Classification

During Classification the user defines the "Look" of the data.

- Which parts are transparent?
- Which parts have which color?

The user defines a Transfer Function.

Real-Time update of the transfer function necessary!!!

Pre- vs Post-Interpolative Classification
Pre-Classification

Color table is applied before interpolation. (pre-interpolative Transferfunctions)

A color value is fetched from a table for each Voxel
A RGBA Value is determined for each Voxel

Possible Implementations

The naive Approach:
Save Emission and Absorption terms directly in the Texture.

Very high memory consumption
Main Memory (RGBA and scalar volumes)
Graphics Memory (RGBA volume)
High Load on memory bus
RGBA Volume must be transferred.
Upload necessary on TF change

A better Approach:
Apply color table during texture transfers from main memory to graphics card (standard OpenGL feature)

High memory consumption
Main Memory (only scalar volume)
Graphics Memory (RGBA volume)
Reduced load on memory bus
Only the scalar volume is transferred.
Upload necessary on TF change

The best approach: Paletted Textures
Store the scalar volume together with the color table directly in graphics memory.
Hardware-Support necessary!
Possible Implementations

- **The best approach:** Paletted Textures
 - Store the scalar volume together with the color table directly in graphics memory.
 - Hardware-Support necessary!
 - Low memory consumption
 - Main-Memory (scalar volume can be deleted?)
 - Graphics Memory (scalar volume + TF)
 - Low load on memory bus
 - Scalar volume must be transferred only once!
 - Only the color table must be re-uploaded on TF change

Summary Pre-Classification

- Application of the Transfer function before Rasterization
- One RGBA Lookup for each Voxel
- Different Implementations:
 - Texture Transfer
 - Texture Color Table (paletted textures)
 - Simple and Efficient
 - Good for coloring segmented data

Post-Classification

- The color table is applied after Interpolation (post-interpolative Transfer Function).
 - A color is fetched from the color table for each Fragment

CG Implementation

```c
//fragment program for post-classification
//using 3D textures
float4 main(float3 texUV : TEXCOORD0,  
    uniform sampler3D volume_texture,  
    uniform sampler1D transfer_function) : COLOR  
{
    float index = tex3D(volume_texture, texUV);  
    float4 result = tex1D(transfer_function, index);  
    return result;
}
```

Quality: Pre- vs. Post-Classification

- Comparison of image quality
 - Same TF, same Resolution, same Sampling Rate
Quality

Pre-Classification

Post-Classification

Pre- vs Post-Classification

REAL-TIME VOLUME GRAPHICS
Christof Rezk Salama
Computer Graphics and Multimedia Group, University of Siegen, Germany
Eurographics 2006

Use of pre-classification

Use of post-classification

Supersampling
Transfer Function
Continuous data
Discrete data
Scalar value
Alpha value

Pre-interpolative TF
Post-interpolative TF

Classification Artifacts / Pre-integration

Eye

Pre-integrate all possible combinations in the TF

Assume constant sampling distance d

Classification Artifacts / Pre-integration

Assume constant sampling distance d

float4 struct v2f_simple {
 float4 Hposition : POSITION;
 float3 TexCoord0 : TEXCOORD0;
 float3 TexCoord1 : TEXCOORD1;
 float4 Color0 : COLOR0;
};

Cg Fragment Program

float4 main(v2f_simple IN,
uniform sampler3D Volume,
uniform sampler2D TransferFunction,
uniform sampler2D PreIntegrationTable) : COLOR {
 float4 lookup;
 //sample front scalar
 lookup.x = tex3D(Volume, IN.TexCoord0.xyz).x;
 //sample back scalar
 lookup.y = tex3D(Volume, IN.TexCoord1.xyz).x;
 //lookup and return pre-integrated value
 return tex2D(PreIntegrationTable, lookup.yx);
}
Pre-Integrated Classification

- Fast re-computation of the pre-integration table when transfer function changes
- Use integral functions

When to use which Classification

- Pre-Interpolative Classification
 - If the graphics hardware does not support fragment shaders
 - For simple segmented volume data visualization

- Post-Interpolative Classification
 - If the transfer function is “smooth”
 - For good quality and good performance (especially when slicing)

- Pre-Integrated Classification
 - If the transfer function contains high frequencies
 - For best quality