Texture Filtering

MipMaps

Minification

Magnification and
Minification

More than one texel can cover a pixel (minification) or
more than one pixel can cover a texel (magnification)

Can use point sampling (nearest texel) or linear filtering
(2 x 2 filter) to obtain texture values

Texture Xtur Polygon
Magnification Minification

“Optimal” case

Magnification

Pixel Footprint

i
rg /

b
L}

screen

Linear vs. Nearest Trilinear

7

/
/

100

10 50

Level 2 Level 1
Given the above luminance texrure.
Counting from zero at Level 0.
a fragment’s center falls at the X (75% away from the left-most texel).

The texel values shown are at the center of the texels (as shown)

1t's projection is d=0.75

Mipmapped Textures Example

Mipmapping allows for prefiltered texture maps point . linear

of decreasing resolutions sampling / ! filtering

Lessens interpolation errors for smaller

textured objects

Declare mipmap level during texture definition

glTexImage2D(GL_TEXTURE_*D, level, ..

) mipmapped . mipmapped

. . , . . point linear

GL mipmap bwldgr rogtlnes will build all the sampling filtering

textures from a given image /

glGenerateMipmap(GL_TEXTURE_*D)

Anisotropic Filtering Anisotropic Filtering

Fgpao 73 Poipuiut s Auituopinalp Bkl Ealux

Anisotropic Filtering

Light Mapping

* In order to keep the texture and light maps
separate, we need to be able to perform
multitexturing — application of multiple
textures in a single rendering pass

Lightmap Texture * Lightmap

Light Mapping

Things for standard games are usually much
easier since the objects being light mapped are
usually planar:

— Walls

— Ceilings

— Boxes

— Tables

Thus, the entire planar object can be mapped
with a single texture map

bilinear

trilinear

Isotropic Filter Anisotropic Filter
AT TR 7/

Light Mapping

* How do you create light maps?
» Trying to create a light map that will be used on
a non-planar object things get complex fast:

— Need to find a divide object into triangles with similar
orientations

— These similarly oriented triangles can all be mapped
with a single light map

Light Mapping

Light Mapping

+ Can dynamic lighting be simulated by
using a light map?

« If the light is moving (perhaps attached to the
viewer or a projectile) then the lighting will
change on the surface as the light moves

— Moving ‘flashlight’ (use texture coordinate
transformation matrix)

— The light map values can be partially updated
dynamically as the program runs

— Several light maps at different levels of intensity could
be pre-computed and selected depending on the
light's distance from the surface

Lightmaps

* Adding local light to scene

OpenGL Lighting Combined Image

Lightmaps

» Segmenting Scene Lighting
— Static vs. dynamic light fields
— Global vs. local lighting
— Similar light shape

Lightmaps

* Creating local contribution D it

Unlit Scene Lightmap Intensity ocal Light
Contribution

Lightmaps

» Cached Lighting Results

— Reuse lighting calculations

* Multiple local lights (same type)

- Static portion of scene’s light field

» Sample region with texture instead of tessellating
— Low resolution sampling

 Local lighting; rapid change over small area

* Global lighting; slow change over large area

Lightmaps

» Segmenting the lighting

Dominant Lighting

: Spotlights as Lightmap
Light
'ghimaps Special Case

Moving Local Lights » Mapping Single Spotlight Texture Pattern

— Recreate the texture; simple but slow
— Manipulate the lightmap

» Translate to move relative to the surface
» Scale to change spot size

» Change base polygon color to adjust intensity
— Projective textures ideal for spotlights

— 3D textures easy to use (if available) Use texture transformation matrix to perform

spotlight texture coordinates transformations.

Lightmaps Lightmaps
Creating a lightmap

— Light white, tesselated surface with local light
— Render, capture image as texture

— Texture contains ambient and diffuse lighting
— Lighting parameters should match light

— Texture can also be computed analytically

* Creating a lightmap

Render surface

Create a Texture
lit by loca

Lightmaps

Lightmaps
* Lightmap building tips Lighting with a Lightmap
— Local light is affected by surface color and
Boundary should have texture
constant value
e — Two step process adds local light contribution:
» Modulate textured, unlit surfaces with lightmap
* Add locally lit image to scene
— Can mix OpenGL, lightmap lighting in same
scene (just fragment programming)

Lightmaps Lightmaps

 Creating local contribution Litinms « Adding local light to scene

OpenGL Lighting Combined Image

Unlit Scene Lightmap Intensity Local Light
Contribution

Lightmaps in Quake2 Packing Many Lightmaps

into a Single Texture
* Quake 2 light map texture image example

e — Lightmaps typically
heavily magnified.

— Permits multiple
lightmaps packed into a
single texture.

— Quake 2 computes
lightmaps via off-line
radiosity solver.

Lightmaps Lightmaps

 Lightmap considerations * Lightmap considerations

— Lightmaps are good: — Lightmaps less helpful:
* Under-tessellated surfaces * Highly tessellated surfaces
» Custom lighting Directional lights
« Multiple identical lights » Combine with other surface effects (e.g. bump-

 Static scene lighting mapping)
— not a big problem
» eats a texture unit/access in fragment programs
» may need to go to multi-pass rendering (fill-bound app)

Multitexturing

Multitexturing allows the use of multiple textures at one time.

It is a standard feature of OpenGL 1.3 and later.

An ordinary texture combines the base color of a polygon with
color from the texture image. In multitexturing, this result of
the first texturing can be combined with color from another
texture.

Each texture can be applied with different texture coordinates.

Texture Units

Multitexturing uses multiple texture units.
A texture unit is a sampler in the fragment program.

Each unit has a texture, a texture environment, and optional texgen mode. That is
its own complete and independent OpenGL texture state

Most current hardware has from 2 to 16 texture units.

To get the number of units available:
glGetintegerv(GL_MAX_COMBINED_TEXTURE_IMAGE_UNITS)

TexCoords TexCoonds TexCoords

a Y B
Ol0r m—tT EXTUHEU—%’E XTUREY }—F‘TEXTU RE2 i Caolo
— - —

Image Image Image

OpenGL Multitexture Quick Tutorial

— Configuring multitextures:
(¢] nt textures[3];
glGenTextures(3, &textures);

glActiveTexture(GL_TEXTUREO);
glBindTexture(GL_TEXTURE_2D, textures[0]);
glActiveTexture(GL_TEXTUREL);
glIBindTexture(GL_TEXTURE_2D, textures[1]);
glActiveTexture(TEXTURE2) ;
glBindTexture(GL_TEXTURE_2D, textures[2]);

tex0_uniform_loc ormLocation(prog, “tex0”);
glUniformli(tex0_uniform_loc, 0);
tex1l_uniform_loc = glGetUniformLocation(prog, “texl1™);
glUniformli(tex1l_uniform _loc, 1);
tex2_uniform_loc = GetUniformLocation(prog, “tex2”);
glUniformli(tex2_uniform_loc, 2);

Texture Units

Texture units are named GL_TEXTUREO, GL_TEXTURE1,
etc.

The unit names are used with two new functions.

glActive Texture(texture_unit)

— selects the current unit to be affected by texture calls (such as
glBindTexture, gITexEnv, glTexGen).

Use vertex attributes to set texture coordinates for each unit

OpenGL Multitexture Quick Tutorial

— Configuring multitextures:
GLuint textures[3];
glGenTextures(3, &textures);

glActiveTexture(GL_TEXTUREO);
glBindTexture(GL_TEXTURE_2D, textures[0]);
glActiveTexture(GL_TEXTUREL);
glIBindTexture(GL_TEXTURE_2D, textures[1]);
glActiveTexture(GL_TEXTURE2);
glIBindTexture(GL_TEXTURE_2D, textures[2]);

layout (b g 0) uniform sampler texO0;
layout (binding 1) uniform sampler texl;
layout (binding 2) uniform sampler tex2;

OpenGL Multitexture Texture OpenGL Multitexture Texture
Environments (old way) Environments (new way)

: : + Chain of Texture Environment Stages:
» Chain of Texture Environment Stages put it in the shaders!

Pre-texturing color varying vec3 lightDir, normal, TexCoord[2];

. void main(){
VertexAttribute(r,g,b) TexCoord[0] = TextureMatrix[0] * MultiTexCoord0;
#0 TexCoord[1] = TextureMatrix[1] * MultiTexCoord1

gl_Position = ftransform();
GL_MODULATE !

varying vec3 lightDir, normal, TexCoord[2];
1 uniform sampler2D tex0, tex1;
#1 void main(}

Lookup vec3 ct, cf;
& filter GL_DECAL

ot(lightDir, normalize(normal)),0.0);
l #2 ¢ s FrontMaterial.diffuse.rgb + gl_FrontMaterial.ambient.rgh;

Lookup
tex0 2 filter

tex1

. X I.diffuse.a
Lookul Post-texturing xture2D(tex0, TexCoord[0].st) + texture2D(tex0, TexCoord[1].st);
texz —20B | GL BLEND —— o= terelrgd
& filter — color g

at = texel.a;
gl_FragColor = vecA(ct'cf, at*af);

Detail Texture Multitexture Lightmapping

Look at SuperBible Example Alpha Mapping

An Alpha Map contains a single value with
transparency information
— 0 > fully transparent
— 1 - fully opaque
Dflandscape = Can be used to make sections of objects
Distance Field Landscape transparent
Can be used in combination with standard
texture maps to produce cutouts
— Trees
— Torches

Alpha Mapping

Alpha Mapping

» The only issue as far as the rendering
pipeline is concerned is that the pixels of the
object made transparent by the alpha map
cannot change the value in the z-buffer

— We saw similar issues when talking about whole
objects that were partially transparent > render
them last with the z-buffer in read-only mode

— However, alpha mapping requires changing z-
buffer modes per pixel based on texel information

— This implies that we need some simple hardware
support to make this happen properly

Bill Boarding

Eye looking down —Z axis, UP = +Y axis
Compute eye-vector from ModelView:

=

Rotation about Y:

:: : ;:E: Where: '5": : m

Build rotation matrix (R) with theta
Transform geometry: MR (Modelview * Rotation)

Alpha Mapping

* In the previous tree example, all the trees are texture
mapped onto flat polygons

« The illusion breaks down if the viewer sees the tree from
the side

* Thus, this technique is usually used with another
technique called “billboarding”
— Simply automatically rotating the polygon so it always

faces the viewer

* Note that if the alpha map is used to provide
transparency for texture map colors, one can often
combine the 4 pieces of information (R,G,B,A) into a
single texture map

Bill Boarding

Billboards

Camera

look = camera_pos - point_pos;
right = up x look;
up = look x right;

10

Billboards

axis to rotate

about
f] Iocal up

vector

up = arbitrary axis

look = camera_pos - point_pos;
right = up x look;

look = right x up;

Billboards Hack

Trees don’t face
camera

Use the Modelview
Set rotation to identity
Spherical Billboarding

Billboards Hack 2

Trees don’t face
camera

Use the Modelview
Make billboard
cylindrical

Set part of rotation to
identity

Billboards Hack

» Trees don’t face camera

+

cameras
wigiing
direction

plane
perpendicular
to the camera

#version 150
in vecé gx3d_Position;
in vec4 gxi3d_TexCoord0;

Il GLSL uniforms:

uniform mat4 gxi3d_ModelViewProjectionMatrix;
uniform mat4 gxI3d_ModelViewMatrix;

uniform mat4 gx13d_ProjectionMatrix;

uniform mat4 gxI3d_ViewMatrix;

uniform mat4 gxI3d_ModelMatrix;

out veca Vertex_UV;
void main()

{
/Imat4 modelView = gxI3d_ViewMatrix"gxI3d_ModelMatrix;
matd modelView = gxI3d_ModelViewMatrix;

Il First column.
modelView[0][0] = 1.0;

modelView[0][2]

Il Second column.

modelView[1][0] = 0.0;

modelView[1][1] = 1.0;
odelView[1][2] = 0.0;
Thrid column.

modelView[2][0] = 0.0;

Vertex_UV = gxi3d_TexCoord0;

#version 150
in vecé gxi3d_Position;
in vec4 gxi3d_TexCoord0;

Il GLSL uniforms:

uniform mat4 gxi3d_ModelViewProjectionMatrix;
uniform mat4 gx|3d_ModelViewMatrix;

uniform mat4 gx13d_ProjectionMatrix;

uniform mat4 gxI3d_ViewMatrix;

uniform mat4 gxi3d_ModelMatrix;

out veca Vertex_UV;
void main()

{
/Imat4 modelView = gxI3d_ViewMatrix°gxI3d_ModelMatrix;
matd modelView

I First column.
modelView[0][0] = 1.0;

vecd P = modelView * gxi3d_Pos
gl_Position = gxi3d_ProjectionMatrix * P;

Vertex_UV = gxi3d_TexCoord0;

11

Billboards Hack 3

Modify the verticies of the
Billboard quad

Reverses the orientations in the
Modelview Maxtrix

Draw quad using right/up offsets

+ only get modelview once
- Must xform all verticies

a = center - (right + up) * size;
b = center + (right - up) * size;
c = center + (right + up) * size;
d = center - (right - up) * size;

i1

al a4 al |[alZ
al af ad |lal3
a2 af allllald)

al all als

How to do cylindrical?

Billboards Correct

» Trees face camera
* Need
— Object in world coords

— Target position (camera) in world coords
» Assume for the object (billboard)

Right = [1,0,0]
Up =[0,1,0]

LookAt = [0,0,1] {which is the normal}

Billboards Correct

objToCamProj is the projection
to the XZ plane (set y=0)

. Normalize objToCamProj
. aux=LookAt dot objToCamProj

. Up’= lookAt X objToCamProj

. glRotate(acos(aux), Up’[0], Up’[1], Up’[2]

Billboards Correct

» Trees face camera

cameras
wiewing
directon

plane
perpendicular
to the camera

Camera

Billboards Correct

12

Billboards Correct

objToCamProj is the projection
to the XZ plane (y=0)

1. Normalize objToCamProj

2. aux=LookAt dot objToCamProj

3. Up’=lookAt X objToCamProj

4. gIRotate(acos(aux), Up’[0], Up’[1], Up’[2]

Billboards Correct

Object Position in world space

objPosWC = camPos + (M1-) * V

all ala

wl=[a12, a3, a14]

Billboard Clouds

Billboards Correct

objToCamProj is the projection
to the XZ plane (y=0)

. Normalize objToCamProj

. aux=LookAt dot objToCamProj

. Up’= lookAt X objToCamProj

. glRotate(acos(aux), Up’[0], Up’[1], Up’[2]

Tilt towards Camera

1. Aux’= objToCamProj dot objToCam

2. glRotate(acos(aux’), right[0], right[1],
right[2])

Point Sprites

See Example

starfield

13

