Today's topics:

• Midterm 2 hints
 - no practice midterm since it didn't help last time
• ADC's and DAC's
 - chapter 11 of your text
 - your kit has an A/D (Port D w/ DDR set to inputs)
 - your kit doesn't have a D/A
 - sometimes needed for analog control of external devices (e.g. VF converters)
 - which I was hoping to have as a lab (alas)

Midterm #2

• Focus
 - primarily on material covered after the first midterm
 » note I'm not a fan of the cram and forget mode
 » unhealthy attitude in a professional discipline
 » hence some (~10%) material "might" appear from pre-midterm1 material
 » style likely to be similar to midterm #1
 - focus on foundational concepts
 » "write a bunch of code" problems are good for take home exams
 - but you did this in the labs -- so what's the point
 » open book and open notes
 » danger -- if you have to look up every question you'll lose
• Post midterm1 material
 - semaphores and threads
 - input capture and output compare
 - serial I/Os SCI, SPI, UART, RS232
 - relays and motors, stepper motor control
 - memory: SRAM, DRAM, NVRAM
 - ADC & DAC
 - All are fair game! (book, lectures, & labs)
Differential & Summing Circuits

source: Wayne Storr

Differentiation & Integration

$j\omega = 2\pi f$

RC dependent shape

source: Wayne Storr

180° phase change due to - input

Passive Filter Review

- Passive = RLC circuit
 - L blocks high-f signals and pass low-f signals
 - C blocks low-f signals and pass high-f signals
- Low pass filter
 - signal passes through an L or C provides a path to ground
- High pass filter
 - signal passes through a C or L provides a path to ground
- R's
 - impedance is not frequency dependent
 - but can be used in filters to aid frequency selection
 - due to RC time constant
- Terminology
 - f_c := cutoff frequency
 - 3db gain loss point
 - power in dB hence 3db = .707
 - $3\text{ db} = 10^{\frac{3}{20}} \text{ dB}$

Simple Active Filter
2-Pole Butterworth Low-Pass Filter

Select the cutoff frequency f_c.
Divide the two capacitors by $2\pi f_c$.
$$C_{sh} = \frac{1}{2\pi f_c R}$$
$$C_{sl} = \frac{1}{2\pi f_c R}$$
Select standard capacitors with same order of magnitude.
$$C_{sh} = \frac{1}{2\pi f_c R}$$
$$C_{sl} = \frac{1}{2\pi f_c R}$$
Adjust resistors to maintain f_c (e.g., $R = 10k\Omega \cdot \times$).

Bandpass

- Filter highs then filter lows

Band-Reject

- Filter highs and lows in parallel then amplify

DAC’s Finally

- DAC role
 - create a continuous analog waveform from discrete digital outputs
 - In practice DAC output usually put through a low-pass reconstruction filter to remove undesired high frequency components (a.k.a. ringing)
- PWM
 - DAC approximation
 - audio class D amplifiers are PWM based
DAC Parameters

- Precision
 - # of distinguishable DAC outputs
- Range
 - min to max of output values
- Resolution
 - smallest distinguishable change in output

Range (volts) = Precision (alternatives) - Resolution (volts)

- 2 common encoding schemes 2's complement and 1's complement

\[V_{out} = V_o \left(\frac{b_7}{2} + \frac{b_6}{4} + \frac{b_5}{8} + \frac{b_4}{16} + \frac{b_3}{32} + \frac{b_2}{64} + \frac{b_1}{128} + \frac{b_0}{256} \right) + V_{os} \]

\[V_{out} = V_o \left(\frac{b_7}{2} + \frac{b_6}{4} + \frac{b_5}{8} + \frac{b_4}{16} + \frac{b_3}{32} + \frac{b_2}{64} + \frac{b_1}{128} + \frac{b_0}{256} \right) + V_{os} \]

Vos = output offset voltage

DAC Flavors

- Direct
- Offset Control
- Gain Control

All use opamps in a slightly different way

DAC Performance Measures

DAC Errors: Sources & Solutions

<table>
<thead>
<tr>
<th>Errors can be due to</th>
<th>Solutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incorrect resistor values</td>
<td>Precision resistors, w/low tolerances</td>
</tr>
<tr>
<td>Drift in resistor values</td>
<td>Precision resistors, w/good temperature coefficients</td>
</tr>
<tr>
<td>White noise</td>
<td>Reduce BW, w/low pass filter, reduce temperature</td>
</tr>
<tr>
<td>Op amp errors</td>
<td>Use more expensive devices, w/low noise and low drift</td>
</tr>
<tr>
<td>Interference from external fields</td>
<td>Shielding, ground planes</td>
</tr>
</tbody>
</table>
DAC Using Sum OpAmp

SW02 = switch
1 = on @ XΩ
0 = off
range = 7v
resolution = 1 volt

Calculate the error if X = 75
Is it linear?
What would you use for a switch?
See any other problems?

Summing Op-Amp Issues

- Major precision problem
 - practical R values 1M to 10K
 - 1M/1K gain = 100 or approx 7 bits
 - difficult to avoid non-monotonicity problem
 - temperature changes R values
 - %/°C common spec’d
 - In this case the gains vary
 - small change in smallest resistor (largest gain)
 - overwhelms same change in largest resistor (smallest gain)
 - R-2R ladder scheme addresses this problem
 - all resistive input to a single gain
 - e.g. 1 current path to the OpAmp
 - rather than 3 additive paths

R-2R Ladder

current divides by 2 at each branch point

Thermally stable & higher precision since ladder can be arbitrarily long

12-bit Commercial DAC8043

<table>
<thead>
<tr>
<th>Digital Input</th>
<th>Unipolar V_{out}</th>
<th>Bipolar V_{out}</th>
<th>Unipolar gain</th>
<th>Bipolar gain</th>
</tr>
</thead>
<tbody>
<tr>
<td>000000000001</td>
<td>-2.500</td>
<td>0.000</td>
<td>-2.500</td>
<td>0.000</td>
</tr>
<tr>
<td>100000000000</td>
<td>-2.499</td>
<td>-0.002</td>
<td>-2.499</td>
<td>-0.002</td>
</tr>
<tr>
<td>011111111111</td>
<td>0.000</td>
<td>-0.001</td>
<td>0.000</td>
<td>-0.001</td>
</tr>
<tr>
<td>000000000000</td>
<td>0.000</td>
<td>-5.000</td>
<td>0.000</td>
<td>-5.000</td>
</tr>
</tbody>
</table>

School of Computing
University of Utah
DAC Selection: Precision, Range, Resolution

- Affects quality of signal that can be generated
 - more bits means finer control and closer approximation to ideal waveform

- Smoothing can be done with RC circuits
 - Excellent control can be had with switched capacitive circuits
 - Fun but somewhat hairy topic

DAC Interfaces: the usual

DAC's come in lots of flavors – serial is slowest but uses the fewest pins. Other 2 are faster but more pins. Choice depends on overall system needs.

DAC Packages: several flavors

Cost varies with precision, power, accuracy, ...

DAC Summary

- Lots of commercial DAC options
 - by themselves they usually aren't sufficient
 - Ringing needs for low-pass filter
 - or amplification required to get necessary amplitude or current drive
 - Opamps to the rescue
 - Plus lots of other options
 - Use DAC to
 - Very gain
 - Very offset
 - Or just directly to specify the waveform

- Or do it yourself with an R-2R ladder
 - Guts of the commercial versions anyway
 - Although transistors are used in place of resistors to reduce thermal errors for increased accuracy

- Next convert in the opposite direction
 - ADC
 - Common 8-bit µC surrounded by sensors
 - Because many have an integrated ADC
 - Part 8 is your hats
ADC Parameters

- **Precision**
 - # of distinguishable ADC Inputs
- **Range**
 - max - min inputs
- **Resolution**
 - change in input causing the low order bit to flip
- **Accuracy**
 - usually a system parameter +/- %error
- **Monotonic**
 - if no missing digital codes in the range
- **Linear**
 - if resolution is constant throughout the range
- **Speed**
 - minimum time between samples
 - delay between sample and valid digital out

Common Encoding Schemes

<table>
<thead>
<tr>
<th>Unipolar codes</th>
<th>Straight binary</th>
<th>Complementary binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5.00</td>
<td>1111.1111</td>
<td>0000.0000</td>
</tr>
<tr>
<td>+2.50</td>
<td>1000.0000</td>
<td>0111.1111</td>
</tr>
<tr>
<td>+0.02</td>
<td>0000.0001</td>
<td>1111.1110</td>
</tr>
<tr>
<td>+0.00</td>
<td>0000.0000</td>
<td>1111.1111</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Bipolar codes</th>
<th>Offset binary</th>
<th>2's Complement binary</th>
</tr>
</thead>
<tbody>
<tr>
<td>+5.00</td>
<td>1111.1111</td>
<td>0111.1111</td>
</tr>
<tr>
<td>+2.50</td>
<td>1000.0000</td>
<td>0100.0000</td>
</tr>
<tr>
<td>+0.04</td>
<td>1000.0000</td>
<td>0000.0001</td>
</tr>
<tr>
<td>+0.00</td>
<td>1000.0000</td>
<td>0000.0000</td>
</tr>
<tr>
<td>-2.50</td>
<td>0100.0000</td>
<td>1100.0000</td>
</tr>
<tr>
<td>-5.00</td>
<td>0000.0000</td>
<td>1000.0000</td>
</tr>
</tbody>
</table>

2-bit FLASH ADC

- Use LM311 voltage comparators

High speed but low precision

Need more bits?

- extend the ladder

Need bipolar

- e.g. +10 @ top, -10 @ bot

Middle tap = 0V

Successive Approximation ADC’s

- **Most pervasive method**
- **Basic idea**
 - n bit precision takes n clocks
 - for each clock a guess is made for the current bit
 - starting with high order bit
 - set bit under test to 1
 - if Vout is higher than Vin then bit is reset to 0
 - process continues
 - hence there is a Vout vs. Vin comparator inside the ADC
- **Typical circuit**
 - use a current-output DAC (rather than a Vout DAC)
 - each guess is converted to a current by the DAC
 - Vin also converted to a current
 - current comparison keeps or flips the guess bit
 - why current
 - more precise and faster
Successive Approximation ADC

![Successive Approximation ADC Diagram]

Dual Slope ADC's

- Voltage reference, 2 BIFET switches, and 2 integration stages
- Good for 16-20 bits of precision

![Dual Slope ADC Diagram]

Dual Slope Waveforms

- ![Dual Slope Waveform Diagram]

Sigma Delta ADC

- Common use is audio 44KHz sample rate (CD quality)
- Trick is to use a DSP unit to handle the successive approximation chore and a 1 bit DAC
 - Why? – It's faster – due to small digital transistors

![Sigma Delta ADC Diagram]
Sample & Hold

- Problem – how to guess correctly while Vin changes
 - S/H is an analog latch
 - duty hold Vin constant during the current n cycle approximation phase

- Should use polystyrene capacitor because of its high insulation resistance and low dielectric absorption.
- A larger value of C decreases (improves) droop rate. If droop current is I_{sc}, then droop rate is:
 $$\frac{dV_{in}}{dt} = \frac{I_{sc}}{C}$$
- A smaller C decreases (improves) acquisition time.

Multi-Channel ADC

- Need an analog MUX
 - uses BIFET switches with digital selection

Maxim MAX1147

- Discrete ADC
 - integrates ADC, S/H, and analog mux into one component

ADC Interrupt SW w/ S/H
6812 Internal ADC

- Eight channel operation
- 8 or 10-bit resolution
- Successive approximation technique
- Clock and charge pump to create higher voltages
- 2 operation modes
 - single sequence and step
 - continuous
- Supports
 - multiple conversions of single channel
 - or one conversion each for a group of channels
- External reference voltages
 - Vrh – high reference
 - Vrl – low reference

6812 ADC Setup

- Port AD input configurations
 - 8 pins individually configured for analog or digital input
 - ATDDIEN register
 - 1 = digital, 0 = analog
 - If ATDDIEN indicates digital
 - then DDRAD register is used to set direction
 - SRES8 (ATDCTL4[7]) register selects resolution
 - 1 → 8-bit, 0 → 10-bit
 - ATDCTL2 register
 - [7] = ADPU – set to 1 to enable ADC system
 - [1] = ASCIE – set to 1 to enable/arm interrupts
 - [0] = ASCIF – set by ADC to 1 when sequence completes
 - only works if ASCIE is set

6812 ADC Conversions

- When triggered
 - 1-8 conversions are performed
 - if value ≥ 8 still means 8
 - Channel selection
 - ATDCTL5[2:0] = CC, CB, CA
 - Multiple channels
 - set ATDCTL5[4] = 1
 - sequence set by ATDCTL3[6:3] – start here and cycle
 - each channel has separate completion flag
 - ATDSTAT1 register (8 bits)
 - ATDSTAT0[2:0] – counter which shows conversion progress

6812 ADC Triggers

- Triggered in 3 ways
 - explicit software write to ATDCTL5 when interrupts armed
 - continuous if SCAN = ATDCTL5[5] is 1
 - external trigger if ETRIG = ATDCTL2[2] is 1
 - in this case ETRIGLE & ETRIGP controls what the trigger is

<table>
<thead>
<tr>
<th>ETRIGLE</th>
<th>ETRIGP</th>
<th>External trigger mode</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>Falling edge of PAD7</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>Rising edge of PAD7</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>Convert while PAD7 is low</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>Convert while PAD7 is high</td>
</tr>
</tbody>
</table>
6812 ADC Sample Period

- 2 phase sample
 - 1st phase – transfer sample to S/H
 - 2nd phase – attaches external signal to S/H
- E clock and ATDCTL4 control
 - SMP1 & SMP2 ATDCTL4[6:5]
 - if m is a 5 bit number ATDCTL4[4:0] & f_E is E clock then
 \[\text{ATD clock frequency} = \frac{1}{2(m + 1)} \]

6812 ADC Results

- Up to 8 samples
 - stored in 8 16-bit registers ATDDR0:ATDDR7
 - results can be signed or unsigned
 - D/SN = ATDCTL5[6] – 1 for signed, 0 for unsigned
 - right or left justified in the 16-bit register
 - DJM = ATDCTL5[7] – 1 for right justified, 0 for left

<table>
<thead>
<tr>
<th>Input (V)</th>
<th>0-bit (u)</th>
<th>10-bit (u)</th>
<th>10-bit (uf)</th>
<th>10-bit (uf)</th>
<th>10-bit (uf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.005</td>
<td>00</td>
<td>0000</td>
<td>0000</td>
<td>$0E00$</td>
<td>0000</td>
</tr>
<tr>
<td>0.020</td>
<td>01</td>
<td>0004</td>
<td>0000</td>
<td>$FE04$</td>
<td>8100</td>
</tr>
<tr>
<td>0.250</td>
<td>02</td>
<td>0020</td>
<td>0000</td>
<td>0000</td>
<td>0000</td>
</tr>
<tr>
<td>3.750</td>
<td>$C0$</td>
<td>0300</td>
<td>$0C00$</td>
<td>0100</td>
<td>$F800$</td>
</tr>
<tr>
<td>5.000</td>
<td>FF</td>
<td>$0FF0$</td>
<td>$FFC0$</td>
<td>$01FF$</td>
<td>$7FC0$</td>
</tr>
</tbody>
</table>

ADC Software Example

- SW trigger and Gadfly loop

```c
void ADC_Init(void){
  ATDCTL2 = 0x80; // enable ADC
  ATDCTL3 = 0x08;
  ATDCTL4 = 0x05; // 10-bit, divide by 12
}
unsigned short ADC_In(unsigned short chan){
  ATDCTL5 = (unsigned char)chan; // start sequence
  while((ATDSTAT&14<<0x01)==0){}; // wait for COFO
  return ATDDR0;
}
```

Concluding Remarks

- Whirlwind tour for sure
 - like everything in this course
 - learn by experimenting in the lab
 - lecture is HOPEFULLY just a conceptual start
 - can't possibly cover every detail or it would be MORE boring
- ADC and DAC
 - integral part of ES life
 - PWM is good for some things
 - more direct analog reading or control is required for others
- midterm2
 - no lab on this stuff so conceptual questions only
 - you should understand the basics without having to look them up
 - look up is good for nitty gritty details
 - you'll know them by heart once you've failed in the lab long enough
- Midterm next Tuesday
 - don't be late