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Data Acquisition Systems

� Many embedded systems measure quantities from 
the environment and turn them into bits

� These are data acquisition systems (DAS)

� This is fundamental

� Sometimes data acquisition is the main idea

� Digital thermometer� Digital thermometer

� Digital camera

� Volt meter

� Radar gun

� Other times DAS is mixed with other functionality

� Digital signal processing

� Networking, storage

� Feedback control



Big Picture



Why Care About DAS?

� July 1983: Air Canada 143, a Boeing 767, runs out of 
fuel in mid-air, lands on “abandoned” runway

� Poorly soldered fuel level sensor + mistakes that 
defeated backup systems



Accuracy

� Instrument accuracy is the absolute error of the entire system, 
including transducer, electronics, and software

� Let xmi be measured value and xti be the true value

� Average accuracy: ||
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More Accuracy

� Maximum error:

� Maximum error of reading:
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Resolution

� Instrument resolution is the smallest input signal 
difference that can be detected by the entire system

� May be limited by noise in either transducer or electronics

� Spatial resolution of the transducer is the smallest 
distance between two independent measurementsdistance between two independent measurements

� Determined by size and mechanical properties of the 
transducer



Precision

� Precision is number of distinguishable alternatives, 
nx, from which result is selected

� Can be expressed in bits or decimal digits

� 1000 alternatives: 10 bits, 3 decimal digits

� 2000 alternatives: 11 bits, 3.5 decimal digits

4000 alternatives: 12 bits, 3.75 decimal digits� 4000 alternatives: 12 bits, 3.75 decimal digits

� 10000 alternatives: >13 bits, 4 decimal digits

� Range is resolution times precision: rx = ∆x nx



Reproducibility

� Reproducibility specifies whether the instrument has 
equal outputs given identical inputs over some time 
period

� Specified as full range or standard deviation of 
output results given a fixed input

Reproducibility errors often come from transducer � Reproducibility errors often come from transducer 
drift



ADC: How many bits?

� Linear transducer case:

� ADC resolution must be ≥ problem resolution

� Nonlinear transducer case:

� Let x be the real-world signal with range rx

� Let y be the transducer output with range ry

Let the required precision of x be n� Let the required precision of x be nx

� Resolutions of x and y are ∆x and ∆y

� Transducer response described by y=f(x)

� Required ADC precision ny (number of alternatives) is:

• ∆x = rx/nx

• ∆y = min { f(x + ∆x) – f(x) } for all x in rx

� Bits is ceiling(log2 ny)



ADC: How many bits?

∆x

� ADC must be able to measure a change in voltage of 
the smallest ∆y



ADC: How many bits?

∆x

smallest

∆y

� ADC must be able to measure a change in voltage of 
the smallest ∆y



DSP Big Picture



Signal Reconstruction

� Analog filter gets rid of unwanted high-frequency 
components in the output



Data Acquisition

� Signal:  Time-varying measurable quantity whose 
variation normally conveys information

� Quantity often a voltage obtained from some transducer 

� E.g. a microphone

� Analog signals have infinitely variable values at all 
timestimes

� Digital signals are discrete in time and in value

� Often obtained by sampling analog signals

� Sampling produces sequence of numbers

• E.g. { ... ,  x[-2],  x[-1],  x[0],  x[1],  x[2],  ... } 

� These are time domain signals



Sampling

� Transducers

� Transducer turns a physical quantity into a voltage

� ADC turns voltage into an n-bit integer

� Sampling is typically performed periodically

� Sampling permits us to reconstruct signals from the world

• E.g. sounds, seismic vibrations• E.g. sounds, seismic vibrations

� Key issue: aliasing

� Nyquist rate: 0.5 * sampling rate

� Frequencies higher than the Nyquist rate get mapped to 
frequencies below the Nyquist rate

� Aliasing cannot be undone by subsequent digital 
processing



Sampling Theorem

� Discovered by Claude Shannon in 1949:

A signal can be reconstructed from its samples 
without loss of information, if the original signal has 
no frequencies above 1/2 the sampling frequency

� This is a pretty amazing result

� But note that it applies only to discrete time, not 
discrete values



Aliasing Details

� Let N be the sampling rate and F be a frequency 
found in the signal

� Frequencies between 0 and 0.5*N are sampled properly

� Frequencies >0.5*N are aliased

• Frequencies between 0.5*N and N are mapped to (0.5*N)-
F and have phase shifted 180°F and have phase shifted 180°

• Frequencies between N and 1.5*N are mapped to f-N with 
no phase shift

• Pattern repeats indefinitely

� Aliasing may or may not occur when N == F*2*X 
where X is a positive integer



No Aliasing



1 kHz Signal, No Aliasing



Aliasing



Avoiding Aliasing

1. Increase sampling rate

� Not a general-purpose solution

• White noise is not band-limited

• Faster sampling requires:

– Faster ADC

– Faster CPU– Faster CPU

– More power

– More RAM for buffering

2. Filter out undesirable frequencies before sampling 
using analog filter(s)

� This is what is done in practice

� Analog filters are imperfect and require tradeoffs



Signal Processing Pragmatics



Aliasing in Space

� Spatial sampling incurs aliasing problems also

� Example: CCD in digital camera samples an image in 
a grid pattern

� Real world is not band-limited

� Can mitigate aliasing by increasing sampling rate

Samples Pixel



Point vs. Supersampling

Point sampling 4x4 Supersampling



Digital Signal Processing

� Basic idea 

� Digital signals can be manipulated losslessly

� SW control gives great flexibility

� DSP examples

Amplification or attenuation� Amplification or attenuation

� Filtering – leaving out some unwanted part of the signal

� Rectification – making waveform purely positive

� Modulation – multiplying signal by another signal

• E.g. a high-frequency sine wave



Assumptions

1. Signal sampled at fixed and known rate fs

� I.e., ADC driven by timer interrupts

2. Aliasing has not occurred

� I.e., signal has no significant frequency components 
greater than 0.5*fgreater than 0.5*fs

� These have to be removed before ADC using an analog 
filter

� Non-significant signals have amplitude smaller than the 
ADC resolution



Filter Terms for CS People

� Low pass – lets low frequency signals through, 
suppresses high frequency

� High pass – lets high frequency signals through, 
suppresses low frequency

� Passband – range of frequencies passed by a filter

� Stopband – range of frequencies blocked

� Transition band – in between these



Simple Digital Filters

� y(n) = 0.5 * (x(n) + x(n-1))

� Why not use x(n+1)?

� y(n) = (1.0/6) * (x(n) + x(n-1) + x(n-2) + … + x(n-5) )

� y(n) = 0.5 * (x(n) + x(n-3))

� y(n) = 0.5 * (y(n-1) + x(n))� y(n) = 0.5 * (y(n-1) + x(n))

� What makes this one different?

� y(n) = median [ x(n) + x(n-1) + x(n-2) ]
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Useful Signals

� Step: 

� …, 0, 0, 0, 1, 1, 1, …
1Step 

 s(n)

� Impulse: 

� …, 0, 0, 0, 1, 0, 0, …

-3       -2        -1         0          1          2         3

1Impulse 
  i(n)

-1 0 -2-3 1 2 3



Step Response
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Impulse Response
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FIR Filters

� Finite impulse response

� Filter “remembers” the arrival of an impulse for a finite time

� Designing the coefficients can be hard

� Moving average filter is a simple example of FIR



Moving Average Example



FIR in C

SAMPLE fir_basic (SAMPLE input, int ntaps, 

const SAMPLE coeff[], 

SAMPLE z[]) 

{

z[0] = input;

SAMPLE accum = 0; SAMPLE accum = 0; 

for (int ii = 0; ii < ntaps; ii++) { 

accum += coeff[ii] * z[ii]; 

}

for (ii = ntaps - 2; ii >= 0; ii--) { 

z[ii + 1] = z[ii]; 

} 

return accum; 

} 



Implementation Issues

� Usually done with fixed-point

� How to deal with overflow?

� A few optimizations

� Put coefficients in registers

� Put sample buffer in registers

� Block filter

• Put both samples and coefficients in registers

• Unroll loops

� Hardware-supported circular buffers 

� Creating very fast FIR implementations is important



Filter Design

� Where do coefficients come from for the moving 
average filter?

� In general:

1. Design filter by hand

2. Use a filter design tool

� Few filters designed by hand in practice� Few filters designed by hand in practice

� Filters design requires tradeoffs between

1. Filter order

2. Transition width

3. Peak ripple amplitude

� Tradeoffs are inherent



Filter Design in Matlab

� Matlab has excellent filter design support
� C = firpm (N, F, A)

� N = length of filter - 1

� F = vector of frequency bands normalized to Nyquist

� A = vector of desired amplitudes

� firpm uses minimax – it minimizes the maximum � firpm uses minimax – it minimizes the maximum 

deviation from the desired amplitude



Filter Design Examples

f = [ 0.0 0.3 0.4 0.6 0.7 1.0]; 

a = [   0   0   1   1   0   0];

fil1 = firpm( 10, f, a);

fil2 = firpm( 17, f, a);

fil3 = firpm( 30, f, a);

fil4 = firpm(100, f, a);fil4 = firpm(100, f, a);

fil2 =

Columns 1 through 8 

-0.0278 -0.0395 -0.0019 -0.0595  0.0928  0.1250 -0.1667 -0.1985

Columns 9 through 16 

0.2154  0.2154 -0.1985 -0.1667  0.1250  0.0928 -0.0595 -0.001

Columns 17 through 18 

-0.0395 -0.0278



Example Filter Response









Testing an FIR Filter

� Impulse test

� Feed the filter an impulse

� Output should be the coefficients

� Step test

� Feed the filter a test

Output should stabilize to the sum of the coefficients� Output should stabilize to the sum of the coefficients

� Sine test

� Feed the filter a sine wave

� Output should have the expected amplitude



Digital to Analog Converters

� Opposite of an ADC

� Available on-chip and as separate modules

� Also not too hard to build one yourself

� DAC properties:

� Precision: Number of distinguishable alternatives

• E.g. 4092 for a 12-bit DAC

� Range: Difference between minimum and maximum output 
(voltage or current)

� Speed: Settling time, maximum output rate

� LPC2129 has no built-in DACs



Pulse Width Modulation

� PWM answers the question: How can we generate 
analog waveforms using a single-bit output?

� Can be more efficient than DAC



PWM

� Approximating a DAC:

� Set PWM period to be much lower than DAC period

� Adjust duty cycle every DAC period

� Important application of PWM is in motor control

� No explicit filter necessary – inertia makes the motor its own 
low-pass filter

� PWM is used in some audio equipment



Summary

� Filters and other DSP account for a sizable 
percentage of embedded system activity

� Filters involve unavoidable tradeoffs between

� Filter order

� Transition width

Peak ripple amplitude� Peak ripple amplitude

� In practice filter design tools are used

� We skipped all the theory!

� Lots of ECE classes on this


