Today

♦ Data acquisition

- Digital filters and signal processing
 - Filter examples and properties
 - FIR filters
 - Filter design
 - > Implementation issues
 - > DACs
 - > PWM

Data Acquisition Systems

- Many embedded systems measure quantities from the environment and turn them into bits
 - > These are data acquisition systems (DAS)
 - > This is fundamental
- Sometimes data acquisition is the main idea
 - > Digital thermometer
 - > Digital camera
 - > Volt meter
 - > Radar gun
- Other times DAS is mixed with other functionality
 - > Digital signal processing
 - Networking, storage
 - Feedback control

Big Picture

Why Care About DAS?

- July 1983: Air Canada 143, a Boeing 767, runs out of fuel in mid-air, lands on "abandoned" runway
- Poorly soldered fuel level sensor + mistakes that defeated backup systems

Accuracy

- Instrument accuracy is the absolute error of the entire system, including transducer, electronics, and software
- Let x_{mi} be measured value and x_{ti} be the true value
- Average accuracy:

$$\frac{1}{n}\sum_{i=1}^{n} |x_{ti} - x_{mi}|$$

• Average accuracy of reading:

$$\frac{100}{n}\sum_{i=1}^{n}\frac{|x_{ti}-x_{mi}|}{x_{ti}}$$

• Average accuracy of full scale:

$$\frac{100}{n} \sum_{i=1}^{n} \frac{|x_{ti} - x_{mi}|}{x_{tmax}}$$

More Accuracy

• Maximum error: $\max |x_{ti} - x_{mi}|$

• Maximum error of reading: $100 \max \frac{|x_{ti} - x_{mi}|}{x_{ti}}$

• Maximum error of full scale: $100 \max \frac{|x_{ti} - x_{mi}|}{x_{tmax}}$

Resolution

- Instrument resolution is the smallest input signal difference that can be detected by the entire system
 May be limited by noise in either transducer or electronics
- Spatial resolution of the transducer is the smallest distance between two independent measurements
 - Determined by size and mechanical properties of the transducer

Precision

- Precision is number of distinguishable alternatives, n_x, from which result is selected
- Can be expressed in bits or decimal digits
 - > 1000 alternatives: 10 bits, 3 decimal digits
 - > 2000 alternatives: 11 bits, 3.5 decimal digits
 - > 4000 alternatives: 12 bits, 3.75 decimal digits
 - > 10000 alternatives: >13 bits, 4 decimal digits

• Range is resolution times precision: $r_x = \Delta x n_x$

Reproducibility

- Reproducibility specifies whether the instrument has equal outputs given identical inputs over some time period
- Specified as full range or standard deviation of output results given a fixed input
- Reproducibility errors often come from transducer drift

ADC: How many bits?

Linear transducer case:

> ADC resolution must be ≥ problem resolution

Nonlinear transducer case:

- Let x be the real-world signal with range r_x
- > Let y be the transducer output with range r_v
- Let the required precision of x be n_x
- > Resolutions of x and y are Δx and Δy
- > Transducer response described by y=f(x)
- Required ADC precision n_y (number of alternatives) is:
 - $\Delta x = r_x/n_x$
 - $\Delta y = \min \{ f(x + \Delta x) f(x) \}$ for all x in r_x
- > Bits is ceiling(log₂ n_y)

ADC: How many bits?

 ADC must be able to measure a change in voltage of the smallest Δy

ADC: How many bits?

 ADC must be able to measure a change in voltage of the smallest ∆y

DSP Big Picture

Signal Reconstruction

 Analog filter gets rid of unwanted high-frequency components in the output

Data Acquisition

- Signal: Time-varying measurable quantity whose variation normally conveys information
 - > Quantity often a voltage obtained from some transducer
 - > E.g. a microphone
- Analog signals have infinitely variable values at all times
- Digital signals are discrete in time and in value
 - > Often obtained by sampling analog signals
 - Sampling produces sequence of numbers
 - E.g. { ... , x[-2], x[-1], x[0], x[1], x[2], ... }
 - > These are time domain signals

Sampling

Transducers

- > Transducer turns a physical quantity into a voltage
- > ADC turns voltage into an *n*-bit integer
- Sampling is typically performed periodically
- Sampling permits us to reconstruct signals from the world
 - E.g. sounds, seismic vibrations

♦ Key issue: aliasing

- > *Nyquist rate*: 0.5 * sampling rate
- Frequencies higher than the Nyquist rate get mapped to frequencies below the Nyquist rate
- > Aliasing cannot be undone by subsequent digital processing

Sampling Theorem

Discovered by Claude Shannon in 1949:

A signal can be reconstructed from its samples without loss of information, if the original signal has no frequencies above 1/2 the sampling frequency

- This is a pretty amazing result
 - But note that it applies only to discrete time, not discrete values

Aliasing Details

- Let N be the sampling rate and F be a frequency found in the signal
 - Frequencies between 0 and 0.5*N are sampled properly
 - Frequencies >0.5*N are aliased
 - Frequencies between 0.5*N and N are mapped to (0.5*N)-F and have phase shifted 180°
 - Frequencies between N and 1.5*N are mapped to f-N with no phase shift
 - Pattern repeats indefinitely
- Aliasing may or may not occur when N == F*2*X where X is a positive integer

No Aliasing

1 kHz Signal, No Aliasing

Aliasing

500 Hz, sin wave sampled at 1000 Hz.

533 Hz sin wave sampled at 1000 Hz.

Avoiding Aliasing

1. Increase sampling rate

- Not a general-purpose solution
 - White noise is not band-limited
 - Faster sampling requires:
 - Faster ADC
 - Faster CPU
 - More power
 - More RAM for buffering
- 2. Filter out undesirable frequencies before sampling using analog filter(s)
 - > This is what is done in practice
 - > Analog filters are imperfect and require tradeoffs

Signal Processing Pragmatics

Aliasing in Space

- Spatial sampling incurs aliasing problems also
- Example: CCD in digital camera samples an image in a grid pattern
 - > Real world is not band-limited
 - > Can mitigate aliasing by increasing sampling rate

Point vs. Supersampling

Point sampling

4x4 Supersampling

Digital Signal Processing

Basic idea

- > Digital signals can be manipulated losslessly
- > SW control gives great flexibility

DSP examples

- > Amplification or attenuation
- Filtering leaving out some unwanted part of the signal
- Rectification making waveform purely positive
- Modulation multiplying signal by another signal
 - E.g. a high-frequency sine wave

Assumptions

- 1. Signal sampled at fixed and known rate f_s
 - > I.e., ADC driven by timer interrupts
- 2. Aliasing has not occurred
 - I.e., signal has no significant frequency components greater than 0.5*f_s
 - These have to be removed before ADC using an analog filter
 - Non-significant signals have amplitude smaller than the ADC resolution

Filter Terms for CS People

- Low pass lets low frequency signals through, suppresses high frequency
- High pass lets high frequency signals through, suppresses low frequency
- Passband range of frequencies passed by a filter
- Stopband range of frequencies blocked
- ♦ Transition band in between these

Simple Digital Filters

> Why not use x(n+1)?

- y(n) = (1.0/6) * (x(n) + x(n-1) + x(n-2) + ... + x(n-5))
- ♦ y(n) = 0.5 * (x(n) + x(n-3))
- ♦ y(n) = 0.5 * (y(n-1) + x(n))
 - > What makes this one different?
- ♦ y(n) = median [x(n) + x(n-1) + x(n-2)]

Gain vs. Frequency

Useful Signals

Step Response

Impulse Response

FIR Filters

♦ Finite impulse response

- > Filter "remembers" the arrival of an impulse for a finite time
- Designing the coefficients can be hard
- ♦ Moving average filter is a simple example of FIR

Moving Average Example

FIR in C

```
SAMPLE fir_basic (SAMPLE input, int ntaps,
const SAMPLE coeff[],
SAMPLE z[])
```

```
{
    z[0] = input;
    SAMPLE accum = 0;
    for (int ii = 0; ii < ntaps; ii++) {
        accum += coeff[ii] * z[ii];
    }
    for (ii = ntaps - 2; ii >= 0; ii--) {
        z[ii + 1] = z[ii];
    }
    return accum;
}
```

Implementation Issues

- Usually done with fixed-point
- How to deal with overflow?
- ♦ A few optimizations
 - > Put coefficients in registers
 - > Put sample buffer in registers
 - Block filter
 - Put both samples and coefficients in registers
 - Unroll loops
 - > Hardware-supported circular buffers

Creating very fast FIR implementations is important

Filter Design

- Where do coefficients come from for the moving average filter?
- In general:
 - 1. Design filter by hand
 - 2. Use a filter design tool
- Few filters designed by hand in practice
- Filters design requires tradeoffs between
 - 1. Filter order
 - 2. Transition width
 - 3. Peak ripple amplitude
- Tradeoffs are inherent

Filter Design in Matlab

Matlab has excellent filter design support

- > C = firpm (N, F, A)
- N = length of filter 1
- > F = vector of frequency bands normalized to Nyquist
- A = vector of desired amplitudes
- firpm uses minimax it minimizes the maximum deviation from the desired amplitude

Filter Design Examples

 $f = [0.0 \ 0.3 \ 0.4 \ 0.6 \ 0.7 \ 1.0];$

- a = [0 0 1 1 0 0];
- fil1 = firpm(10, f, a);
- fil2 = firpm(17, f, a);
- fil3 = firpm(30, f, a);
- fil4 = firpm(100, f, a);

fil2 =

Columns 1 through 8

-0.0278 -0.0395 -0.0019 -0.0595 0.0928 0.1250 -0.1667 -0.1985 Columns 9 through 16 0.2154 0.2154 -0.1985 -0.1667 0.1250 0.0928 -0.0595 -0.001 Columns 17 through 18 -0.0395 -0.0278

Testing an FIR Filter

Impulse test

- > Feed the filter an impulse
- > Output should be the coefficients

Step test

- Feed the filter a test
- > Output should stabilize to the sum of the coefficients

Sine test

- Feed the filter a sine wave
- > Output should have the expected amplitude

Digital to Analog Converters

- Opposite of an ADC
- Available on-chip and as separate modules
 - > Also not too hard to build one yourself
- ♦ DAC properties:
 - > Precision: Number of distinguishable alternatives
 - E.g. 4092 for a 12-bit DAC
 - Range: Difference between minimum and maximum output (voltage or current)
 - Speed: Settling time, maximum output rate
- LPC2129 has no built-in DACs

Pulse Width Modulation

- PWM answers the question: How can we generate analog waveforms using a single-bit output?
 - Can be more efficient than DAC

PWM

Approximating a DAC:

- Set PWM period to be much lower than DAC period
- > Adjust duty cycle every DAC period
- Important application of PWM is in motor control
 - No explicit filter necessary inertia makes the motor its own low-pass filter
- PWM is used in some audio equipment

Summary

- Filters and other DSP account for a sizable percentage of embedded system activity
- ♦ Filters involve unavoidable tradeoffs between
 - Filter order
 - > Transition width
 - > Peak ripple amplitude
- In practice filter design tools are used
- We skipped all the theory!
 - Lots of ECE classes on this