Relays

- Common embedded system problem
 - digital control: relatively small I & V levels
 - controlled device requires significantly higher power
- Solution
 - amplify the control power
 - use the control signal to activate a switch
 » switch turns on/off bigger power source
- Electrically controlled switches
 - transistor
 » can be used as a switch but it's really an amplifier since it has gain
 » MOS – voltage controlled, BIPOLAR – current controlled
 - relay
 » control induces magnetic field in coil
 » magnetic field moves a mechanical switch
 » bounce problem?
 - usually not a concern for outputs to non-digital gizmos like motors

Poles and Throws

- Terminology used for switches
 - relay is just an electrically controlled switch
 » pole – controlled
 » throw – contact point
 » relay difference – magnetic movement of pole
 » difference in where the switch is when switch/magnet is off
 » often state usually controlled by a spring

Relay Types

- Basic issue is size
 - control power
 » reed relays – smallish power
 » common in ES designs
 » general purpose – large-ish power
 » you have lots of them in your car
Solid State Relays

- Improvement on mechanical relay problems
 - contact bounce and arcing limit lifetime
 - sensitive to vibrations, EMI issues
 -slow movement of large mechanical pole

Optocoupler
- provides electrical isolation between input (pseudocoil) and output triac (pseudocointact)
 - particularly important in driving large inductive loads
 - zero-voltage detector triggers triac
 - reduces surge currents when triac is switched
 - once triggered
 - triac conducts until next zero crossing

Reed Relays

Solenoids
Interfacing to Inductive Loads

- Interface circuit
 - must provide sufficient current and voltage to activate the device
 - "common error"
 - "my microcontroller puts out 5v but at the device it's only 200 mV"
 - what's the problem?

- Ohm's law
 - current, impedance and voltage are related
 - microcontroller can't provide enough current so voltage is similarly low

- In off state current should be zero
 - BEWARE
 - large L → huge back EMF when coil is turned off
 - fast digital switch causes large di/dt
 - 50 – 200V back is common
 - It will destroy your controller
 - isolation or buffering is required
 - optocoupler
 - or zener diode
 - etc.

Relay Control Examples

Relay & Motor Interfaces
IRF 540 Power Transistor

Symbol

<table>
<thead>
<tr>
<th>QUICK REFERENCE DATA</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{GS} = 100 V</td>
</tr>
<tr>
<td>I_{DSS} = 20 A</td>
</tr>
<tr>
<td>$R_{DS(on)}$ = 77 mΩ</td>
</tr>
</tbody>
</table>

Pinning

<table>
<thead>
<tr>
<th>PIN</th>
<th>DESCRIPTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>gate</td>
</tr>
<tr>
<td>2</td>
<td>drain</td>
</tr>
<tr>
<td>3</td>
<td>source</td>
</tr>
<tr>
<td>4</td>
<td>drain</td>
</tr>
</tbody>
</table>

SOT78 (TO220AB)

Isolated Interfaces

- 5 mA in \Rightarrow 1 A out
- 2000% current transfer ratio
- 5V logic compatible (TTL, CMOS)

Split Darlington photodetector

Typical H-Bridge Motor Control

Isolated H-Bridge w/ Direction Control
Stepper Motors

- Popular due to inherent digital interface
 - easy to control both position and velocity in an open-loop fashion
- more expensive than simple DC motor
 - still not too bad since may not require feedback sensors
- can be used as shaft encoders
 - measure both position and speed

Stepper Motor Basics

- **Stator**
 - stationary frame with electromagnet poles
- **Rotor**
 - teeth are permanent magnets alternating south and north pole teeth

\[
\frac{360 \text{ degrees}}{4 \text{ poles} \times 5 \text{ teeth}} = 18 \text{ degrees per step}
\]

2 Phase Operation

- stable state
- reverse phase 1 polarity – unstable state – closest stable state?
2 Phase Operation

next stable state

reverse polarity of phase 2 and movement continues

Continue by Reversing Phase 1

Simple Interface

note this motor has 200 steps – hence 1.8 degrees
Port B output is (10, 9, 5, 6)*
reverse direction? (6, 5, 9, 10)*
Slip & Torque Issues

- **Slip**
 - command issued but motor doesn't move
 - causes
 - motor torque insufficient to drive mechanical load
 - or if computer change is too fast
 - magnetic field is too weak

- **IF no slip can be guaranteed**
 - then computer knows the shaft position
 - and doesn't need a sensor

Stepper Motor Sequence

Control Data Structures (FSM)

```c
const struct State{
  unsigned char Out;  // Output
  const struct State *Next[2]; // CW/CCW
};
typedef struct State StateType;
typedef StateType *StatePtr;
#define clockwise 0  // Next index
#define counterclockwise 1  // Next index
StateType fsm[4] = {
  {0,(fsm[1],fsm[3])},
  {2,(fsm[2],fsm[0])},
  {5,(fsm[3],fsm[1])},
  {6,(fsm[0],fsm[2])}};
unsigned char Pos;  // between 0 and 199
StatePtr Pt;  // Current State
```

Init Ritual

```c
void Init(void){
  Pos = 0;
  Pt = &fsm[0];
  DDRB = 0xFF;
}
```
Helper Functions

```c
void CW(void){
    Pt = Pt->Next[clockwise]; // circular
    PORTB = Pt->Out;         // step motor
    if(Pos==199){            // shaft angle
        Pos = 0;             // reset
    }else{
        Pos++;}            // CW
}
void CCW(void){
    Pt = Pt->Next[counterclockwise];
    PORTB = Pt->Out; // step motor
    if(Pos==0){        // shaft angle
        Pos = 199;     // reset
    }else{
        Pos--;}        // CCW
}
```

High Level Control

```c
void Seek(unsigned char desired){
    short CWsteps;
    if((CWsteps=desired-Po)<0){
        CWsteps+=200;
    } // CW steps is 0 to 199
    if(CWstep>199){
        while(desired!=Pos){
            CW();
        }
    }else{
        while(desired!=Pos){
            CW();
        }
    }
}
```

Concluding Remarks

- **Lots of types of electrical motors**
 - stepper & DC are most common in inexpensive ES's
- **Beware when driving inductive loads**
 - back EMF has to be controlled
 - snub diode is cheap
 - optical isolation is even more secure
- **5780 students**
 - lab 9 will get you provide an Introduction
 - stepper motor kits available for checkout