakajima | Gary Shanks | Jesse Smith

Projects from DigitalAlgorithms Fall 2009
Taught by Rob: Erik Brunwasser & Paul Hour

Gallery hours:
M-F 10:00am–5:00pm
Closed Sat and Sun

Akin L. Gitire Gallery
Department of Art and Art History
University of Utah
Salt Lake City, UT 84112
INTERSECTIO

Fall 2010

F2010: Intersectio
Student Comments

- I now have a much better understanding of how to "think about art" and also saw an entirely different side of computer science.
- Artists have a completely different mindset and it was nice to get a new perspective on things. It really made me learn to appreciate the creative thinking they brought to the table.
- I enjoyed it and already have suggested it to several artists and engineers I know!
- I feel more competent in both [art and computer science] having experienced each side in a new way.

Conclusions

- Embedded systems and kinetic art is a natural collaboration
 - Exploration of fundamental design concepts
 - Design-thinking is a natural complement to computational-thinking
 - Studio instruction model is fascinating
 - Both groups of students benefit from working with each other
 - Cross-college collaboration – just the beginning!

- Erik Brunvand, School of Computing, elb@cs.utah.edu
- Paul Stout, Dept of Art and Art History, paul.stout@gmail.com
- http://www.eng.utah.edu/~cs5789